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1. Introduction1

Recent methods for lifting smooth two-dimensional (2D) font data into2

three dimensions (3D) have focused on rendering algorithms for the Graphics3

Processing Unit (GPU) [14]. However, scientific visualization often requires4

3D vector graphics descriptions of surfaces constructed from smooth font5

data. For example, while current CAD formats, such as the PDF-embeddable6

Product Representation Compact (PRC, précis in French) [2] format, allow7

one to embed text annotations, they do not allow text to be manipulated as8

a 3D entity. Moreover, annotations can only handle simple text; they are not9

suitable for publication-quality mathematical typesetting.10

In this work, we present a method for representing arbitrary planar re-11

gions, including text, as 3D surfaces. A significant advantage of this repre-12

sentation is consistency: text can then be rendered like any other 3D object.13

This gives one complete control over the typesetting process, such as kerning14

details, and the ability to manipulate text arbitrarily (e.g. by transformation15

or extrusion) in a compact resolution-independent vector form. In contrast,16

rendering and mesh-generation approaches destroy the smoothness of the17

original 2D font data [11].18

In focusing on the generation of 3D surfaces from 2D planar data, the19

emphasis of this work is not on 3D rendering but rather on the underly-20

ing procedures for generating vector descriptions of 3D geometrical objects.21

Vector descriptions are particularly important for online publishing, where22

no assumption can be made a priori about the resolution that will be used23

to display an image. As explained in Section 2, we focus on surfaces based24

on polynomial parametrizations rather than nonuniform rational B-splines25

(NURBS) [7, 18]. In Section 3 we describe a method for splitting an arbi-26

trary planar region bounded by one or more Bézier curves into nondegenerate27

Bézier patches. This algorithm relies on the optimized Bézier inside–outside28

test described in Section 4. The implementation of these algorithms in the29

vector graphics language Asymptote, along with the optimized 3D sizing30

algorithms presented in Section 5, is discussed in Section 6.31

Using a compact vector format instead of a large number of polygons to32

represent manifolds has the advantage of reduced data representation (essen-33

tial for the storage and transmission of 3D scenes) and the possibility, using34

relatively few control points, of exact or nearly exact geometrical descriptions35

of mathematical surfaces.36
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2. Bézier vs. NURBS Parametrizations37

The atomic graphical objects in PostScript and PDF, Bézier curves and
surfaces, are composed of piecewise cubic polynomial segments and tensor
product patches, respectively. A segment γ(t) =

∑3
i=0Bi(t)Pi has four con-

trol points Pi, whereas a surface patch is defined by sixteen control points Pij:

P (u, v) = (x(u, v), y(u, v)) =
3∑

i,j=0

Bi(u)Bj(v)Pij.

Here Bi(u) =
(
3
i

)
ui(1− u)3−i is the ith cubic Bernstein polynomial. Just as38

a Bézier segment passes through its two end control points, a Bézier patch39

necessarily passes through its four corner control points. These special con-40

trol points are called nodes. A straight segment is one in which the control41

points are colinear and the derivative of the Bézier parametrization is never42

zero (i.e. the control points are arranged in the same order as their indices).43

A closed curve {γi}n−1i=0 satisfies γ0(0) = γn−1(1).44

It is often desirable to project a 3D scene to a 2D vector graphics for-45

mat understood by a web browser or high-end printer. Although NURBS46

are popular in computer-aided design [7] because of the additional degrees47

of freedom introduced by weights and general knot vectors, these benefits48

are tempered by both the lack of support for NURBS in popular 2D vector49

graphics formats (PostScript, PDF, SVG, EMF) and the algorithmic simpli-50

fications afforded by specializing to a Bézier parametrization. Bézier curves51

are also commonly used to describe glyph outlines. For such reasons, we re-52

strict our attention in this work to (polynomial) Bézier curves and surfaces.53

Unlike their Bézier counterparts, NURBS are invariant under perspective54

projection. This is only an issue if projection is done before the rendering55

stage, as is necessary when a 2D vector representation of a curve or surface56

is constructed solely from the 2D projection of its control points. It is there-57

fore somewhat ironic that NURBS are much less widely implemented in 2D58

vector graphics formats than in 3D. In 3D vector graphics applications, pro-59

jection to 2D is always deferred until rendering time, so that the invariance60

of NURBS under nonaffine projection is irrelevant. Moreover, while NURBS61

provide exact parametrizations of familiar conic sections and quadric sur-62

faces, nontrivial manifolds still need to be approximated as piecewise unions63

of underlying exact primitives.64
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3. Partitioning Curved 2D Regions65

