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A type of eddy-damped quasinormal Markovian (EDQNM) closure is shown to be potentially
nonrealizable in the presence of linear wave phenomena. This statistical closure results from the
application of a fluctuation–dissipation (FD) ansatz to the direct-interaction approximation (DIA);
unlike in phenomenological formulations of the EDQNM, both the frequency and the damping rate
are renormalized. A violation of realizability can have serious physical consequences, including the
prediction of negative or even divergent energies. A new statistical approximation, the realizable
Markovian closure (RMC), is proposed as a remedy. An underlying Langevin equation that makes
no assumption of white-noise statistics is exhibited. Even in the wave-free case the RMC, which
is based on a nonstationary version of the FD ansatz, provides a better representation of the true
dynamics than does the EDQNM closure. The closure solutions are compared numerically against
the exact ensemble dynamics of three interacting waves.
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I. INTRODUCTION

Statistical closures constitute an intriguing alternative
to conventional numerical simulations of the primitive
dynamical equations of turbulence. The Navier–Stokes
equation at high Reynolds number, for example, defies
direct numerical computation,1 primarily because the so-
lutions of this strongly nonlinear equation vary rapidly
in both space and time. In contrast, statistical closures
provide approximate descriptions of the average behavior
of an ensemble of turbulent realizations; these statistical
solutions are relatively smooth.

The construction of a statistical description of tur-
bulence is far from unambiguous. The averaging of a
nonlinear equation leads to an infinite hierarchy of mo-
ment equations that is usually closed by adopting some
approximate relation between high-order moments and
low-order moments. Perhaps the best-known example
of a statistical closure is Kraichnan’s direct-interaction
approximation (DIA).2–6 This approximation has many
favorable properties. Being the lowest-order truncation
in an expansion of the formally exact renormalized clas-
sical perturbation theory of Martin, Siggia, and Rose
(MSR),7 the DIA is both renormalized, as is essential
to any theory of strong turbulence, and (in some sense)
systematically derived, as is desirable of any quantita-
tive description of turbulent phenomena. The DIA cor-
rectly reduces to perturbation theory in the limit of weak
nonlinearity,8,6 conserves fundamental invariants, is self-
consistent, and yields two-time spectral data. It repro-
duces the observed depression (from a Gaussian value)
of the mean-square nonlinearity of homogeneous Navier–
Stokes turbulence.9,10 In addition, the multiple-field for-
mulation of the DIA is covariant to general linear trans-
formations of the stochastic variables.11

Another very important property of the DIA is its
realizability.4,12 A closure is said to be realizable if there
exists an underlying probability density function for the
statistics it predicts.13 Realizability is equivalent to the
existence of a stochastic problem14 for which the closure
is an exact statistical solution, even though it may only
be an approximate solution of the original dynamical sys-

tem.
In recent years, however, the DIA has been virtu-

ally abandoned as a tool for the study of fluid turbu-
lence. Two principal reasons for this state of affairs
may be given: first, the DIA incorrectly predicts15,16

the exponent −3/2 instead of the observed Kolmogorov
value −5/3 for the power-law decay of the three-
dimensional inertial-range energy spectrum (however,
see the discussion in Ref. 17); second, low-order sta-
tistical closures like the DIA are not capable of ac-
curately describing higher-order correlations associated
with the coherent structures observed both numerically18

and experimentally19 in two-dimensional fluid flow.
It may be argued that the incorrect modeling of the

inertial-range spectrum is largely irrelevant to plasma

transport calculations;20 moreover, this difficulty can be
circumvented altogether with the use of a related for-
mulation known as the test-field model.21,22 In addition,
there is as yet no conclusive evidence that coherent struc-
tures play a fundamental role in transport processes. In
models of drift-wave and Rossby-wave turbulence linear
wave effects tend to inhibit the formation of coherent
structures.23,24 Thus, the particular difficulties that have
prompted researchers to largely abandon closures in the
context of fluid turbulence may not be of such great con-
cern for plasma and geophysical transport calculations.

Unfortunately, the application of the DIA to
multi-dimensional inhomogeneous turbulence remains a
formidable challenge. In practice, numerical simulations
must normally be carried out for many time steps while
the system relaxes to a steady state and, even on mod-
ern supercomputers, the computational scaling with time
(formally cubic) is quite discouraging. Stimulated by
computational considerations, this work focuses on sim-
pler Markovianized versions of the DIA that capture cer-
tain desirable features of that approximation.

