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Casimir cascades in two-dimensional turbulence
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In addition to conserving energy and enstrophy, the nonlinear terms of the two-
dimensional incompressible Navier–Stokes equation are well known to conserve the
global integral of any continuously differentiable function of the scalar vorticity field.
However, the phenomenological role of these additional inviscid invariants, including
the issue as to whether they cascade to large or small scales, is an open question. In
this work, well-resolved implicitly dealiased pseudospectral simulations suggest that
the fourth power of the vorticity cascades to small scales.
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1. Two-dimensional turbulence
The Kraichnan–Leith–Batchelor theory of two-dimensional incompressible

turbulence relies on the fact that the nonlinear terms of the two-dimensional
Navier–Stokes equation conserve both energy and enstrophy (Kraichnan 1967, 1971;
Leith 1968; Batchelor 1969). Consequently, in an infinite domain and in the limit of
infinite Reynolds number, the net energy and enstrophy transfers outside of a localized
forcing region must be independent of wavenumber. The predicted dual cascade of
energy to larger scales and enstrophy to smaller scales is readily observed in numerical
simulations of two-dimensional turbulence in a bounded periodic domain.

It is well known that the nonlinearity of the two-dimensional Navier–Stokes
equation in addition conserves the global integral of any arbitrary piecewise continuous
function of the scalar vorticity field. While it is known that these so-called Casimir
invariants arise from an underlying rearrangement symmetry (corresponding to the
conservation of vorticity measure), their precise physical role remains an open
question. For example, it is not known whether they could play a fundamental role
in the turbulent cascade, just like energy and enstrophy. In particular, do Casimir
invariants exhibit cascades? In the literature, Polyakov’s minimal conformal field
theory model (Polyakov 1993) predicts that the higher-order Casimir invariants cascade
to large scales, while Falkovich & Hanany (1993) and Eyink (1996) suggest that they
might instead cascade to small scales.

Numerical investigations of these questions are hampered by the fact that
pseudospectral simulations, which necessarily truncate the wavenumber domain, do not
conserve these higher-order Casimir invariants, unlike the so-called rugged quadratic
(energy and enstrophy) invariants, which do survive wavenumber truncation. In this
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work, we establish that it is nevertheless possible to demonstrate with sufficiently
well-resolved simulations that the fourth power of the vorticity is transferred to smaller
scales.

2. Casimir invariants
We begin with the two-dimensional incompressible Navier–Stokes equation for the

vorticity ω
.= ẑ ·∇ × u ( .= is used to emphasize a definition),

∂ω

∂t
+ u ·∇ω = ν∇2ω + f , (2.1)

where the constant ν is the kinematic viscosity and f represents a white-noise
stochastic stirring. In the inviscid unforced limit ν = f = 0, both the energy E

.=
1
2

∫
u2 dx and enstrophy Z

.= 1
2

∫
ω2 dx are conserved.

However, as is well known, inviscid unforced two-dimensional turbulence has
uncountably many other Casimir invariants. For example, any (piecewise) continuously
differentiable function F of the (scalar) vorticity is conserved by the nonlinearity:

d
dt

∫
F(ω) dx=

∫
F′(ω)

∂ω

∂t
dx=−

∫
F′(ω)u ·∇ω dx

=−
∫

u ·∇F(ω) dx=
∫

F(ω)∇ ·u dx= 0.

Although it is not known whether these additional invariants play a fundamental role
in the turbulent dynamics, it is certain that only the quadratic invariants, which are a
consequence of detailed triadic balance, survive high-wavenumber truncation. To see
this, one can express (2.1) in Fourier space:

∂ωk

∂t
+ νkωk =

∑
p,q

εkpq

q2
ω∗p ω

∗
q + fk, (2.2)

where νk
.= νk2 and εkpq

.= (ẑ · p × q) δ(k + p + q) is seen to be antisymmetric under
interchange of any two indices. When νk = fk = 0, the enstrophy is readily seen to be
conserved:

d
dt

∑
k

|ωk|2 =
∑
k,p,q

εkpq

q2
ω∗kω

∗
p ω
∗
q = 0, (2.3)

noting the antisymmetry of the summand in k ↔ q. In the absence of high-
wavenumber truncation, the invariance of