In 3D graphics, text is often displayed with bit-mapped images, textures,66

or polygonal mesh approximations to smooth font character curves. To allow67

viewing of smooth text at arbitrary magnifications and locations, a nonpolyg-68

onal surface that preserves the curvature of the boundary curves is required.69

While it is easy to fill the outline of a smooth character in 2D, filling a 3D70

planar surface requires more sophisticated methods. One approach involves71

using surface filling algorithms for execution on GPUs [14]. When a vec-72

tor, rather than a rendered, image is desired, a preferable alternative is to73

represent the text as a parametrized surface.74

Methods based on common surface primitives in 3D modelling and ren-75

dering can be used to describe planar regions. One method trims the domain76

of a planar surface to the desired shape [16]. While that approach is feasible,77

given adequate software support for trimming, this work describes a differ-78

ent approach, where each symbol is represented as a set of planar Bézier79

patches. We call this procedure bezulation since it involves a process similar80

to the triangulation of a polygon but uses cubic Bézier patches instead of81

triangles. To generate a surface representing the region bounded by a set of82

simple closed Bézier curves (intersecting only at the end points), algorithms83

were developed for (i) expressing a simply connected 2D region as a union of84

Bézier patches and (ii) breaking up a nonsimply connected region into simply85

connected regions. (Self-intersecting curves can be handled by splitting at86

the intersection points.) These algorithms allow one to express text surfaces87

conveniently as Bézier patches.88

Bezulation of a simply connected planar region involves breaking the re-89

gion up into patches bounded by closed Bézier curves with four or fewer90

segments. This is performed by the routine bezulate (see Algorithm 1)91

using an adaptation of a näıve triangulation algorithm, modified to handle92
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curved edges, as illustrated in Figure 1.93

Input: simple closed curve C
Output: array of closed curves A
while C.segments > 4 do

found ← false;
for n = 3 to 2 do

for i = 0 to C.segments-1 do
L ← line segment between nodes i and i+ n of C;
if countIntersections(C,L) = 2 and midpoint of L is
inside C then

p ← subpath of C from node i to i+ n;
q ← subpath of C from node i+ n to i+ C.segments;
A.push(p+L);
C ← L + q;
found ← true;
break;

end

end
if found then

break;
end

end
if not found then

refine C by inserting an additional node at the parametric
midpoint of each segment;

end

end

Algorithm 1: bezulate partitions a simply connected region.

94

A line segment lies within a closed curve when it intersects the curve95

only at its endpoints and its midpoint lies strictly inside the curve. If after96

checking all connecting line segments between nodes separated by n = 3 or97

n = 2 segments, none of them lie entirely inside the shape, the original curve98

is refined by dividing each segment of the curve at its parametric midpoint,99

as illustrated in Fig. 2. The bezulation process then continues with the100

refined curve. This algorithm can be modified to subdivide more optimally,101

for example, to avoid elongated patches that sometimes lead to rendering102

problems.103
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Figure 1: The bezulate algorithm. Starting with the original curve (a), several possible
connecting line segments (shown in red) between nodes separated by n = 3 or n = 2
segments are tested. Connecting line segments are rejected if they do not lie entirely
inside the original curve. This occurs when the midpoint is not inside the curve (b) or
when the connecting line segment intersects the curve more than twice (c). If a connecting
line segment passes both tests, the shaded section is separated (d) and the algorithm
continues with the remaining curve (e).

Figure 2: The left-hand figure illustrates a case where all line segments between nodes
separated by two or three segments (dotted lines) are rejected in the bezulate algorithm.
The right-hand curve shows that several connections (dashed red lines) become possible
upon subdivision.
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If the region is convex, Algorithm 1 is easily seen to terminate: all con-104

necting line segments are admissible, and each patch removal decreases the105

number of points in the curve. Moreover, from the point of view of Algo-106

rithm 1, upon sufficient subdivision a non-convex region eventually becomes107

indistinguishable from a polygon, in which case the algorithm reduces to a108

straightforward polygonal triangulation.109

3.1. Nonsimply Connected Regions110

Since the bezulate algorithm requires simply connected regions, nonsim-111

ply connected regions must be handled specially. The “holes” in a nonsimply112

connected domain can be removed by partitioning the domain into a set of113

simply connected regions, each of which can then be bezulated.114

For convenience we define a top-level curve to be a curve that is not115

contained inside any other curve and an outer (inner) curve to be the outer116

(inner) boundary of a filled region. With these definitions, the glyph “%”117

has two inner curves and two top-level curves that are also outer curves.118

The algorithm proceeds as follows. First, to determine the topology of119

the region, the curves are sorted according to their relative insidedness, as120

determined by the nonzero winding number rule. Since the curves are as-121

sumed to be simple, any point on an inner curve can be used to test whether122

that curve is inside another curve. The result of this sorting is a collection123

of top-level curves grouped with the curves they surround. Each of these124

groups is treated independently.125

Figure 4 illustrates the partition routine (see Algorithm 2). Each group126

is examined recursively to identify regions bounded by inner and outer curves.127

First, the inner curves in the group are sorted topologically to find the inner128

curves that are top-level curves with respect to the other inner curves. The129

inner curves that are not top-level curves are processed with a recursive call to130

partition. The nonsimply connected region between the outer (top-level)131

curve and the inner (top-level) curves is now split into simply connected132

regions. This is illustrated in Figure 3. The intersections of the inner and133

outer curves with a line segment from a point on an inner curve to a point134

on the outer curve are found using a numerically robust explicit cubic root135

solver. Consecutive intersections of this line segment, at points A and B, on136

the inner and outer curves, respectively, are selected. Let tB be the value137

of the parameter used to parameterize the outer curve at B. Starting with138

∆ = 1, ∆ is halved until the line segment AC, where C is the point on139

the outer curve at tB + ∆, does not intersect the outer curve more than140
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once, does not intersect any inner curve (other than once at A), and the141

region bounded by AB, AC, and
_

BC does not contain any inner curves.142

Once ∆ and the point C have been found, the outer curve, less the segment143

between B and C, is merged with BA, followed by the inner curve and144

then AC. The region bounded by AB, AC, and
_

BC is a simply connected145

region. Additional simply connected regions are found when the outer curve146

is merged with the other inner curves. Once the merging with all inner147

curves has been completed, the outer curve becomes the boundary of the148

final simply connected region.149

The recursive algorithm for partitioning nonsimply connected regions into150

simply connected regions is summarized below. The function sort returns151

groups of top-level curves and the curves they contain. However, it is not152

recursive; the inner curves are not sorted. The function merge returns the153

simply connected regions formed from the single outer curve and multiple154

inner curves that are supplied to it.155

Input: array of simple closed curves C
Output: array of closed curves A
foreach group of nested curves G in sort(C) do

innerGroups ← sort(G.innerCurves);
foreach group of nested curves H in innerGroups do

