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A method is described for predicting statistical properties of turbulence. Collections of Fourier
amplitudes are represented by nonuniformly spaced modes with enhanced coupling coefficients. The
statistics of the full dynamics can be recovered from the time-averaged predictions of the reduced
model. A Liouville theorem leads to inviscid equipartition solutions. Excellent agreement is ob-
tained with two-dimensional forced-dissipative pseudospectral simulations. For the two-dimensional
enstrophy cascade, logarithmic corrections to the high-order structure functions are observed.
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Many practical applications for spectral simulations of
turbulence exist where it would be desirable to evolve
modes that are distributed nonuniformly in Fourier
space, devoting most of the computational resources to
the length scales of greatest physical interest. This idea
has led to the development of a new reduced statisti-
cal description of turbulence, called spectral reduction

[1], which dramatically reduces the number of spectral
modes that must be retained in simulations of turbulent
phenomena. It exploits the fact that statistical moments
are much smoother functions of wave number than are
the underlying stochastic amplitudes.

The concept of wave-number reduction is not new. In
the method of constrained decimation [2–4], a stochastic
forcing term is added to model the effect of the deleted
modes on the retained modes. She and Jackson have
proposed a reduction scheme in which the linear (vis-
cous) term is modified [5]. In spectral reduction, a third
alternative is chosen: the nonlinear coefficients are en-
hanced to account for the effect of the discarded modes
on the explicitly evolved modes. There have been other
more heuristic attempts at wave-number reduction [6–9];
these methods typically neglect nonlocal wave-number
triad interactions (which play a particularly important
role in two-dimensional turbulence). Unlike the renor-
malization group [10] method, which retains only large-
scale modes and attempts to express the effect of the
small-scale modes using a self-similarity Ansatz , spectral
reduction retains certain modes from all scales, while dis-
carding other modes associated with these same scales.
The generality of the formulation allows one to refine the
partition wherever the physics dictates.

In this Letter we restrict our attention to homogeneous
and isotropic incompressible turbulence in two dimen-
sions. The appropriate spectral transform in this limit
is the integral Fourier transform, under which the two-
dimensional Navier–Stokes vorticity equation becomes

∂ωk

∂t
+ νkωk =

∫

D

dp

∫

D

dq
εkpq

q2
ω∗pω∗q . (1)

Here νk models time-independent linear dissipation
or forcing and the interaction coefficient εkpq

.
=

(ẑ·p×q) δ(k+p+q) is antisymmetric under permutation
of any two indices (∗ denotes complex conjugation,

.
= in-

dicates a definition, and ẑ is the unit normal to the plane
of motion). We restrict the integration to a bounded
wave-number domain D that excludes a neighborhood of
k = 0. As a consequence of the antisymmetry of εkpq,
in the inviscid limit (νk = 0) Eq. (1) conserves the en-

ergy 1
2

∫

D
dk |ωk|

2
/k2 and enstrophy 1

2

∫

D
dk |ωk|

2
. It is

believed that the energy and enstrophy play fundamental
roles in the dynamics of the turbulent cascade.

We introduce an arbitrary coarse-grained grid that
partitions D into connected regions called bins. The bins
are labeled by capital letters to distinguish them from the

continuum wave numbers, which we represent by lower-
case letters. To this grid, we associate new variables
ΩK

.
= ∆−1

K

∫

K
ωk dk, where ∆K is the area of bin K.

The exact evolution of ΩK is given by

∂ΩK

∂t
+ 〈νkωk〉K =

∑

P ,Q

∆P ∆Q

〈

εkpq

q2
ω∗pω∗q

〉

KP Q

, (2)

where 〈·〉K denotes a bin average and the operator

〈f〉KP Q

.
=

1

∆K∆P ∆Q

∫

K

dk

∫

P

dp

∫

Q

dq f, (3)

depends only on the bin geometry. The geometric factors
〈f〉KP Q can be efficiently computed using a combination
of analytical and numerical methods [11–13]. Since they
are independent of both time and initial conditions, they
need only be computed once for each new wave-number
partition. The reality condition ΩK = Ω∗

−K , where −K

denotes the inversion of bin K through the origin, will be
respected for partitions that possess inversion symmetry.

