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The energy–Casimir method is applied to the problem of symmetric stability in the

context of a compressible, hydrostatic planetary atmosphere with a general equation of

state. Stability criteria for symmetric disturbances to a zonally symmetric baroclinic

flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are

recovered. Finite amplitude stability conditions are also obtained that provide an upper

bound on a certain positive-definite measure of disturbance amplitude.

1. Introduction

A classical problem in geophysical fluid dynamics is that of symmetric

stability. The adjective “symmetric” implies that both the equilibrium flow

and allowed perturbations are independent of one coordinate. Symmetric

instability is a kind of baroclinic instability that can occur even when the

atmosphere is both statically and inertially stable (positively stratified with

a monotonically increasing circulation). It has primarily been considered

in the context of two physical applications: (i) mesoscale dynamics and

(ii) planetary circulations. Sometimes referred to as slantwise convection,

this instability produces symmetric convective rolls that have been identified
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with frontal rainbands in the mesoscale context and with axisymmetric cells

in the planetary context.

Symmetric stability criteria were first derived by Fjørtoft (1950). These

criteria have recently been extended to finite amplitude in the case of the f -

plane Boussinesq equations — relevant to the mesoscale context — by Cho,

Shepherd & Vladimirov (1993), using the so-called energy–Casimir stabil-

ity method. This method relies on the construction of a positive-definite

invariant for disturbances to a given equilibrium, using the conservation of

total energy together with the material conservation of entropy and angular

momentum.

The present work extends the results of Cho et al. (1993) to planetary

circulations, including the effects of both spherical geometry and compress-

ibility, in terms of a general equation of state. Beyond these additional

physical effects, certain novel mathematical features are exhibited in the

analysis: multi-valued inverse equilibrium profiles and a moving domain of

integration. The latter leads to some technical difficulties with convexity.

The equations describing the compressible hydrostatic model, which as-

sumes zonal (azimuthal) symmetry and neglects diabatic processes, are pre-

sented in §2. It is shown that the total energy and certain functionals of the

angular momentum, entropy, and potential vorticity are conserved in time.

In §3, we demonstrate that a general steady baroclinic zonal flow satisfying

thermal-wind balance constitutes an equilibrium of the model system and

corresponds to a conditional extremal of the total energy. In §4, we examine

the stability of these baroclinic flows and obtain conditions equivalent to

the classical criteria of inertial stability, static stability, and positivity of the
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product of the Coriolis parameter and the potential vorticity. In the special

case of a perfect (ideal) gas, our criteria reduce to those of Stevens (1983).

The finite-amplitude extension of this result, based on convexity arguments,

is described in §5. Although we are not able to prove Liapunov stability,

we do derive a rigorous upper bound on disturbance amplitude that is ex-

pressible solely in terms of initial amplitudes, with the bound going to zero

as the initial disturbance tends to zero. We find that the finite-amplitude

criteria imply formal stability and are expressible as generalizations of the

formal symmetric stability conditions.

2. Governing equations

We consider the model of hydrostatic compressible flow known in meteo-

rology as the primitive equations. Denoting the latitude by λ, the longitude

by ϕ and the pressure by p, we describe a longitudinally symmetric spheri-

cal shell at radius r = a, of thickness ∆r � a, rotating at constant angular

velocity Ω. Using pressure coordinates (λ, ϕ, p) with corresponding veloci-

ties (u, v, ω), the model equations for axisymmetric flow are [e.g., see Lorenz

(1967)]:

Du

Dt
−

tan ϕ

a
uv − 2Ωv sin ϕ = 0, (2.1a)

Dv

Dt
+

tan ϕ

a
u2 + 2Ωu sin ϕ = −

1

a
Φϕ, (2.1b)

1

a cos ϕ

∂

∂ϕ
(v cos ϕ) +

∂ω

∂p
= 0, (2.1c)

Ds

Dt
= 0, (2.1d)

Φp = −
1

ρ
. (2.1e)
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Here ρ is the fluid density, s is the specific entropy, and Φ
.
= gr is the geopo-

tential, where the gravitational acceleration g is treated as a constant. (We

emphasize definitions with the notation “
.
=”.) The upper surface is taken to

be an isobaric surface on which, for the sake of simplicity, we suppose that p

approximately vanishes. [This effectively requires that the density scale

height be much less than the thickness of the shell: (ρ−1∂ρ/∂r)−1 � ∆r.]

The appropriate boundary conditions are then ω = 0 on the upper surface

and DΦ/Dt = 0 on the lower surface (on which r = a), where the material

or Lagrangian derivative D/Dt is given by

D

Dt
.
=

∂

∂t
+

v

a

∂

∂ϕ
+ ω

∂

∂p
. (2.2)

Equation (2.1a) implies the material conservation of the axial component

of the absolute angular momentum

m(ϕ, p)
.
= u(ϕ, p)a cosϕ + Ωa2 cos2 ϕ, (2.3)

namely, that Dm/Dt = 0.