A.push(partition(H.innerCurves));
end
A.push(merge(G.toplevel, top-level curves of all groups in
innerGroups));

end
return A;

Algorithm 2: partition splits nonsimply connected regions into sim-
ply connected regions. The pseudo-code functions sort and merge are
described in the text.

156

Although the rendering technique of Ref. [14] could be modified to pro-157

duce Bézier patches, it appears to generate more patches than bezulate. For158

example, the “e” shown in Fig. 3 of Ref. [14] corresponds to roughly twice as159

many (4-segment) patches as the ten patches generated by bezulate for the160

“e” in Fig. 7. Our interest is in compact 3D vector representations, where161

the objective is to minimize the number of generated patches. In contrast, in162

real-time rendering, one aims to minimize overall execution time. An inter-163
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Figure 3: Splitting of non-simply connected regions into simply connected regions. Starting
with a non-simply connected region (a), the intersections between each curve and an
arbitrary line segment from a point on an inner curve to the outer curve are found (b).
Consecutive intersections of this line segment, at points A and B, on the inner and outer
curves, respectively, identify a convenient location for extracting a region. One searches
along the outer curve for a point C such that the line segment AC intersects the outer
curve no more than once, intersects an inner curve only at A, and determines a region
ABC between the inner and outer curves that does not contain an inner curve. Once such
a region is found (c), it is extracted (d). This extraction merges the inner curve with the
outer curve. The process is repeated until all inner curves have been merged with the
outer curve, leaving a simply connected region (e) that can be split into Bézier surface
patches. The resulting patches and extracted regions are shaded in (f).

partition

merge, bezulate

merge, bezulate

bezulate

Figure 4: Illustration of the partition algorithm. The five curves that define the outlines
of the Greek characters σ and Θ are passed in a single array to partition.

9



Figure 5: Application of the bezulate and
partition algorithms to lift the Gaussian
integral to three dimensions.

Figure 6: Zoomed view of Figure 5 gener-
ated from the same vector graphics data.
The smooth boundaries of the characters
emphasize the advantage of a 3D vector font
description.

Figure 7: Subpatch boundaries for Figure 5 as determined by the bezulate and partition

algorithms.
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Figure 8: Bézier approximation to a unit sphere. The red dots indicate control points.

esting future research project would be the development of Bézier versions164

of more advanced triangulation algorithms that efficiently incorporate, for165

example, feature-based decomposition [11].166

The routines bezulate and partition were used to typeset the TEX
equation

+∞∫
−∞

e−αx
2

=

√
π

α

in the interactive 3D diagram shown in Figure 5 and magnified, to emphasize167

the smooth font boundaries, in Figure 6. The computed subpatch boundaries168

are indicated in Figure 7.169

The 8-patch Bézier approximation to a sphere [17] in Figure 8 (where170

a = 4
3
(
√

2− 1) yields an accuracy of 0.052%), illustrates how bezulate can171

be used to lift TEX to three dimensions. Referring to the interactive 3D172

PDF version of this article1 one sees that the labels in Figure 8 have been173

programmed to rotate interactively so that they always face the camera; this174

feature, implemented with Javascript, is known as billboard interaction.175

3.2. Nondegenerate Planar Bézier Patches176

The bezulate algorithm described above decomposes regions bounded by177

closed curves (according to the nonzero winding number rule) into subregions178

1See http://asymptote.sourceforge.net/articles/.
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bounded by closed curves with four or fewer segments. Further steps are179

required to turn these subregions into nondegenerate Bézier patches. First, if180

the interior angle between the incoming and outgoing tangent directions at a181

node is greater than 180◦, the boundary curve is split at this node by following182

the interior angle bisector to the first intersection with the path. This is done183

to guarantee that the patch normal vectors at the nodes all point in the same184

direction. Next, curves with less than four segments are supplemented with185

null segments (four identical control points) to bring their total number of186

segments up to four. A closed curve with four segments defines the twelve187

boundary control points of a Bézier patch in the x–y plane. The remaining188

four interior control points {P11,P12,P21,P22} are then chosen to satisfy the189

Coons interpolation [6, 8, 1]190

P (u, v) =
3∑
i=0

[(1− v)Bi(u)Pi,0 + vBi(u)Pi,3 + (1− u)Bi(v)P0,i + uBi(v)P3,i]

−(1− u)(1− v)P0,0 − (1− u)vP0,3 − u(1− v)P3,0 − uvP3,3.