Z3
.= 1

(2π)4

∫
ω3 dx=

∑
k,r

ωkωrω−k−r =
∑
k,r,s

ωkωrωsδk+r+s,0 (2.4)

appears in Fourier space as the identity

0= d
dt

Z3 = 3
∑
k,r,s

∂ωk

∂t
ωrωsδk+r+s,0 =

∑
k,r,s

∑
p,q

εkpq

q2
ω∗p ω

∗
qωrωsδk+r+s,0. (2.5)

However, the absence of an explicit ωk in the final summand means that setting ω` = 0
for ` > K will break the symmetry in the summation limits. Nevertheless, since the
missing terms involve modes higher than the truncation wavenumber K, one might
expect that a very well-resolved simulation would lead to almost exact invariance
of Z3. We will see that this is indeed the case.
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3. Cumulative enstrophy transfer
In terms of the nonlinearity Sk

.=∑
p,q(εkpq/q

2)ω∗pω
∗
q , the enstrophy spectrum Z(k) is

seen to satisfy a balance equation of the form

∂

∂t
Z(k)+ 2νkZ(k)= 2T(k)+ G(k), (3.1)

where T(k) and G(k) represent angular sums of Re〈Skω
∗
k〉 and Re〈fkω∗k〉, respectively.

Following Kraichnan (1959), it is convenient to define the nonlinear enstrophy
transfer Π(k), which measures the cumulative nonlinear transfer of enstrophy into
[k,∞):

Π(k)= 2
∫ ∞

k
T(p) dp. (3.2)

On integrating from k to ∞, we find

d
dt

∫ ∞

k
Z(p) dp=Π(k)− η(k), (3.3)

where η(k)
.= 2

∫∞
k νpZ(p) dp − ∫∞

k G(p) dp is the total enstrophy transfer, via
dissipation and forcing, out of wavenumbers higher than k. A positive (negative)
value for Π(k) represents a flow of enstrophy to wavenumbers higher (lower) than k.
When νk = fk = 0, enstrophy conservation implies that

0= d
dt

∫ ∞

0
Z(p) dp= 2

∫ ∞

0
T(p) dp, (3.4)

so that

Π(k)= 2
∫ ∞

k
T(p) dp=−2

∫ k

0
T(p) dp. (3.5)

We note that Π(0) = Π(∞) = 0. Moreover, in a steady state, Π(k) = η(k); this
provides an excellent numerical diagnostic for validating a steady state.

The cumulative nonlinear enstrophy transfer Π3 for the globally integrated invariant
Z3 =

∫
ω3 dx can be defined similarly and measured numerically. However, we found

no systematic cascade of Z3; this invariant appears to slosh back and forth between
the large and small scales. In hindsight, this should be expected since ω3 is not a
sign-definite quantity.

Of much more interest is the determination, using a pseudospectral code, of the
cascade direction of a sign-definite quantity like the fourth-order Casimir invariant∫
ω4 dx. If we Fourier-decompose Z4

.= N3
∑

jω
4(xj) in terms of N spatial collocation

points xj , we find

Z4 =
∑
k,p,q

ωkωpωqω−k−p−q. (3.6)

It is worthwhile here to mention some details regarding the numerical
implementation of the stochastic forcing. We advance the vorticity equation dωk/dt =
[Sk − νkωk] + fk, where Sk represents the nonlinear source term, using operator
splitting: while a fifth-order adaptive Cash–Karp Runge–Kutta integrator is used for
the deterministic part Sk − νkωk, the stochastic stirring force fk is treated separately as
an additive random source, to avoid severe time-step restrictions. A single time step of
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the integration method may be formally represented by the discrete mapping

ω̃k = ωk(tn)+
∫ tn+1

tn

Sk(τ ) dτ, (3.7a)