It is common in meteorology to formulate results in terms of the potential

temperature

θ(s)
.
= exp

(∫
ds

cp(s, pr)

)
, (2.4)

instead of the entropy, where cp > 0 is the specific heat at constant pressure

and pr is a fixed but arbitrary reference pressure. However, the stability

analysis in this work is most naturally formulated in terms of a generalized

potential temperature η = η(s) defined by

η
.
=
∫

θ ds =
∫

cp dθ. (2.5)

For a fluid with constant cp, η is proportional to θ. In the general situation,
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η appears to be the optimal variable in which to cast the stability analysis

because the second derivative of the enthalpy

h(η, p)
.
= E(η, p) +

p

ρ(η, p)
(2.6)

with respect to this variable vanishes. Here E(η, p) is the internal energy

and ρ = ρ(η, p) is the equation of state. From the Maxwell relation

dh = T ds +
1

ρ
dp, (2.7)

we see that

hη =
T

θ
, (2.8a)

hp =
1

ρ
, (2.8b)

where T = T (η, p) is the temperature. The enthalpy is assumed to have

continuous second derivatives so that T and ρ are related by

Tp

θ
=

∂

∂p

∣∣∣∣∣
η

(
T

θ

)
=

∂

∂η

∣∣∣∣∣
p

(
1

ρ

)
= −

ρη

ρ2
. (2.9)

The thermodynamic relation

∂T

∂s

∣∣∣∣∣
p

=
T

cp
(2.10)

and (2.5) imply that the second derivative of h with respect to η vanishes,

hηη =
(

T

θ

)

η
=

T

cpθ2
−

Tθη

θ2
= 0. (2.11)

It is also convenient to introduce the potential vorticity q
.
= ρ−1Z·∇θ,

where in the shallow-layer approximation

Z
.
= ∇×(uλ̂) + f r̂ =

(
u

a
tanϕ −

1

a
uϕ + 2Ω sin ϕ

)
r̂ +

∂u

∂r

∣∣∣∣∣
ϕ

ϕ̂ (2.12)

is the absolute vorticity associated with an axisymmetric flow. In terms of
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the radial component of Z,

Z·r̂ =
u

a
tan ϕ −

1

a
uϕ + 2Ω sin ϕ = −

mϕ

a2 cos ϕ
, (2.13)

one may express q as

q = −
g

cp

(
Z·r̂ ηp +

1

a
upηϕ

)
=

g

cpa2 cos ϕ

∂(m, η)

∂(ϕ, p)
≡

1

ρa cos ϕ
λ̂·∇θ×∇m.

(2.14)

Using the Lagrangian invariance of m and η together with (2.1c), (2.14)

may be used to show that Dq/Dt = 0.

The total energy for a spherical shell (of volume V ) of this fluid is given

by

H
.
=
∫ π

2

−
π

2

∫ a+∆r(ϕ,t)

a
ρ

(
u2 + v2

2
+ E + Φ

)
a2 cos ϕ dr dϕ. (2.15)

Upon using the hydrostatic relation and integrating by parts (taking p = 0

on the upper surface), we may rewrite H in pressure coordinates:

H{m, v, η, p0} =
1

g

∫ π

2

−
π

2

∫ p0(ϕ,t)

0
H(m, v, η; ϕ, p) a2 cos ϕ dp dϕ

+
∫ π

2

−
π

2

p0(ϕ, t)a3 cos ϕ dϕ, (2.16)

where

H(m, v, η; ϕ, p)
.
=

1

2

(
m

a cos ϕ
− Ωa cos ϕ

)2

+
1

2
v2 + h(η, p) (2.17)

and

p0(ϕ, t)
.
= g

∫ a+∆r(ϕ,t)

a
ρ dr > 0 (2.18)

is the (time-dependent) surface pressure, determined dynamically from the

lower boundary condition DΦ/Dt = 0, (2.1c) and (2.1e):

∂p0

∂t
+

v

a

∂p0

∂ϕ
= −

∫ p0(ϕ,t)

0

1

a cos ϕ

∂

∂ϕ
(v cos ϕ) dp.

For convenience, let us rescale H
.
= gH/a2.
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The conservation properties of this system can be demonstrated with

the following generalization of the transport theorem. For any quantity I

satisfying

D

Dt
I = S, (2.19)

(e.g., take I = u, v, or η) and any arbitrary function f = f(I, p), we see

that

d

dt

∫ π

2

−
π

2

∫ p0

0
f(I, p) cosϕ dp dϕ

=
∫ π

2

−
π

2

∫ p0

0

[
fI(S − v·∇I) + fp

(
Dp

Dt
− v·∇p

)]
cos ϕ dp dϕ +

∫ π

2

−
π

2

f
∂p0

∂t
cos ϕ dϕ

=
∫ π

2

−
π

2

∫ p0

0

[
fIS + fp

Dp

Dt
−∇·(fv)

]
cos ϕ dp dϕ +

∫ π

2

−
π

2

f
∂p0

∂t
cos ϕ dϕ

=
∫ π

2

−
π

2

∫ p0

0
(fIS + fpω) cos ϕ dp dϕ. (2.20)

In the last line we used the divergence theorem and the fact that in pressure

coordinates the normal component of the three-dimensional velocity v on

the lower surface is

v·

(
p̂ −

1

a

∂p0

∂ϕ
ϕ̂

)
= ω0 −

v

a

∂p0

∂ϕ
=

∂p0

∂t
, (2.21)

where ω0
.
= Dp0/Dt, the value of ω on the lower surface, is determined by

vertically integrating (2.1c).

For example, one may readily verify that dH/dt = 0 by repeated appli-

cation of (2.20) together with (2.8b) and the result

−
∫ π

2

−
π

2

∫ p0

0

v

a
Φϕ cos ϕ dp dϕ = −

∫ π

2

−
π

2

∫ p0

0
Φ

∂ω

∂p
cos ϕ dp dϕ

= −
∫ π

2

−
π

2

agω0 cos ϕ dϕ −
∫ π

2

−
π

2

∫ p0

0

ω

ρ
cos ϕ dp dϕ, (2.22)

which follows from (2.1c) and (2.1e). The first term on the right-hand side

of (2.22) is seen to vanish upon considering the volume integral of (2.1c).
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Note that the surface term of H is just a constant proportional to the total

mass, as can be seen by setting f = 1 in (2.20).