Equation (2) is unfortunately not closed. If ωk were
naively approximated by its bin-averaged value ΩK , one
would obtain

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑

P ,Q

∆P ∆Q

〈

εkpq

q2

〉

KP Q

Ω∗
P Ω∗

Q.

(4)

In the inviscid limit, Eq. (4) conserves the coarse-

grained enstrophy 1
2

∑

K |ΩK |
2
∆K since

〈

εkpq/q2
〉

KP Q

is antisymmetric in K ↔ P . However, the coarse-
grained energy 1

2

∑

K |ΩK |
2
∆K/K2 is not conserved

since
〈

εkpq/q2
〉

KP Q
/K2 is not antisymmetric in K ↔

Q (here K denotes the magnitude of some characteristic
wave number in bin K). However, both of these de-
sired symmetries can be reinstated by replacing the fac-
tor

〈

εkpq/q2
〉

KP Q
in Eq. (4) with the slightly modified

coefficient 〈εkpq〉KP Q
/Q2. The relative error introduced

by this modification is negligible in the limit of small bin
size, being on the order of the squared relative variation
in the wavenumber magnitude over a bin. The result,

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑

P ,Q

∆P ∆Q

〈εkpq〉KP Q

Q2
Ω∗

P Ω∗
Q, (5)

which we call the spectrally reduced Navier–Stokes equa-
tion, is a more acceptable alternative than Eq. (4) as a
closure of Eq. (2): not only does it reduce to the Navier–
Stokes equation in this limit, but it also conserves both
energy and enstrophy, even when the bins are large. The
final modification leading to Eq. (5) partially compen-
sates for the error introduced by the crude approxima-
tion ωk ≈ ΩK and leads to the same general structure
and symmetries as Eq. (1); in this sense spectral reduc-
tion may be regarded as a renormalization.
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If the bins are large, the true vorticity will vary rapidly
with wave number within each bin and it is unlikely
that Eq. (5) will yield a reasonable description of the in-
stantaneous dynamics. However, the time-averaged (or
ensemble-averaged) moments of Eq. (5) satisfy equations
that closely approximate the equations governing the ex-
act bin-averaged statistics. For example, a time average
(denoted by an over-bar) of the bin-averaged enstrophy
equation derived from Eq. (1) leads to

1

2

∂
〈

|ωk|
2
〉

K

∂t
+ Re

〈

νk|ωk|
2
〉

K

= Re
∑

P ,Q

∆P ∆Q

〈

εkpq

q2
ω∗kω∗pω∗q

〉

KP Q

. (6)

If the true vorticity is a continuous function of wave
number, the mean value theorem for integrals guaran-
tees the existence of a wave number κ in bin K such that
ΩK = ωκ. Furthermore, time-averaged quantities such

as |ωk|
2 are generally smooth functions of the wave num-

ber k. We thus deduce that |ΩK |2 = |ωκ|
2 ≈ |ωk|

2 for

all k in bin K. Similarly, the triplet correlation ω∗kω∗pω∗q
is a smooth function of k, p, q when restricted to the
surface defined by the triad condition k + p + q = 0.

To good accuracy the statistical averages in Eq. (6)
may therefore be evaluated at the characteristic wave
numbers K, P , Q of each bin, yielding

1

2

∂|ΩK |
2

∂t
+ Re 〈νk〉K |ΩK |

2

= Re
∑
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∆P ∆Q

〈

εkpq

q2

〉

KP Q

Ω∗
KΩ∗

P Ω∗
Q. (7)

Moreover, to the extent that the wave-number magni-
tudes vary slowly over a bin, Eq. (6) may equally well be
reduced to the (nonlinearly conservative) approximation

1

2

∂|ΩK |2

∂t
+ Re 〈νk〉K |ΩK |

2

= Re
∑

P ,Q

∆P ∆Q

〈εkpq〉KP Q

Q2
Ω∗

KΩ∗
P Ω∗

Q, (8)

which is precisely the evolution equation for the time-
averaged enstrophy obtained from Eq. (5). Similar argu-
ments for the higher-order statistical moments can also
be made, suggesting that spectral reduction can indeed
provide an accurate statistical description of turbulence,
even when each bin contains many statistically indepen-
dent modes. As the partition is refined, one expects the
solutions of Eq. (8) to converge to the those of Eq. (6).