The resulting mapping P (u, v) need not be bijective [19, 21, 22, 13], even
if the corner control points form a convex quadrilateral (despite the fact that
a Coons patch for a convex polygon is always nondegenerate). In terms of
the 2D scalar cross product p×q = pxqy − pyqx, the Coons patch is seen to
be a diffeomorphism of the unit square D = [0, 1] × [0, 1] if and only if the
Jacobian

J(u, v) =
∂(x, y)

∂(u, v)
=∇ux×∇vy =

3∑
i,j,k,`=0

B′i(u)Bj(v)Bk(u)B′`(v)Pij×Pk`

(the z component of the corresponding 3D normal vector) is sign definite191

[19]. Since J(u, v) is a continuous function of its arguments, this means that192

J must not vanish anywhere on D. A sign reversal of the Jacobian can193

manifest itself as an outright overlap of the region bounded by the curve194

or as an internal multivalued wrinkle, as illustrated in Figure 9. Rendering195

problems, such as the black smudges visible in Figures 9(b) and (e), can196

occur where isolines collide.197

Randrianarivony and Brunnett [19] (and later H. Lin et al. [13]) describe
sufficient conditions for J(u, v) to be nonzero throughout D. In the case of
a cubic Bézier patch, the 36 quantities

Tpq =
∑
i+k=p

∑
j+`=q

Ui,j×Vk,`
(

2

i

)(
3

k

)(
3

j

)(
2

`

)
p, q = 0, 1, . . . , 5,
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(a) (b) (c)

(d) (e) (f)

Figure 9: Degeneracy in a Coons patch. The dots indicate corner control points (nodes)
and the open circles indicate the points of greatest degeneracy on the boundary, as deter-
mined by the quartic root solver: (a) overlapping isoline mesh; (b) overlapping patch; (c)
nonoverlapping subpatches; (d) internally degenerate isoline mesh; (e) internally degener-
ate patch; (f) nondegenerate subpatches.
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where Ui,j = Pi+1,j − Pi,j and Vi,j = Pi,j+1 − Pi,j, are required to be of198

the same sign. This follows from the fact that J(u, v) =
∑5

p,q=0 Tpqu
pvq(1−199

u)5−p(1− v)5−q.200

Randrianarivony et al. show further that every degenerate Coons patch201

can be decomposed into a finite union of nondegenerate subpatches (some202

with reversed orientation). However, the adaptive subdivision algorithm they203

propose to exploit this fact does not prescribe an optimal boundary point204

at which to do the splitting. A better algorithm is based on the following205

elementary theorem, which provides a practical means of detecting Coons206

patches with degenerate boundaries.207

Theorem 1 (Nondegenerate Boundary). Consider a closed counter-clockwise
oriented four-segment curve p in the x–y plane such that the interior angles
formed by the incoming and outgoing tangent vectors at each node are less
than or equal to 180◦. Let J(u, v) be the Jacobian of the corresponding Coons
patch constructed from p, with control points Pij, and define the fifth-degree
polynomial

f(u) =
3∑

i,j=0

B′i(u)Bj(u)Pi,0×(Pj,1 − Pj,0).

If f(u) ≥ 0 whenever f ′(u) = 0 on u ∈ (0, 1), then J(u, 0) ≥ 0 on [0, 1].208

Otherwise, the minimum value of J(u, 0) occurs at a point where f ′(u) = 0.209

Proof. First we note, since B′1(0) = −B′0(0) = 3 and B′2(0) = B′3(0) = 0,
that J(u, 0) = 3f(u) and

J(0, 0) = 3f(0) = 9(P1,0 − P0,0)×(P0,1 − P0,0) ≥ 0

since this is the cross product of the outgoing tangent vectors at P0,0. Like-210

wise, J(1, 0) = 3f(1) ≥ 0. We know that the continuous function f must211

achieve its minimum value on [0, 1] at some u ∈ [0, 1]. If f were negative212

somewhere in (0, 1) we could conclude that f(u) < 0, so that u ∈ (0, 1), and213

hence f would have an interior local minimum at u, with f ′(u) = 0. But this214

is a contradiction, given that f(u) ≥ 0 whenever f ′(u) = 0.215

The significance of Theorem 1 is that it affords a means of detecting a
point u on the boundary where the Jacobian is most negative. This requires
finding roots of the quartic polynomial

f ′(u) =
3∑

i,j=0

[B′′i (u)Bj(u) +B′i(u)B′j(u)]Pi,0×(Pj,1 − Pj,0).
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5− 20u+ 30u2 − 20u3 + 5u4 −3 + 24u− 54u2 + 48u3 − 15u4 −6u+ 27u2 − 36u3 + 15u4 −3u2 + 8u3 − 5u4

−7 + 36u− 66u2 + 52u3 − 15u4 3− 36u+ 108u2 − 120u3 + 45u4 6u− 45u2 + 84u3 − 45u4 3u2 − 16u3 + 15u4

2− 18u+ 45u2 − 44u3 + 15u4 12u− 63u2 + 96u3 − 45u4 18u2 − 60u3 + 45u4 8u3 − 15u4

2u− 9u2 + 12u3 − 5u4 9u2 − 24u3 + 15u4 12u3 − 15u4 5u4



Table 1: Coefficients of the polynomials Mij = (B′′i Bj +B′iB
′
j)/3.