In the special case where S = 0 and f = f(I), (2.20) implies that the

density-weighted volume integral of an arbitrary function of any Lagrangian

invariant I is constant in time:

d

dt

∫
ρf(I) dV =

1

g

d

dt

∫ π

2

−
π

2

∫ p0

0
f(I) a2 cos ϕ dp dϕ = 0. (2.23)

In particular, the volume integral

C{m, v, η, p0} =
∫ π

2

−
π

2

∫ p0

0
C(m, η, q) cosϕ dp dϕ (2.24)

of any arbitrary function C of the Lagrangian invariants m, η, and q will

be conserved: dC/dt = 0.

3. Zonal Equilibrium

Consider an equilibrium state representing steady baroclinic zonal flow:

u = U(ϕ, p), v = 0, η = N(ϕ, p), (3.1)

where U and N have continuous first derivatives. For this equilibrium the

lower boundary condition DΦ/Dt = 0 is equivalent to the condition ω = 0

on the surface; (2.1c) then implies that ω = 0 everywhere. Equations (2.1a)

and (2.1d) are therefore satisfied trivially, while (2.1b) becomes

U2 tanϕ + 2ΩUa sin ϕ = −Φϕ. (3.2)

Upon differentiating this result with respect to p and using the hydrostatic

equation (2.1e), we obtain the thermal-wind relation

2(U tanϕ + Ωa sin ϕ)Up = −Φϕp = −Φpϕ = −
1

ρ2

∂ρ

∂ϕ

∣∣∣∣∣
p

= −
ρη

ρ2
Nϕ, (3.3)
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where ρ and ρη are evaluated at (N, p). In terms of the total equilibrium

angular momentum

M(ϕ, p)
.
= U(ϕ, p)a cos ϕ + Ωa2 cos2 ϕ, (3.4)

the above relation may be written as

2 tanϕ

a cos ϕ
MUp = −

ρη

ρ2
Nϕ. (3.5)

Any flow of the form (3.1) that obeys (3.5) will consequently satisfy the

governing equations (2.1).

It will prove convenient to introduce the equilibrium potential tempera-

ture Θ(N) > 0 and potential vorticity

Q
.
= −

g

cp

(
ζabsNp +

1

a
UpNϕ

)
=

g

cpa2 cos ϕ

∂(M, N)

∂(ϕ, p)
, (3.6)

where ζabs is the radial component of the absolute vorticity:

ζabs
.
=

U

a
tan ϕ −

1

a
Uϕ + 2Ω sin ϕ = −

Mϕ

a2 cos ϕ
. (3.7)

One sees from (3.6) that whenever Q is sign-definite, a single-valued trans-

formation from (ϕ, p) to (M, N) will exist. However, we will soon see that

our stability criteria require that Q = 0 at the equator. Let us restrict

our attention to equilibrium flows where Q vanishes only on the equator

and has different signs in each hemisphere. One can then construct inverse

functions ϕ(M, N, Q) and p(M, N, Q) that depend only on M , N , and the

sign of Q. The latter dependence uniquely identifies the appropriate branch

of the equilibrium profiles.

We wish to apply the so-called energy–Casimir method (Fjørtoft 1950;

Kruskal & Oberman 1958; Arnol’d 1965, 1966; Holm et al. 1985; see also

Shepherd 1990, §6) to obtain stability criteria for this equilibrium flow.
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In the absence of dissipation, it is well known that the fully compressible

(nonhydrostatic) hydrodynamical equations may be written within a non-

canonical Hamiltonian framework in which the cosymplectic operator J

is degenerate (Morrison & Greene 1980); i.e., the phase space variable u

evolves in time according to

∂

∂t
u = J

δH

δu
, (3.8)

such that det J = 0. (The functional derivative δH/δu is defined in the

usual way as the coefficient of the lowest-order term of the integrated power

series expansion in δu of an induced perturbation δH.) In addition to

the invariants associated with symmetries of the Hamiltonian, such systems

conserve additional quantities, known as Casimirs, that have gradients lying

in the kernel of J . While stationary solutions of the canonical Hamiltonian

equations arise as extremals of the Hamiltonian, those of noncanonical sys-

tems correspond to extremizations constrained to surfaces defined by the

invariance of the Casimirs. Although we will not prove that H provides

a Hamiltonian for our constrained dynamical system or that C is indeed a

Casimir, the energy–Casimir method is still applicable, provided we demon-

strate that the resulting conditional extremals are steady solutions of the

equations of motion. The stability of these equilibria can then be examined

by considering second-order variations of the invariant H + C.

Let us therefore seek equilibria corresponding to conditional extremals of

H on surfaces of constant C, appealing to the method of Lagrange multi-

pliers. Because one of the dynamical variables, p0, appears in the limits

of integration, the first variation of H + C includes both volume and sur-

face contributions (as is conventional, we absorb the multipliers into the
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function C):

0 = δ(H + C)

=
∫ π

2

−
π

2

∫ p0

0

[
(Hm + Cm)δm + (Hη + Cη)δη + Hvδv + Cqδq

]
cos ϕ dp dϕ

+
∫ π

2

−
π

2

[
H + C + ag

]

p=p0

δp0 cos ϕ dϕ. (3.9)

We use this condition to determine the as yet unspecified function C.