In the absence of forcing and dissipation, the (un-
truncated) two-dimensional Euler equations can be writ-
ten in a noncanonical Hamiltonian framework [14] as

ω̇k =
∫

dq JkqδH/δωq, where H
.
= 1

2

∫

dk |ωk|
2
/k2 and

Jkq
.
=

∫

dp εkpqω∗p . The Liouville theorem

∫

dk
δω̇k

δωk

=

∫

dk

∫

dq

[

εk(−k)q
δH

δωq

+ Jkq

δ2H

δωkδωq

]

= 0

then follows immediately from the properties of εkpq.
When νk = 0, Eq. (5) can be written in a sim-

ilar form as Ω̇K =
∑

Q JKQ ∂H/∂ΩQ, where H
.
=

1
2

∑

K |ΩK |
2
∆K/K2 and

JKQ
.
=

∑

P

∆P 〈εkpq〉KP Q
Ω∗

P . (9)

It is an open question whether (an untruncated version
of) Eq. (9) satisfies the Jacobi identity, which would make
spectral reduction a Hamiltonian approximation. What
is certain is that the respective Liouville theorem

∑

K

∂Ω̇K

∂ΩK

=
∑

K,Q

(

∂JKQ

∂ΩK

∂H

∂ΩQ

+ JKQ

∂2H

∂ΩK∂ΩQ

)

= 0

is obeyed, as a consequence of the antisymmetry of
〈εkpq〉KP Q

. If the dynamics is mixing, the inviscid sys-

tem will then evolve toward equipartition [15,16]; this
was verified for spectral reduction numerically, using a
fifth-order conservative Runga–Kutta integration algo-
rithm that conserves quadratic invariants to all orders in
the time step [17,18]. When using nonuniform bins it is
necessary to rescale the time derivative ∂/∂t in Eq. (5) to
(∆0/∆K)∂/∂t, where ∆0 is the minimum bin area, to ob-
tain an equipartition of modal (instead of bin-averaged)
energies. This modification to the transient evolution will
be discussed further in a future paper.

Upon adding to Eq. (5) a random stirring force for
k ∈ [5, 7] and adopting the dissipation function νk =
νLθ(7−k)+νHk2 (θ is the Heaviside function), we graph
in Fig. 1 the time-averaged saturated energy spectra for
four wave-number partitions to test how rapidly spectral
reduction converges. The excellent agreement demon-
strated between the predictions of spectral reduction and
a (computationally more expensive) full dealiased pseu-
dospectral simulation is obtained without fitting or the
introduction of adjustable parameters. We also show the
predictions of the realizable test field model (RTFM) [13],
using wavenumber binning and setting the eddy-damping
multiplier in this heuristic statistical closure to one.

High-order moments are also accurately described by
spectral reduction. A quantity of interest is the angu-
lar average Sn(r) of the n-th (time-averaged) moment

of velocity increments |v(r) − v(0)|
n
, or structure func-

tion. In Fig. 2 we illustrate the scaling with distance r
of a typical high-order structure function, S10(r), for the
runs depicted in Fig. 1. Slight variations in the predicted
large-scale velocities are evident as overall vertical off-
sets. Note that the (discrete) pseudospectral calculation
is an approximation to Eq. (1) at the large scales.
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FIG. 1. Comparison of the turbulent energy spectra ob-
tained with 16×8, 32×8, 64×8, and 16×16 (logarithmically
spaced radial × uniformly spaced angular) wave-number par-
titions, the RTFM, and a full 683×683 dealiased pseudospec-
tral simulation (1024 × 1024 total modes).