ωk(tn+1)= ω̃k +
√

2(tn+1 − tn) fk, (3.7b)

where it is implicitly understood that Sk also depends on all of the modes ωk. Between
times tn and tn+1, this prescription yields a mean enstrophy injection

1
2 [〈|ωk(tn+1)|2〉 − 〈|ω̃k|2〉] = 1

2 〈|ω̃k +
√

2(tn+1 − tn) fk|2〉 − 1
2 〈|ω̃k|2〉

=√
2(tn+1 − tn)Re ω̃k 〈f ∗k 〉 + (tn+1 − tn)〈|fk|2〉

= (tn+1 − tn)〈|fk|2〉, (3.8)

using the fact that 〈fk〉 = 0. The mean rate of enstrophy injection is thus η =∑
k〈|fk|2〉,

in accord with a theorem of Novikov (1964). The contribution to G(k) arising from the
stirring force fk between times tn and tn+1 is consequently the ensemble average of

1
2 |ωk(tn+1)|2 − 1

2 |ω̃k|2 = 1
2 |ω̃k +

√
2(tn+1 − tn) fk|2 − 1

2 |ω̃k|2. (3.9)

On differentiating (3.6) with respect to time, one can express the evolution of Z4 in
terms of the nonlinear source term Sk as

d
dt

Z4 =
∑
k

[
Sk

∑
p,q

ωpωqω−k−p−q + 3ωk

∑
p,q

Spωqω−k−p−q

]
=

∑
k

T4(k), (3.10)

where

T4(k)
.= N2

∑
|k|=k

[
Sk

∑
j

ω3(xj)e2πij·k/N + 3ωk

∑
j

S(xj)ω
2(xj)e2πij·k/N

]
. (3.11)

Here S(xj) is the inverse Fourier transform of Sk.
The contribution to the transfer of Z4 arising from the stirring force fk between times

tn and tn+1 can be computed as

G4(k)
.= N2

∑
|k|=k

[
ωk

∑
j

ω3(xj)e2πij·k/N − ω̃k

∑
j

ω̃3(xj)e2πij·k/N

]
, (3.12)

where ωk and its inverse Fourier transform ω are evaluated at tn+1. The contribution
D4(k) to the transfer of Z4 arising from dissipation is given by the same form as T4(k)
with Sk replaced by −νkωk.

We then define

Π4(k)
.=

∫ ∞

k
T4(p) dp=−

∫ k

0
T4(p) dp (3.13)

to measure the cumulative nonlinear transfer of Z4 into [k,∞) and

η4(k)
.=

∫ ∞

k
D4(p) dp−

∫ ∞

k
G4(p) dp (3.14)
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to represent the contribution to the transfer of Z4 arising from dissipation and forcing
out of [k,∞). We note that Π4(0) = Π4(∞) = 0. As with the enstrophy transfer
balance, it is easily seen that Π4(k)= η4(k) in a steady state.

4. Implementation
An important point to emphasize in computing T4(k) and G4(k) is that (3.10)

requires the computation of a ternary convolution
∑

p,qωpωqω−k−p−q in terms of the
Fourier transform of the cubic quantity ω3. Correctly dealiasing therefore requires a
1/2 zero padding rule (instead of the usual 2/3 rule for a binary convolution), so that,
in two dimensions, only 25 % of the computation buffer contains physical data. To
avoid the extreme waste of memory and computation time associated with padding the
other 75 % of the data buffer with zeros and then reading and multiplying these zero
values by primitive roots of unity, we have developed optimized implicitly dealiased
algorithms to compute the required ternary convolutions without padding (Bowman
& Roberts 2011). These algorithms, which we have made publicly available in our
open-source library FFTW++ (Bowman & Roberts 2010), are most efficient when the
dimension of the physical data in each direction is one less than a power of 2. For
example, dealiased ternary convolutions on a 2047 × 2047 Fourier data array would
require a 4096 × 4096 data buffer with conventional explicit zero padding. In both
cases, the maximum retained physical wavenumber in each direction is 1023. Implicit
dealiasing of a two-dimensional ternary convolution allows the identical calculation
to be performed using roughly half of the memory that would be required by the
zero-padding technique.