First, the condition Cq = 0 can be satisfied by choosing Cq = 0 in each

region of the flow where Q is of definite sign and imposing the matching

conditions

lim
Q→0+

C(M, N, Q) = lim
Q→0−

C(M, N, Q) = C(M, N, 0), (3.10a)

lim
Q→0+

Cq(M, N, Q) = lim
Q→0−

Cq(M, N, Q) = Cq(M, N, 0) (3.10b)

to guarantee that Cq = Cqq = 0 over the entire flow.

In each region of the flow on which Q has a definite sign [and hence

∂(M, N)/∂(ϕ, p) 6= 0], the independent variables ϕ and p may then be

expressed, via (3.1), in terms of M and N . The equilibrium conditions

Hm + Cm = 0, (3.11a)

Hη + Cη = 0 (3.11b)

can therefore be integrated to deduce that H +C in each region is indepen-

dent of M and N , or equivalently, of ϕ and p. Equations (3.11) determine C

only to within an arbitrary constant. [Constant values of C in (2.24) lead to

invariants corresponding to the total mass.] In each region of sign-definite Q,

let us choose this constant so that in equilibrium

H + C =
1

2
v2 − ag = −ag; (3.12)
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this choice satisfies (3.10a) and ensures that the second integral in (3.9)

vanishes. Equations (3.11) and (3.12) together with Hv = 0 are sufficient

to guarantee that δ(H + C) = 0 in the equilibrium state.

Now

Hm =
m

a2 cos2 ϕ
− Ω, Hv = v, Hη =

T

θ
, (3.13)

upon using (2.8a). One finds for the equilibrium flow (3.1) that Hv = 0

trivially, while evaluation of (3.11) leads to the prescriptions

Cm(M, N, Q) = −
M

a2 cos2 ϕ(M, N, Q)
+ Ω (3.14a)

Cη(M, N, Q) = −
T (N, p(M, N, Q))

Θ(N)
. (3.14b)

Note that the condition

lim
Q→0+

ϕ(M, N, Q) = lim
Q→0−

ϕ(M, N, Q) (3.15)

guarantees that both Cm and Cη are continuous across Q = 0. Hence by

(2.14), the matching condition (3.10b) is satisfied by equations (3.14).

These conditions determine the form of C as a function of M , N , and Q;

all other variables, including the (normally) independent variables ϕ and p

must be treated as functions of the conserved quantities M , N , and Q

(to which they are related through the equilibrium profiles). In contrast,

when H is functionally differentiated, the independent variables are held

fixed.

It is important to establish the consistency of (3.14 a,b). To do this, we

will need to determine certain partial derivative relations. Equation (3.6)

allows us to write

∂ϕ

∂M

∣∣∣∣∣
N

=
∂(ϕ, N)

∂(M, N)
=

∂(ϕ, p)

∂(M, N)
·
∂(ϕ, N)

∂(ϕ, p)
=

g

cpa2 cos ϕ
Q−1Np (3.16)
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and

∂p

∂M

∣∣∣∣∣
N

=
∂(p, N)

∂(M, N)
=

∂(p, ϕ)

∂(M, N)
·
∂(p, N)

∂(p, ϕ)
= −

g

cpa2 cos ϕ
Q−1Nϕ. (3.17)

In a similar manner one finds that

∂ϕ

∂N

∣∣∣∣∣
M

= −
g

cpa2 cos ϕ
Q−1Mp = −

g

cpa
Q−1Up (3.18)

and

∂p

∂N

∣∣∣∣∣
M

=
g

cpa2 cos ϕ
Q−1Mϕ = −

g

cp
Q−1ζabs, (3.19)

upon using (3.7).

Now, Cη in (3.14b) is to be regarded as a function of M , N , and Q only,

with the M dependence entering through p. Hence

Cηm = −
(

Tp

Θ

)
∂p

∂M

∣∣∣∣∣
N

. (3.20)

Substitution of (2.9) and (3.17) into (3.20) yields

Cηm =
−B

a cos ϕ
, (3.21)

where

B
.
=

g

cpa

(
ρη

ρ2

)
Q−1Nϕ. (3.22)

Finally, upon using (3.14a), (3.18), (3.5), and (3.21) we verify that

Cmη = −
2 sinϕ

a2 cos3 ϕ
M

∂ϕ

∂N

∣∣∣∣∣
M

=
2g tanϕ

cpa3 cos2 ϕ
MQ−1Up

=
g

cpa2 cos ϕ

(
−ρη

ρ2

)
Q−1Nϕ = Cηm. (3.23)

This establishes the existence of a twice-differentiable function C(m, η, q)

satisfying (3.14).
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4. Formal stability theorem

Since H + C is conserved in time and δ(H + C) = 0 by construction,

the condition for formal stability (Holm et al. 1985) is that δ2(H + C) be

sign definite (for arbitrary perturbations). Formal stability implies spec-

tral or normal-mode stability as well as normed stability of the linearized

equations.† Upon taking the variation of (3.9), we find that

δ2(H + C) =
∫ π

2

−
π

2

∫ p0

0

[
δv2 + Gmm δm2 + 2Gmη δmδη + Gηη δη2

]
cos ϕ dp dϕ

+
∫ π

2

−
π

2

[
2Gm δmδp0 + 2Gηδη δp0 +

dG

dp
δp2

0

]

p=p0

cos ϕ dϕ, (4.1)

where

G(m, η, q; ϕ, p)
.
= H(m, v, η; ϕ, p) + C(m, η, q) − v2/2

(4.2)

and

dG

dp
= Gmmp + Gηηp + Gp. (4.3)

(Note that Gq = 0.) No δq contributions arise since the function C was

chosen to satisfy the matching conditions (3.10) as well as Cq = 0 and Cqq =

0.