The coefficients of this quartic polynomial can be computed using the polyno-216

mials Mij = (B′′i Bj+B′iB
′
j)/3 tabulated in Table 1. The method of Neumark217

[15], which relies on numerically robust cubic and quadratic root solvers, is218

then used to find algebraically all real roots of the quartic equation f ′(u) = 0219

that lie in (0, 1). The Jacobian is computed at each of these points; if it is220

negative anywhere, the point where it is most negative is determined. The221

patch is then split along an interior line segment perpendicular to the tan-222

gent vector at this point. The next intersection point of the patch boundary223

with this line is used to split the patch into two pieces. Each of these pieces224

is then treated recursively (beginning with an additional call to bezulate,225

should the new boundary curve happen to have five segments).226

If a patch possesses only internal degeneracies, like the one in Figure 9(d),227

the patch boundary is arbitrarily split into two closed curves, say along the228

perpendicular to the midpoint of some nonstraight side. The blue lines in229

Figures 9(b) and (f) illustrate such a midpoint splitting. The arguments of230

Randrianarivony et al. [19] establish that only a finite number of such sub-231

divisions will be required to obtain a nondegenerate patch. Nondegenerate232

subpatches oriented in the direction opposite to the normal vector corre-233

sponding to the original oriented curve should be discarded to avoid rendering234

interference with correctly aligned overlying subpatches.235

The blue lines in Figure 9(c) show that our quartic algorithm generates236

six subpatches, a substantial improvement over the nine subpatches produced237

by adaptive midpoint subdivision [19] in Figure 9(b). Figure 9(c) also em-238

phasizes the ability of the quartic root algorithm to detect the optimal (most239

degenerate) points (circled) for splitting the boundary curve. As mentioned240

earlier, in both cases, it is possible that splitting can lead to curves with five241

segments. Such curves are split further by the bezulate algorithm so that242

any degeneracy of the resulting subpatches can be addressed.243
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Since our algebraic quartic root solver is explicit, optimal subdivision,244

which splits at the point of greatest degeneracy, can be implemented more245

efficiently than näıve midpoint subdivision. In our high-level Asymptote246

implementation, the costs of adaptive midpoint subdivision for Figures 9(b)247

and Figure 9(f) were approximately the same. Using optimal subdivision248

in Figure 9(c) was 34% faster than adaptive midpoint splitting, whereas249

there was only 2% additional overhead in checking for boundary degeneracy250

in Figure 9(f) (which possesses only internal degeneracy). Patches having251

only internal degeneracy arise relatively rarely in practice, but when they252

do, the subpatches obtained by adaptive midpoint subdivision also tend to253

exhibit internal degeneracy. Once internal degeneracy has been detected in254

a patch, we find that it is typically more efficient not to check its degenerate255

subpatches for boundary degeneracy (otherwise the overhead in checking256

for boundary degeneracy in Figure 9(f) would grow to 50%). Of course,257

since our interest is not in real-time rendering but in surface generation, the258

real advantage of optimal subdivision is that it can significantly reduce the259

number of generated patches (e.g. Figure 9(c) has one-third fewer patches260

than Figure 9(b)).261

4. An Optimized Bézier Inside–Outside Test262

Although PostScript has an infill function for testing whether a par-
ticular point would be painted by the PostScript fill command, this is only
an approximate digitized test corresponding to the resolution of the output
device. Our bezulate routine requires a vector graphics algorithm, one that
yields the winding number of an arbitrary closed piecewise Bézier curve about
a given point. It is convenient to define the winding number contribution of a
smooth (not necessarily closed) curve γ about z via the complex line integral

ν(γ, z) =
1

2πi

∫
γ

1

ζ − z
dζ,

allowing the usual winding number of a closed curve ∪iγi to be expressed as263 ∑
i ν(γi, z).264

A straightforward generalization of the standard ray-to-infinity method265

for computing winding numbers of a polygon about a point requires the so-266

lution of a cubic equation. As is well known, the latter problem can become267

numerically unstable as two or three roots begin to coalesce. While a con-268

ventional ray-curve (or ray-patch) intersection algorithm based on recursive269
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subdivision [16] could be employed to count intersections, this typically en-270

tails excessive subdivision.271

A more efficient but still robust subdivision method for computing the272

winding number of a closed Bézier curve arises from the topological obser-273

vation that if a point z lies outside the convex hull of a Bézier segment γ,274

then γ can be deformed to a straight line segment L between its endpoints275

by a continuous function F : γ × [0, 1] 7→ L such that F (γ(t), s) 6= z for276

all (s, t) ∈ [0, 1] × [0, 1] (i.e. without crossing z). Cauchy’s theorem guar-277

antees that the winding number contribution ν(γ, z) is unchanged by this278

deformation.279

A given point will typically lie outside the convex hull of most segments280

of a Bézier curve. The orientation of these segments relative to the given281

point can be quickly and robustly determined, just as in the usual ray-to-282

infinity method for polygons (see e.g. [9]), to determine the contribution, if283

any, to the winding number. For this purpose, Jonathan Shewchuk’s public-284

domain adaptive precision predicates for computational geometry [20] are285

highly recommended.286

In the infrequent case where z lies on or inside the convex hull of a seg-287

ment, de Casteljau subdivision is used to split the Bézier segment about288

its parametric midpoint. Typically the convex hulls of the resulting sub-289

segments will overlap only at their common control point, so that z can lie290

strictly inside at most one of these hulls. This observation is responsible291

for the efficiency of the algorithm: as illustrated in Figure 10, one continues292

subdividing until the point is outside the convex hull of both segments or293

until machine precision is reached.294

The orientation of segments whose convex hulls do not contain z can be295

handled by using the topological deformation property together with adap-296

tive precision predicates. Denoting by straightContribution(P,Q,z) the297

usual ray-to-infinity method for determining the winding number contribu-298

tion of a line segment PQ relative to a point z, the contribution from a Bézier299
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z