To avoid having to develop specialized routines for computing a ternary convolution,
it might at first seem possible to compute a ternary convolution as a double
convolution. In one dimension one can certainly write ek = fpgqhk−p−q = fpck−p, where,
letting r

.= k − p, we first compute the intermediate convolution cr
.= gqhr−q. Here k, p

and q all run from −m + 1 to m − 1, so that we need to know cr for r values running
from −2m+ 2 to 2m− 2. A conventional dealiased convolution routine would have to
be extended to compute all of these outputs. This would require that 3m − 3 − N <
−m+1. For 2m−1 data values, one needs N > 4m−4, which essentially corresponds to
a 1/2 padding rule. Given that the resulting padding ratios are identical, computing a
ternary convolution directly is more efficient than the double convolution approach
(which would already require a modified routine to compute cr for additional r
values) as it avoids extra computation, storage, and retrieval of intermediate quantities.
We emphasize that a linear ternary convolution cannot be computed via two dealiased
binary convolutions truncated to the size of the data vector. For example, the (m− 1)th
component of the ternary convolution of vectors f , g and h indexed from −m + 1 to
m − 1 will include the term fm−1gm−1h−m+1. However, computing (f ∗ g) ∗ h using two
conventional binary convolutions excludes this term, as fm−1gm−1 does not contribute to
the 2m− 1 retained components of f ∗ g (Roberts & Bowman 2011).

5. Numerical results
To investigate the cascade direction of Z4, we consider a doubly periodic dealiased

pseudospectral simulation with 1023 × 1023 physical Fourier modes driven in the
wavenumber interval [1.5, 2.5] by a white-noise stochastic stirring force fk with
prescribed enstrophy injection rate η = 1. We replace the molecular dissipation term by
νk = νHH(kL − k)+ νLk2H(k − kH), where H is the Heaviside step function. The cutoff
wavenumbers kL = 3.0001 and kH = 260, with νL = 0.2 and νH = 4 × 10−5, mimic
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FIGURE 1. (Colour online) Steady-state energy spectrum of 1023× 1023 dealiased modes
forced in the band [1.5, 2.5].
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FIGURE 2. (Colour online) Logarithmic slope of the energy spectrum in figure 1.

the idealization of a pristine inertial range in an unbounded spatial domain, the limit
addressed by the Kraichnan–Leith–Batchelor theory.

The resulting mean energy spectrum, shown in figure 1, and corresponding
slope, shown in figure 2, indicate that the sharp high-wavenumber viscosity cutoff
introduces very little of the usual kind of bottleneck effect observed with lower-order
hyperviscous damping and instead yields the logarithmically corrected k−3 spectrum
shown in figure 3 (Kraichnan 1971; Bowman 1996). In figure 4, we observe that
the time-averaged nonlinear enstrophy transfer Π(k) is positive and constant in the
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FIGURE 3. (Colour online) Verification of the logarithmic correction [log(k/k1)]−1/3 to the
inertial range k−3 energy spectrum in figure 1 or k ∈ [k1, k2] = [10, 65]. The dashed line
represents a least-squares fit.
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FIGURE 4. (Colour online) Nonlinear transfer of Z downscale from the forcing
band [1.5, 2.5].

enstrophy inertial range; this indicates that enstrophy is transferred to small scales. We
conclude from the coincidence of the graphs of the nonlinear transfer Π(k) and linear
transfer η(k) that injection, nonlinear transfer, and dissipation are in balance.

In figure 5, we see that the time-averaged nonlinear transfer Π4 of Z4 also exhibits
the clear signature of a downscale transfer (positive Π4 in the enstrophy inertial range).
To check that sufficient numerical resolution has been used to resolve the contribution
of the nonlinear terms to the evolution of Z4, we observe that Π4(0) = Π4(∞) = 0.
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FIGURE 5. (Colour online) Nonlinear transfer of Z4 downscale from the forcing
band [1.5, 2.5].