For the equilibrium flow Gm = Gη = 0 since C was constructed to satisfy

(3.11). Moreover, (2.8b) implies that

Gp =
1

ρ
> 0. (4.4)

We then see from (4.3) and (4.1) that δ2(H+C) is sign definite (for arbitrary

† An interesting example demonstrating that this condition is not necessary for linear stability

is discussed by Morrison (1993).
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disturbances) if the symmetric matrix

A
.
=




Hmm + Cmm Hmη + Cmη

Hηm + Cηm Hηη + Cηη


 (4.5)

is positive definite almost everywhere. Note that the dependent variable v

is decoupled from m and η.

In computing the Hessian (matrix of second derivatives) of H, we must

hold the independent variables ϕ and p fixed. Since Hηm = Hmη = 0, we

obtain a diagonal matrix with the elements

Hmm =
1

a2 cos2 ϕ
, (4.6a)

Hηη = 0, (4.6b)

upon using (2.11).

On the other hand, in evaluating the Hessian of C, all variables are to

be differentiated with respect to M or N . Using (3.14a), (3.16), (3.5), and

(3.22) we calculate for the equilibrium flow,

Cmm = −
1

a2 cos2 ϕ
−

2 sin ϕ

a2 cos3 ϕ
M

∂ϕ

∂M

∣∣∣∣∣
N

=
1

a2 cos2 ϕ

[
−1 − 2 tanϕ M

(
g

cpa2 cos ϕ

)
Q−1Np

]

=
1

a2 cos2 ϕ

(
−1 +

g

cpa

ρη

ρ2
Q−1 Nϕ

Up
Np

)

=
BNp/Up − 1

a2 cos2 ϕ
. (4.7a)

Next, we find from (3.14b), (2.9), (2.11), (3.19), and (3.22) that

Cηη = −
(

T

Θ

)

η
−

Tp

Θ

∂p

∂N

∣∣∣∣∣
M

=

(
−ρη

ρ2

)
g

cp
Q−1ζabs = −

Baζabs

Nϕ
. (4.7b)

Note that (3.6) can be used to eliminate ζabs from (4.7b) to obtain

Cηη =
BUp

Np

(
cpaQ

gUpNϕ

+ 1

)
. (4.8)
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The condition Hmm + Cmm > 0 is seen to be equivalent to

BNp

Up
> 0, (4.9)

while the condition Hηη + Cηη > 0 may be written, recalling (3.7), as

ρηQMϕ > 0. (4.10)

Upon using (4.6), (4.7a), (4.8), and (3.21), we can express the condition

det A > 0 as

B2

a2 cos2 ϕ

(
cpaQ

gUpNϕ

)
> 0, (4.11)

or, after using (3.22), as ρηBUp > 0. Together with (4.9), this result implies

ρηNp > 0. (4.12)

Note that the thermal-wind relation (3.5) allows us to rewrite (4.11) as

−ρη

(
fMQ

Ω

)
> 0, (4.13)

in terms of the Coriolis parameter f
.
= 2Ω sin ϕ. The three criteria given by

(4.10), (4.12), and (4.13) are not independent of each other: the determinant

condition (4.13) along with either of the other two inequalities implies the

third one.

Given any equation of state for which ρη < 0† [e.g., for a perfect gas

ρη = −ρ/(cpθ)], these criteria reduce to

−QMϕ > 0, (4.14a)

∂Θ

∂r
> 0, (4.14b)

fMQ

Ω
> 0. (4.14c)

† There are fluids (e.g., water between 0 and 4◦C) with a positive ρη: since

∂ρ/∂T |
p

= ρηηs ∂s/∂T |
p

= ρηΘcp/T , one sees that ∂ρ/∂T |
p

and ρη have the same sign.
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It is instructive to compare the first criterion, which is equivalent to Qζabs >

0, with Rayleigh’s condition for the stability of a cylindrical vortex to ax-

isymmetric perturbations in an incompressible nonrotating fluid (Rayleigh,

Lord 1916):

uζ
.
=

u

r

∂

∂r
(ru) > 0. (4.15)

We recognize the second criterion as the usual condition for static stability,

while the third criterion is the result previously obtained by Stevens (1983).

The three criteria are analogous to those found in the f -plane Boussinesq

case (Cho et al. 1993).

As already noted, the criteria (4.14) need only hold almost everywhere in

order to prove formal stability. [In fact, it is clear that the left-hand side

of (4.14c) will necessarily vanish at the equator (where f = 0) and at the

poles (where M = 0).] Recall that we restricted attention to equilibrium

flows where Q is sign-definite in each hemisphere and changes sign across

the equator. It is easy to see that if Q changed sign anywhere except at the

equator, the stability criteria could not be satisfied. For, in order to satisfy

(4.14a) and (4.14c) simultaneously, both Mϕ and M would have to change

sign where Q changed sign; this would contradict the assumed continuity

of M in ϕ. One may combine (4.14a) and (4.14c) to obtain the condition

−fMMϕ/Ω > 0, which within each hemisphere precludes the existence of

a local extremum of M in ϕ. Given that M vanishes at the poles, it follows

that M must be single-signed, having a single extremum at the equator.

We thus determine two possible configurations for stability: one with

M/Ω < 0 and fQ < 0 and the other with M/Ω > 0 and fQ > 0 (almost

everywhere). The latter represents the most likely situation for a planetary
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atmosphere, since M/Ω > 0 at the equator provided U(0, p)/Ω > −a. (This

condition is easily met for the Earth’s atmosphere: since Ωa = 465 m/s, a

violation would require supersonic wind speeds!)