Figure 10: The BézierWindingNumber algorithm. Since z lies inside the convex hull of
one Bézier segment, indicated by a light shaded region, that segment must be subdivided.
On subdivision, z now lies outside the convex hulls of the subsegments, indicated by the
dark shaded regions; each subsegment γ may be continuously deformed to a straight line
segment between its endpoints without crossing z. The usual polygon inside–outside test
may then be applied: the green ray establishes a winding number contribution of +1 due
to the orientation of z with respect to the thick blue line. The intersections indicated by
open circles can be ignored because the relevant Bézier segment can be deformed to a line
segment that does not intersect the ray.

segment S can be computed as curvedContribution(S,z) (Algorithm 3).300

Input: segment S, pair z
Output: winding number contribution of S about z
W ← 0;
if z lies within or on the convex hull of S then

foreach subsegment s of S do
W ← W + curvedContribution(s,z);

end

else
W ← W + straightContribution(S.beginpoint,S.endpoint,z);

end
return W;

Algorithm 3: curvedContribution(S,z) determines the winding
number contribution from a Bézier segment S about z.

301

The winding number for a closed curve p about z may then be evaluated302
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with the algorithm bézierWindingNumber(C,z) (Algorithm 4).303

Input: curve C, pair z
Output: winding number of C about z
W ← 0;
foreach segment S of C do

if S is straight then
W ← W + straightContribution(S.beginpoint,S.endpoint,z);

else
W ← W + curvedContribution(S,z);

end

end
return W;

Algorithm 4: bézierWindingNumber(C,z) computes the winding
number of a closed Bézier curve C about z.

304

A practical simplification of the above algorithm is the widely used opti-305

mization of testing whether a point is inside the 2D (axis-aligned) bounding306

box of the control points rather than their convex hull. Since the convex307

hull of a Bézier segment is contained within the bounding box of its control308

points, one can replace “convex hull” by “control point bounding box” in309

the above algorithm without modifying its correctness. One can easily check310

numerically that the cost of the additional spurious subdivisons is well offset311

by the computational savings in testing against the control point bounding312

box.313

5. Global Bounds of Directionally Monotonic Functions314

We now present efficient algorithms for computing global bounds of real-315

valued directionally monotonic functions f : R3 → R defined over a Bézier316

patch P parametrized by (u, v) ∈ [0, 1] × [0, 1]. By directionally monotonic317

we mean that f is a monotonic function of each of the three Cartesian direc-318

tions while holding the other two fixed; if f is differentiable this means that319

f has sign-semidefinite partial derivatives. These algorithms can be used to320

compute the 3D (axis-aligned) bounding box of a Bézier surface, the bound-321

ing box of its 2D projection, or the optimal field-of-view angle for sizing a 3D322

scene (see Fig. 11). The key observation is that the convex hull property of a323

Bézier patch holds independently in each direction and even under inversions324

like z → 1/z.325
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A näıve approach (subdivision without regard to monotonicity) to com-326

puting the bounding box of a Bézier patch requires subdivision whenever327

the subpatch bounding boxes overlap in any of the three Cartesian direc-328

tions. However, the number of required subdivisons can be greatly reduced329

by decoupling the three directions: in Algorithm 5, the problem is split into330

finding the maximum and minimum of the three Cartesian axis projections331

f(x, y, z) = x, f(x, y, z) = y, and f(x, y, z) = z evaluated over the patch.332

This requires a total of six applications of Algorithm 5. The extrema of these333

special choices for f over a polyhedron C occur at vertices of C.334

More general choices of directionally monotonic functions f are also of335

interest. For example, to determine the bounding box of the 2D perspective336

projection (based on similar triangles) of a surface, one can apply Algorithm 6337

in eye coordinates to the functions f(x, y, z) = x/z and f(x, y, z) = y/z. This338

is useful for sizing a 3D object in terms of its 2D projection. For example,339

these functions were used to calculate the optimal field-of-view angle 13.4◦340

for the Klein bottle shown in Figure 11.341

For an arbitrary directionally monotonic function f and polyhedron C,342

we observe that343

P ⊂ C ⇒ f(P ) ⊂ f(C) ⊂ [min
∂C

f,max
∂C

f ], (1)

noting that the function value at each point v ∈ P is bounded by the function344

values at the nearest two intersection points of ∂C with a line through v in345

the x, y, or z direction.346

Our algorithms exploit Eq. (1) together with de Casteljau’s subdivision347

algorithm and the fact that a Bézier patch is confined to the convex hull of348

its control points. However, a patch is only guaranteed to intersect its convex349

hull at the four corner nodes.350

For the special case where f is a projection onto the Cartesian axes, the351

function CartesianMax(f,P , f(P00), d) given in Algorithm 5 computes the352

global maximum M of a Cartesian axis projection f : R3 → R over a Bézier353

patch P to recursion depth d. Here, the value f(P00) provides a convenient354

starting value (lower bound) for M ; if the maximum of a surface consisting355

of several patches is desired, the value of M from previous patches is used to356