As an additional diagnostic to ensure that a steady state has been reached, we note
that Π4(k) = η4(k). In contrast to figure 4, we observe that the graph of Π4(k) is not
completely flat within the inertial range; this is due to the small but non-negligible
inertial-range pumping of Z4 by the large-scale forcing. That is, while the angular
sum G(k) of Re〈fkω∗k〉 has contributions only when fk is non-zero, G4(k) receives
contributions from the forcing at scales quite different from k, as we see from the
first term in (3.12) and as pointed out previously by Falkovich & Lebedev (1994).
Therefore, while the enstrophy injected by a localized forcing is local, the injection of
Z4 is not.

In the simulation corresponding to figures 1–5, the forcing scale was deliberately
chosen to be close to the domain size, devoting virtually all of the computational
resources to the study of the direct cascade. However, this choice inhibited the
formation of an inverse energy cascade, characterized by the merger of increasingly
large vortices. In view of the fact that Vallgren & Lindborg (2011) report that the
intermittency levels in the enstrophy cascade depend greatly on the forcing scale
and the presence of an energy cascade, it seems prudent to check whether Z4

still exhibits a downscale transfer when the turbulence is forced at a significantly
higher wavenumber. The steady-state energy spectrum in figure 6 was obtained for
a simulation of 2047 × 2047 physical Fourier modes forced in the band [19.5, 20.5],
using the parameters kL = 21.0001 and kH = 500, with νL = 0.02 and νH = 0.0002. The
slopes of the short energy and enstrophy ranges that result are depicted in figure 7,
with the logarithmic correction for the enstrophy range illustrated in figure 8. Along
with the expected downscale transfer of Z shown in figure 9, we see in figure 10 once
again that Z4 is transferred to scales smaller than the forcing wavenumber.

6. Concluding remarks
Even though higher-order Casimir invariants do not survive wavenumber truncation,

it appears possible with sufficiently well-resolved simulations to check whether they
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FIGURE 6. (Colour online) Steady-state energy spectrum of 2047× 2047 dealiased modes
forced in the band [19.5, 20.5].
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FIGURE 7. (Colour online) Logarithmic slope of the energy spectrum in figure 6.

cascade to large or small scales. In this work, we have computed the transfer of
the globally integrated ω4 inviscid invariant and provided strong numerical evidence
supporting the conjectures of Falkovich and Eyink that, in the enstrophy inertial range,
there is a direct transfer of (positive-definite) high-order invariants to small scales.
While determining the transfer direction of the fourth power of the vorticity would
normally require that the domain be doubled in each direction, so that only one-
quarter of the simulated Fourier modes are physical, we used the efficient implicitly
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FIGURE 8. (Colour online) Verification of the logarithmic correction [log(k/k1)]−1/3 to the
inertial range k−3 energy spectrum in figure 6 for k ∈ [k1, k2] = [51, 200]. The dashed line
represents a least-squares fit.
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FIGURE 9. (Colour online) Nonlinear transfer of Z downscale from the forcing
band [19.5, 21.5].

dealiased ternary convolutions developed in the open-source library FFTW++ to avoid
the waste of memory and computation time inherent in explicit zero padding (Bowman
& Roberts 2011; Roberts & Bowman 2011, 2012).