Equation (4.13) may be interpreted in terms of the Richardson num-

ber Ri
.
= N 2/U2

r , where N 2 .
= g2ρηNp is the square of the Brunt–Väisälä

frequency [which may be expressed in the more familiar form N 2 = gΘr/Θ0,

where Θ0
.
= −ρ(∂ρ/∂θ)−1 is a characteristic potential temperature]. Note

that (4.12) implies N 2 > 0, verifying that (4.12) corresponds to static sta-

bility even when ρη < 0. With the help of (3.5), we rewrite (3.6) as

Q = −
1

cp

[
gζabsNp −

1

aρ
UrNϕ

]

= −
1

cp

[
gζabsNp −

1

ag

(
1

ρη

)
2 tanϕ

a cos ϕ
MU2

r

]

= −
1

cpgρη

[
ζabs N

2 − f

(
M

Ωa2 cos2 ϕ

)
U2

r

]

= −
fN 2

cpgρη

[
ζabs

f
− Ri

−1

(
1 +

U

Ωa cos ϕ

)]
. (4.16)

Hence (4.13) can be rewritten as

M

Ω

[
ζabs

f
− Ri

−1

(
1 +

U

Ωa cos ϕ

)]
> 0, (4.17)

or,

ζabs

f

(
1 +

U

Ωa cos ϕ

)
> Ri

−1

(
1 +

U

Ωa cos ϕ

)2

> 0, (4.18)

which leads to the stability criterion

Ri >
f

ζabs

(
1 +

U

Ωa cos ϕ

)
> 0. (4.19)

For the special case U(ϕ, p) = U0(p)/ cosϕ one finds ζabs = f ; (4.19) then

reduces to

Ri > 1 +
U

Ωa cos ϕ
> 0. (4.20)
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5. Finite-amplitude stability theorem

From the exact invariants H and C, let us construct the finite-amplitude

disturbance invariant

A
.
= [H + C](m, v, η, p0) − [H + C](M, 0, N, P0) (5.1)

for the disturbed state defined by

m
.
= M + m′, v

.
= v′, η

.
= N + η′, p0

.
= P0 + p′0. (5.2)

This invariant is called the disturbance pseudoenergy (e.g., Shepherd 1990).

If one defines

∆
.
=
∫ p0

0
G(m, η, q; ϕ, p) dp−

∫ P0

0
G(M, N, Q; ϕ, p) dp, (5.3)

one may express A in the compact form

A =
∫ π

2

−
π

2

(∫ p0

0

1

2
v2 dp + ∆ + agp′0

)
cos ϕ dϕ. (5.4)

To analyze finite-amplitude stability, we must extend the domain of the

equilibrium profiles M(ϕ, p) and N(ϕ, p) to values of p > P0 subject to

the thermal-wind balance condition (3.5). This extension may be made

in an arbitrary fashion, provided that the final stability criterion (5.19)

holds over the extended domain of M and N . (However, the details of the

extension will affect the upper bound (5.22); one might be able to use this

arbitrariness to reduce the bound as much as possible.) Bounds on the

pseudoenergy can then be obtained by decomposing ∆ into its volume and

surface contributions: ∆ = ∆V +∆S, where (M. Mu, private communication,

1993)

∆V
.
=
∫ p0

0
[G(m, η, q; ϕ, p) − G(M, N, Q; ϕ, p)] dp, (5.5a)
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∆S
.
=
∫ p0

P0

G(M, N, Q; ϕ, p) dp. (5.5b)

Taylor’s Remainder Theorem implies that for each value of ϕ and p, there

exists some m̃ ∈ (M, m), η̃ ∈ (N, η) such that

∆V =
∫ p0

0

[
Gm(M, N, Q)m′ + Gη(M, N, Q)η′

+
1

2
Gmm(m̃, η̃, q̃)m′2 + Gmη(m̃, η̃, q̃)m′η′ +

1

2
Gηη(m̃, η̃, q̃)η′2

]
dp,

(5.6)

where G(m, η, q) ≡ G(m, η, q; ϕ, p). Similarly, the application of Taylor’s

Remainder Theorem to ∆S as a function of p0 about P0 implies that

∆S = G(M, N, Q; ϕ, p0)p
′

0 +
1

2

d

dp
G(M, N, Q; ϕ, p)

∣∣∣∣∣
p=p̃0

p′20 , (5.7)

for some p̃0 ∈ (P0, p0).

The linear terms of ∆V vanish since for the equilibrium state C obeys

(3.11). The first term of (5.7) cancels the third term in (5.4), because of

(3.12). These results reflect the fact that δ(H + C) = 0 for the equilibrium

flow. Again, no δq contributions arise since the function C was chosen to

satisfy (3.10).

It will be convenient to decompose the pseudoenergy (5.4) into volume

and surface contributions such that A = AV + AS, where

AV
.
=

1

2

∫ π

2

−
π

2

∫ p0(ϕ,t)

0

(
v′2 + IV

)
cos ϕ dp dϕ, (5.8a)

AS
.
=

1

2

∫ π

2

−
π

2

IS

∣∣∣
p=p̃0

cos ϕ dϕ. (5.8b)

From (5.6) and (5.7) we identify

IV
.
= G̃mm m′2 + 2G̃mη m′η′ + G̃ηη η′2, (5.9a)

IS
.
=

d

dp
G(M, N, Q; ϕ, p) p′20 . (5.9b)
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Here, a tilde is used to indicate that the corresponding function is evaluated

at (m̃, η̃, q̃; ϕ, p).