seed the calculation for the subsequent one. The algorithm exploits the fact357

that the extrema of each coordinate over the convex hull C of {Pij} occur358

at vertices of C. First, one replaces M by the maximum of f evaluated at359

the four corner nodes and the previous value of M . If the maximum of the360
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Figure 11: A Bézier approximation to a projection of a four-dimensional Klein bottle to
three dimensions. The FunctionMax algorithm was used to determine the optimal field
of view for this symmetric perspective projection of the scene from the camera location
(25.09,−30.33, 19.37) looking at (−0.59, 0.69,−0.63). The extruded 3D TEX equations
embedded onto the surface provide a parametrization for the surface over the domain
u× v ∈ [0, 2π]× [0, 2π].
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function evaluated at the remaining 12 control points is less than or equal361

to M , the subpatch can be discarded (by Eq. 1, noting that the maximum362

of f(C) occurs at a control point and hence cannot exceed M). Otherwise,363

the patch is subdivided along the u = v = 1/2 isolines and the process is364

repeated using the new value of M . The method quickly converges to the365

global maximum of f over the entire patch.366

Input: real function f(triple), patch P , real M, integer depth
Output: real M
M← max(M, f(P 00), f(P 03), f(P 30), f(P 33));
if depth = 0 then

return M;
end
V← max(f(P 01), f(P 02), f(P 10), f(P 11), f(P 12), f(P 13),

f(P 20), f(P 21), f(P 22), f(P 23), f(P 31), f(P 32));
if V ≤ M then

return M;
end
foreach subpatch S of P do

M← max(M, FunctionMax(f, S,M, depth− 1));
end
return M;

Algorithm 5: CartesianMax(f,P ,M,depth) returns the maximum of
M and the global bound of a Cartesian component f of a Bézier patch
P evaluated to recursion level depth.

For a general directionally monotonic function f (consider f(x, y, z) = xy367

over C = {(x, y, 0) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}), the maximum of f(C) need368

not occur at vertices of C: one instead needs to examine the function value369

at the appropriate vertex of the bounding box of C. For example, if f is a370

monotonic increasing function on C in each of the three Cartesian directions,371

P ⊂ C ⊂ box(a, b)⇒ f(P ) ⊂ f(C) ⊂ [f(a), f(b)], (2)

where box(a, b) = {v : ai ≤ vi ≤ bi, i = 1, 2, 3}. This follows by succes-372

sively comparing the function values at each point v ∈ P with f(a1, v2, v3),373

f(a1, a2, v3), and f(a1, a2, a3), along with f(b1, v2, v3), f(b1, b2, v3), and f(b1, b2, b3).374
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The global maximum M of a directionally monotonic increasing function375

f : R3 → R over a Bézier patch P can then be efficiently computed to376

recursion depth d by calling the function FunctionMax(f,P , f(P00), d) given377

in Algorithm 6. First, one replaces M by the maximum of f evaluated at378

the four corner nodes and the previous value of M . One then computes the379

vertex b of the bounding box(a, b) for the convex hull C of {Pij}. If the380

maximum f(b) of the function on box(a, b) is less than or equal to M , the381

subpatch can be discarded. Otherwise, the patch is subdivided along the382

u = v = 1/2 isolines and the process is repeated using the new value of M .383

Input: real function f(triple), patch P , real M, integer depth
Output: real M
M← max(M, f(P 00), f(P 03), f(P 30), f(P 33));
if depth = 0 then

return M;
end
x← max(x̂ · P ij : 0 ≤ i, j ≤ 3);
y← max(ŷ · P ij : 0 ≤ i, j ≤ 3);
z← max(ẑ · P ij : 0 ≤ i, j ≤ 3);
if f((x, y, z)) ≤ M then

return M;
end
foreach subpatch S of P do

M← max(M, FunctionMax(f, S,M, depth− 1));
end
return M;

Algorithm 6: FunctionMax(f,P ,M,depth) returns the maximum of M
and the global bound of a real-valued directionally monotonic increasing
function f over a Bézier patch P evaluated to recursion level depth. Here
x̂, ŷ, ẑ are the Cartesian unit vectors.

6. 3D Vector Typography384

Donald Knuth’s TEX system [12], the de-facto standard for typesetting385

mathematics, uses Bézier curves to represent 2D characters. TEX provides386

a portable interface that yields consistent, publication-quality typesetting of387
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equations, using subtle spacing rules derived from centuries of professional388