As is evident in (2.4) and (3.10), the conservation of high-order Casimir invariants is
intricately connected with the symmetries of wave beating. The spectral decomposition
of dZ4/dt in (3.10) into sums over wavenumber shells of the quantity T4(k) elucidates
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FIGURE 10. (Colour online) Nonlinear transfer of Z4 downscale from the forcing
band [19.5, 21.5].

this underlying mechanism. Nevertheless, the spectral decomposition of higher-order
moments like dZ4/dt is not unique. For example, the summations in (3.10) may be
readily rearranged to obtain

d
dt

Z4 = 4
∑
k,p,q

Skωpωqω−k−p−q =
∑

k

T ′4(k), (6.1)

where

T ′4(k)=
∑
|k|=k,p,q

Skωpωqω−k−p−q. (6.2)

Alternatively, on denoting [ω2]k .= N−1
∑

pωpωk−p, one could use the factorization

Z4 = N3
∑

j(ω
2(xj))

2 to express

d
dt

Z4 = N2 d
dt

∑
k

[ω2]k[ω2]−k = 2N2 Re
∑
k

d[ω2]k
dt
[ω2]−k, (6.3)

so that

d
dt

Z4 = 4 Re
∑
k

[∑
p

Spωk−p
∑
q

ωqωk−q

]
=

∑
k

T ′′4 (k), (6.4)

where

T ′′4 (k)= 4 Re
∑
|k|=k

∑
p

Spωk−p
∑
q

ωqωk−q. (6.5)

Under wavenumber truncation, we found by numerical simulation that neither of
the alternative definitions T ′4(k) or T ′′4 (k) lead to a quasi-flat cumulative fourth-order
transfer in the inertial range like that observed in figures 5 and 10. This is not so
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surprising when one considers that wave beating appears asymmetrically in (6.2) (the
receiving mode is always mode k) and that the ternary convolution, which expresses
three-mode beating, is completely obscured in (6.5). In fact, the scrambling of the
various contributions to three-mode beating in (6.5) makes it much more susceptible
to high-wavenumber truncation than (3.11) or (6.2). In contrast, the definition of T4(k)
given in (3.11) appears to be the natural extension of T(k) to fourth order.

In closing, we would like to point out an important philosophical distinction
between nonlinear enstrophy transfer and flux. The mean rate of enstrophy transfer
to [k,∞) is given by (3.5). In a steady state, Π(k) will thus trivially be constant
throughout an inertial range. In contrast, the enstrophy flux through a wavenumber k,
as considered by Kolmogorov, is the amount of enstrophy transferred to small scales
via triad interactions mediated by mode k. Specifically, on expressing the nonlinear
interaction coefficient for the vorticity ωk as Mk,p = ẑ · p × k/p2, where ẑ is the
unit normal to the plane of motion, the enstrophy flux (or exchange) mediated via
wavenumber k would need to be computed as a restricted convolution:

Fk = Re
∑
|k|=k
|p|<k
|k−p|<k

Mk,pωpωk−pω∗k − Re
∑
|k|=k
|p|<k
|k−p|>k

Mp,k−pωpωk−pω∗k. (6.6)

The dependence of restrictions like |p| < k on k makes this calculation difficult to
implement efficiently. Kolmogorov’s ansatz of self-similar flux suggests that the time
average of Fk should be independent of wavenumber. Note that Fk is not the same as
the total transfer into [k,∞) unless the transfer is strictly local in wavenumber space
(which is not the case for two-dimensional enstrophy transfer). The independence of
the flux on k is highly non-trivial and depends on details of the triadic interactions
that Kolmogorov conjectured leads to self-similarity in the inertial range. In this work,
we have only established that there is a downscale (probably non-local) transfer of Z4,
without actually measuring the flux, as would be needed to establish the existence of a
true (self-similar) cascade. Such a cascade, if it exists, would of course be somewhat
contaminated by the inertial-range pumping of Z4 by the localized forcing.

The results of this study raise the question of whether the
Kraichnan–Leith–Batchelor theory of unbounded two-dimensional turbulence, based
solely on uniform fluxes of energy to large scales and enstrophy to small scales, needs
to be re-examined to account for a direct cascade of Casimir invariants to smaller
scales. In future work on decaying turbulence, we also plan to measure the decay rate
of Casimir invariants like Z4 and compare these findings to numerical observations and
predictions based on conformal field theory by Cateau, Matsuo & Umeki (1993). We
would also like to develop analytic estimates for the degree of non-conservation of
Casimir invariants due to spectral truncation.
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