For the surface contribution, (4.3) and (4.4) imply that IS = p′20 /ρ(N, p)

since Gm = Gη = 0 when evaluated at the equilibrium flow. Thus,

AS =
1

2

∫ π

2

−
π

2

p′20
ρ(N(ϕ, p̃0), p̃0)

cos ϕ dϕ > 0. (5.10)

The following lemma can be used to bound the interior contribution IV .

Lemma 1. If α > 0 and x and y are real, then

−α|G|x2 − α−1|G|y2
6 2Gxy 6 α|G|x2 + α−1|G|y2. (5.11)

Proof. The two inequalities

0 6

(
α1/2x ± α−1/2y

)2
= αx2 ± 2xy + α−1y2 (5.12)

provide the bounds

−α|G|x2 − α−1|G|y2
6 ±2|G|xy 6 α|G|x2 + α−1|G|y2, (5.13)

which in turn imply (5.11).

The application of Lemma 1 to (5.9a) yields, for any positive function α ≡

α(ϕ, p)

IV >

(
G̃mm − α

∣∣∣G̃mη

∣∣∣
)
m′2 +

(
G̃ηη − α−1

∣∣∣G̃mη

∣∣∣
)
η′2. (5.14)

In order to prove finite-amplitude stability, we would ideally like to bound IV

and IS from above and below by positive-definite quadratic forms. However

this is problematical, because G depends on p as well as on m, η, and q.

The latter dependencies are not difficult to handle since the variables are

Lagrangian invariants, and thus their range of values is always the same as

the range provided by the initial conditions. But the surface pressure p0
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is a dynamical quantity that can, in principle, take on any positive value

whatsoever. Thus the p dependence in G is difficult to bound a priori. In

particular, the surface density ρ in (5.10) could conceivably approach either

zero or infinity.

Thus we are unable to obtain the sort of strong convexity properties that

were employed in the analysis of Cho et al. (1993). Nevertheless, we can

still prove finite-amplitude stability. Upon noting that Hmη = 0, we obtain

from (5.14) and (4.6) the bound

IV >

(
1

a2 cos2 ϕ
+ C̃mm − α

∣∣∣C̃mη

∣∣∣
)

m′2 +
(
C̃ηη − α−1

∣∣∣C̃mη

∣∣∣
)
η′2. (5.15)

To bound IV in terms of the equilibrium quantities, we need to relate the

range of the perturbed quantities appearing in (5.15) to the range of the

equilibrium profiles. For each function F ∈ {Cmm, |Cmη|, Cηη} we suppose

that

{F (m̃, η̃, q̃) : (ϕ, p) ∈ V } ⊆ {F (M, N, Q) : (ϕ, p) ∈ V }. (5.16)

This will be the case if the perturbation globally introduces no new values

of the Lagrangian invariants m and η (the q-dependence serving only to

identify, by its sign, the branch of the function). The bound (5.15) may then

be used to obtain a lower estimate for AV . [In the most general situation,

one needs to extend the domain of the functions F to the new range of m̃

and η̃ without disturbing (3.11) and (5.15). Although this construction is

always possible in the one-dimensional case (cf. Arnol’d 1966), it is not

yet clear whether two-dimensional functions can always be extended in an

analogous manner.]

Suppose now that there exists some positive constant c that provides the
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global bound (for −π
2

6 ϕ 6
π
2

and all p > 0)

min
(
Cmm − α|Cmη|, Cηη − α−1|Cmη|

)
> c > 0. (5.17)

Equations (4.6), (5.15), (5.16), and (5.17) then imply that the pseudoenergy

contribution AV is bounded by

AV >
1

2

∫ π

2

−
π

2

∫ p0

0

[
v′2 +

(
1

a2 cos2 ϕ
+ c

)
m′2 + cη′2

]
cos ϕ dp dϕ. (5.18)

Upon substitution of (4.7) and (3.21), the criterion (5.17) appears as

min

(
BNp/Up − α0|B| − 1

a2 cos2 ϕ
,−B

aζabs

Nϕ

− α−1
0 |B|

)
> c > 0, (5.19)

where α0
.
= αa cosϕ and B is given by (3.22).

One may now establish finite-amplitude stability for the flow in terms of

the disturbance measure ||x′||c of the vector x′ .
= (m′, v′, η′, p′0), where

||x′||2c
.
=

1

2

∫ π

2

−
π

2

∫ P0+p′
0

0

[
v′2 +

(
1

a2 cos2 ϕ
+ c

)
m′2 + cη′2

]
cos ϕ dp dϕ. (5.20)

Here, the surface pressure disturbance p′

0 is related to the generalized po-

tential temperature disturbance η′ by

p′0
.
= g

∫ a+∆r

a
ρη η′ dr. (5.21)

Equations (5.18) and (5.10) imply that the evolution of the positive-definite

quantity ||x′||2c is bounded according to

||x′(t)||2c 6 AV (t) 6 A(t) = A(0). (5.22)

Hence finite-amplitude disturbances are bounded for all time by a quantity

depending only on the initial state of the flow; the bound decreases to zero

as the initial disturbance tends to zero.

The disturbance measure defined by (5.20) is not actually a norm since it

does not satisfy the property of homogeneity: in general, ||λx||c 6= |λ|||x||c
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for a scalar λ. However, (5.20) still provides a meaningful measure of dis-

turbance size since it satisfies the important property that ||x||2c > 0, with

equality occurring only when x = 0 almost everywhere (observe that η ′ = 0

implies p′0 = 0).