mathematical typographical experience. However, while it is often desirable389

to illustrate abstract mathematical concepts in TEX documents, no compati-390

ble descriptive standard for technical mathematical drawing has yet emerged.391

The recently developed Asymptote language2 aims to fill this gap by392

providing a portable TEX-aware tool for producing 2D and 3D vector graph-393

ics [4]. In mathematical applications, it is important to typeset labels and394

equations with TEX for overall consistency between the text and graphical el-395

ements of a document. In addition to providing access to the TEX typesetting396

system in a 3D context, Asymptote also fills in a gap for nonmathematical397

applications. While open source 3D bit-mapped text fonts are widely avail-398

able,3 resources currently available for scalable (vector) fonts appear to be399

quite limited in three dimensions.400

Asymptote was inspired by John Hobby’s METAPOST (a modified ver-401

sion of METAFONT, the program that Knuth wrote to generate the TEX402

fonts), but is more powerful, has a cleaner syntax, and uses IEEE floating403

point numerics. An important feature of Asymptote is its use of the simplex404

linear programming method to solve overall size constraint inequalities be-405

tween fixed-sized objects (labels, dots, and arrowheads) and scalable objects406

(curves and surfaces). This means that the user does not have to scale man-407

ually the various components of a figure by trial-and-error. The 3D versions408

of Asymptote’s deferred drawing routines rely on the efficient algorithms409

for computing the bounding box of a Bézier surface, along with the bounding410

box of its 2D projection, described in Sec. 5. Asymptote natively generates411

PostScript, PDF, SVG, and PRC [2] vector graphics output. The latter is a412

highly compressed 3D format that is typically embedded within a PDF file413

and viewed with the widely available Adobe Reader software.414

The biggest obstacle that was encountered in generalizing Asymptote415

to produce 3D interactive output was the fact that TEX is fundamentally a416

2D program. In this work, we have developed a technique for embedding417

2D vector descriptions, like TEX fonts, as 3D surfaces (2D vector graphics418

representations of TEX output can be extracted with a technique like that419

described in Ref. [5]). While the general problem of filling an arbitrary 3D420

2available from http://asymptote.sourceforge.net under the GNU Lesser General
Public License.

3For example, see http://www.opengl.org/resources/features/fontsurvey/.
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closed curve is ill-posed, there is no ambiguity in the important special case421

of filling a planar curve with a planar surface.422

Together with the 3D generalization of the METAFONT curve operators423

described by [3, 4], these algorithms provide the 3D foundation for Asymp-424

tote. Since our procedure transforms text into Bézier patches, which are the425

surface primitives used in Asymptote, all of the existing 3D Asymptote426

algorithms can be used without modification.427

6.1. 3D Arrowheads428

Arrows are frequently used in illustrations to draw attention to important429

features. We designed curved 3D arrowheads that can be viewed from a430

wide range of angles. For example, the default 3D arrowhead was formed by431

bending the control points of a cone around the tip of a Bézier curve. Planar432

arrowheads derived from 2D arrowhead styles are also implemented; they are433

oriented by default on a plane perpendicular to the initial viewing direction.434

Examples of these arrows are displayed in Figures 12 and 13. The bezulate435

algorithm was used to construct the upper and lower faces of the filled (red)436

planar arrowhead in Fig. 13.437

Figure 12: Three-dimensional revolved arrowheads in Asymptote.

Figure 13: Planar arrowheads in Asymptote.
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6.2. Double Deferred Drawing438

Journal size constraints typically dictate the final width and height, in439

PostScript coordinates, of a 2D or projected 3D figure. However, it is often440

convenient for users to work in more physically meaningful coordinates. This441

requires deferred drawing: a graphical object cannot be drawn until the actual442

scaling of the user coordinates (in terms of PostScript coordinates) is known443

[4]. One therefore needs to queue a function that can draw the scaled object444

later, when this scaling is known. Asymptote’s high-order functions provide445

a flexible mechanism that allows the user to specify either or both of the 3D446

model dimensions and the final projected 2D size. This requires two levels of447

deferred drawing, one that first sizes the 3D model and one that scales the448

resulting picture to fit the requested 2D size [5]. The 3D bounding box of449

a Bézier surface, along with the bounding box of its 2D projection, can be450

efficiently computed with the method described in Section 5.451

6.3. Efficient Rendering452

Efficient algorithms for determining the bounding box of a Bézier patch453

also have an important application in rendering. Knowing the bounding box454

of a Bézier patch allows one to determine, at a high level, whether it is in the455

field of view: offscreen Bézier patches can be dropped before mesh generation456

occurs [10]. This is particularly important for a spatially adaptive algorithm457

as used in Asymptote’s OpenGL-based renderer, which resolves the patch458

to one pixel precision at all zoom levels. Moreover, to avoid subdivision459

cracks, renderers typically resolve visible surfaces to a uniform resolution.460

It is therefore important that offscreen patches do not force an overly fine461

mesh within the viewport. As a result of these optimizations, the native462

Asymptote adaptive renderer is typically comparable in speed with the463

fixed-mesh PRC renderer in Adobe Reader, even though the former yields464

higher quality, true vector graphics output.465

7. Conclusions466

In this work we have developed methods that can be used to lift smooth467

fonts, such as those produced by TEX, into 3D. Treating 3D fonts as sur-468

faces allows for arbitrary 3D text manipulation, as illustrated in Figures 6469

and 11. The bezulate algorithm allows one to construct planar Bézier sur-470

face patches by decomposing (possibly nonsimply connected) regions bounded471

by simple closed curves into subregions bounded by closed curves with four472
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or fewer segments. The method relies on an optimized subdivision algorithm473

for testing whether a point lies inside a closed Bézier curve, based on the474

topological deformation of the curve to a polygon. We have also shown how475

degenerate Coons patches can be efficiently detected and split into nondegen-476

erate subpatches. This is required to avoid both patch overlap at the bound-477

aries of the underlying curve and rendering artifacts (patchiness, smudges,478

or wrinkles) due to normal reversal.479

We have illustrated applications of these techniques in the open source480

vector graphics programming language Asymptote, which we believe is the481

first software to lift TEX into 3D. This represents an important milestone for482

publication-quality scientific graphing.483
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