FIG. 2. Angle-averaged structure function S10(r).
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FIG. 3. Linearity of [k3E(k)]−3 with respect to ln(k/k1) for
an enstrophy inertial range between k1 = 16.4 and k = 330.
The solid triangles are the predictions of spectral reduction.

One can readily investigate high-Reynolds number tur-
bulence with spectral reduction, using a polar partition
in which the bins are logarithmically spaced in the radial
wave number. A saturated turbulent state can be evolved
for thousands of eddy turnover times to obtain statis-
tically meaningful moments for comparison with theo-
retical predictions. For example, Kolmogorov’s idea of
self-similar energy transfer in the inertial range [19] led
Kraichnan [20] to propose a logarithmically corrected
asymptotic form for the energy spectrum E(k) of the
enstrophy cascade. In a simulation with viscous dissipa-
tion active only at the smallest scales (to yield a pristine
inertial range) and forcing via a linear instability (nega-
tive νk), we apply spectral reduction to demonstrate the
recent extension E(k) ∼ k−3χ−1/3(k) of Kraichnan’s re-
sult to the entire inertial range, where k1 is the smallest
inertial-range wave number, χ(k)

.
= ln(k/k1) + χ1, and

the positive constant χ1 is set by the large-scale dynamics
[21]. We verify in Fig. 3 the linear behavior of [k3E(k)]−3

with respect to ln(k/k1), using the values k1 = 16.4 and
χ1 = 0.67 determined by a least-squares fit. The inertial-
range energy spectrum is thus well described by Kraich-
nan’s logarithmically corrected k−3 law.

For the second simulation, we demonstrate in Fig. 4
the linear behavior of [r−nSn(r)]3/n with ln(r1/r) on the
interval 0.043 ≤ r ≤ r1 = 0.26 for various values of n.
The implied scaling Sn(r) ∼ rn[ln(r1/r) + χ′

n]n/3, where
χ′

n is a constant, is in agreement with both the asymp-
totic theory of Falkovich and Lebedev [22] and the recent
experimental results of Paret et al. [23], lending support
to the claim that there are no high-order intermittency
corrections in two-dimensional turbulence. The univer-
sality of this result will be investigated in a future paper.

In this Letter, we propose a new technique that dra-
matically decreases the number of degrees of freedom re-
quired to simulate homogeneous turbulence. The statis-
tically stationary state described by Fig. 3, which would
require 2048 × 2048 dealiased (3071 × 3071 total) pseu-
dospectral modes, can be successfully modeled using only
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FIG. 4. Linearity of [r−nS(r)]3/n with respect to ln(r1/r)
for 0.043 ≤ r ≤ r1 = 0.26.

32× 8 bins. A notable feature of spectral reduction that
distinguishes it from other statistical theories of turbu-
lence is the existence of a control parameter (bin size)
that can be varied to increase the accuracy of a solu-
tion. Moreover, spectral reduction does not make a clo-

sure assumption on the triplet correlation Ω∗
KΩ∗

P Ω∗
Q ap-

pearing in Eq. (8); it circumvents the closure problem
entirely by reducing the number of triplet correlations to
a tractable number, instead of eliminating them in favor
of lower-order statistical variables. Unlike statistical clo-
sures, spectral reduction thus does not destroy the phase
information embodied in the triplet correlation.

Spectral reduction appears to be a promising candi-
date as a statistical description of turbulence. We pro-
pose that it could be used to assess the effect of various
dissipation mechanisms in large-eddy simulations, as a
subgrid model, or even as a substitute for full simula-
tion of high-Reynolds number turbulence. However, as it
does not provide explicit insight into underlying dynam-
ical processes, spectral reduction should be considered
more as a computational tool than as a true analytical
theory of turbulence. The latter challenge still awaits us.
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