Note that (5.17) requires that

Cmm > α|Cmη| > 0, Cηη > α−1|Cmη| > 0; (5.23)

these inequalities in turn imply

Cmm >
|Cmη|

Cηη
|Cmη| =

C2
mη

Cηη
. (5.24)

Since for this case Hmm > 0 and Hηη = 0, it follows that the finite-amplitude

stability criterion (5.17) implies the formal stability conditions (4.14) ob-

tained in Section 4.

Let us examine the finite-amplitude stability criterion (5.19) in further

detail. Upon using (3.6) to eliminate ζabs we find that

BNp

Up
− 1 − ca2 cos2 ϕ > α0|B| > BNp

(
cpaQ

gNϕ
+ Up

)
−1

. (5.25)

Dividing through by the positive expression on the right-hand side of the

second inequality, we obtain

cpaQ

gUpNϕ
> (1 + ca2 cos2 ϕ)

1

BNp

(
cpaQ

gNϕ
+ Up

)
> 0. (5.26)

We now use (3.5) to eliminate Up on the left-hand side. Upon recalling

(3.22) we obtain a finite-amplitude generalization of (4.13):

−ρη

(
fMQ

Ω

)
> a cos2 ϕ(1 + ca2 cos2 ϕ)

ρηQ

Np

(
cpaQ

g
+ UpNϕ

)
> 0. (5.27)

Analogues of the other formal stability conditions can also be obtained from
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(5.19), which requires that

−ρηQζabs >
cpρ

2Q2

g
(c + α−1

0 |B|) > 0, (5.28a)

BNp

Up

> 1 + ca2 cos2 ϕ + α0|B| > 0 (5.28b)

for some positive constant c. Equations (5.28a) and (5.28b) are finite-

amplitude generalizations of (4.10) and (4.9), respectively. Substitution

of (3.22) and (3.5) into (5.28b), together with (5.27), leads to the criterion

ρηNp > −
cpρη

g

(
fMQ

Ω

)
−1

Q2a2 cos2 ϕ(1 + ca2 cos2 ϕ + α0|B|) > 0, (5.29)

which is a generalization of (4.12) to finite amplitude. Evidently these

finite-amplitude conditions are all somewhat more restrictive than the cor-

responding formal stability conditions.

Let us emphasize that, although we have provided a bound on the evo-

lution of the disturbance measure ||x||c, we have not proven Liapunov sta-

bility. Because of the possibility that ρ could approach arbitrarily close

to zero as the flow evolves (e.g., in the presence of cavitation), there ap-

pears to be no way of providing an upper bound on the surface contribution

to the pseudoenergy. This treatment differs from the approach taken by

Holm et al. (1983) upon encountering a similar difficulty: since their calcu-

lation required a nonzero lower bound on the density, these authors simply

made this a hypothesis. In contrast, the treatment here is dynamically

self-consistent in that it requires no externally imposed assumptions on ρ.

6. Discussion

We have applied the energy–Casimir method to the problem of symmet-

ric stability of a compressible, hydrostatic planetary atmosphere with a
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general equation of state, including a proper treatment of the lower bound-

ary condition. It has been shown that steady baroclinic zonal flows of

the form (3.1) satisfy the variational principle (3.9), and are thus condi-

tional extremals of the energy subject to constraints provided by a suitably

constructed Casimir-like invariant. By considering the second variation of

the corresponding energy–Casimir (or pseudoenergy) invariant functional

about these equilibria, formal symmetric stability criteria have been de-

rived: namely (4.10), (4.12), and (4.13). In the special case of a perfect gas

these criteria reduce to (4.14), as previously derived by Stevens (1983).

In comparison with the f -plane, Boussinesq analysis of symmetric stabil-

ity of Cho et al. (1993), the present analysis exhibits two interesting math-

ematical features: multi-valued inverse equilibrium profiles and a moving

lower boundary in p-coordinates. The first of these is dealt with by allow-

ing the Casimir-like functions to have an additional dependence on the sign

of the potential vorticity, which identifies the branch of the function. The

second feature leads to an explicit contribution from the lower boundary to

the pseudoenergy. However this contribution is positive definite, and thus

presents no problem for the formal stability analysis.

For finite-amplitude disturbances, on the other hand, the moving domain

of integration presents significant difficulties because the range of values of p

cannot be bounded a priori. This means that strong convexity properties

on the pseudoenergy, such as were employed by Cho et al. (1993), are not

available in this case. In particular, Liapunov stability does not appear

to be provable. Nevertheless, we show that the pseudoenergy is positive

definite and that finite-amplitude stability conditions can be derived. By
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finite-amplitude stability we mean that a positive-definite measure of distur-

bance amplitude is bounded uniformly in time, with the bound decreasing

to zero as the initial disturbance tends to zero [cf. Mu Mu et al. 1994];

this result is expressed by (5.22). The finite-amplitude stability conditions

imply formal stability and are expressible as generalizations of the formal

symmetric stability conditions.

From the stability bound (5.22) we also obtain a rigorous upper bound

on the kinetic energy of the motion in the meridional plane:

1

2

∫ π

2

−
π

2

∫ p0

0
v′2(t) cos ϕ dp dϕ 6 A(0). (6.1)

Since (6.1) holds for any equilibrium for which IV > 0 everywhere, it may

be used to define a generalized available potential energy for a given baro-

clinic zonal flow [see Shepherd (1993)]: simply choose a stable equilibrium,

compute A(0) for the resulting disturbance field (the difference between the

initial and the equilibrium values), and then minimize A(0) over all possi-

ble stable equilibria. This construction of a generalized available potential

energy was used by Cho et al. (1993) to provide rigorous upper bounds on

the nonlinear saturation of symmetric instabilities. A similar calculation

would certainly be possible in the present case.
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