Almost all of the practical statistical closure com-
putations in the literature are of the Markovian type.
They predict only equal-time correlation data and ap-
proximate time-history effects with a triad interaction
time θ(t) that can be evolved knowing only the current
value of θ and other state variables. Popular examples
of Markovian closures include the eddy-damped quasi-
normal Markovian (EDQNM) closure25 and the test-field
model (TFM).21,22 Markovian closures have been applied
extensively to incompressible fluids,26–29 plasmas,30,31

and rotating fluids.32–34

This paper is organized as follows. In Sec. II we provide
a short review of statistical closure theory and motivate
our interest in Markovian closures. The principal contri-
bution of this work is contained in Sec. III. We begin
with the observation that the conventional example of
a DIA-based Markovian closure, the EDQNM, severely
violates realizability in the presence of linear wave phe-

nomena. (Waves are absent from the linear term of the
incompressible fluid equations for which this closure was
originally developed.) Furthermore, no general multiple-
field formulation of this closure is given anywhere in the
literature. We require a formulation that is systemati-
cally based on the direct-interaction approximation and
that satisfies the properties of realizability, covariance,
and conservation of all fundamental quadratic invariants.
It turns out to be very difficult to meet all of these con-
straints. However, we take advantage of this fact: these
constraints may be used to reduce the arbitrariness of the
closure. We are eventually led to a new approximation,
the realizable Markovian closure (RMC), that satisfies
each of these criteria.

This advance is made possible through the introduc-
tion of a fluctuation–dissipation (FD) ansatz more suit-
able than the equilibrium relation as an approximation
for nonequilibrium systems. The RMC is more closely
related to the DIA than are any of the other proposed
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Markovian closures in the literature; we thus expect
its performance to be superior, except for the inaccu-
rate modeling of the inertial range. Fortunately, if the
inertial-range scaling is actually a concern, it is possible
to construct a closure related to the TFM (which, as it
stands, is also not realizable in the presence of waves)
that captures the correct inertial-range behavior and is
realizable. This will be the subject of a future paper.

In Sec. IV we discuss the application of this work
to pedagogical systems of three interacting modes
considered by Kraichnan,35 Terry and Horton,36 and
Krommes.37 The RMC is tested against conventional
simulations for these cases; we find that the accuracy
of the RMC typically lies somewhere between that of the
DIA and the less sophisticated EDQNM closure. Finally,
a summary of this work is presented in Sec. V. In a fur-
ther paper (Part II) we will discuss applications of the
RMC to turbulent systems comprised of many interact-
ing modes.

Some details are relegated to appendices. In Ap-
pendix A, we demonstrate the conservation properties
of the multiple-field DIA. Appendices B and C contain
proofs of several theorems and a counterexample that are
cited in the body of this work. In Appendix D we discuss
inviscid equilibria and the H Theorem. Finally, Appen-
dices E, F, and G contain calculations of the steady-state
amplitudes of three interacting waves.

II. STATISTICAL CLOSURES

In this section we provide background on the general
theory of statistical closures.

A. The fundamental nonlinear stochastic process

Consider a quadratically nonlinear equation, written in
Fourier space, for some stochastic variable ψk that has
zero mean:
(
∂

∂t
+ νk

)
ψk(t) = 1

2

∑

k+p+q=0

Mkpqψ
∗
p(t)ψ∗q (t). (1)

Here the time-independent coefficients of linear “damp-
ing” νk and mode-coupling Mkpq are complex. Without
any loss of generality one may assume the symmetry

Mkpq = Mkqp. (2)

Another important symmetry possessed by many such
systems is38

σkMkpq + σpMpqk + σqMqkp = 0 (3)

for some time-independent nonrandom real quantity σk.
Equation (3) is easily shown to imply that the nonlinear
terms of Eq. (1) conserve the total generalized “energy,”
defined as

E
.
= 1

2

∑

k

σk

〈
|ψk(t)|2

〉
. (4)

For some problems (e.g., two-dimensional turbulence),
Eq. (3) may be satisfied by more than one choice of σk;
this implies the existence of more than one nonlinear in-
variant. The angle brackets in Eq. (4) denote an en-
semble average, which provides us with an inner product
ρ(a, b)

.
=
〈
ab∗
〉

on the vector space of stochastic func-
tions.

We define the two-time correlation function Ck(t, t′)
.
=〈

ψk(t)ψ∗k(t′)
〉

and the equal-time correlation function

Ck(t)
.
= Ck(t, t), so that E = 1

2

∑
k σkCk(t). In sta-

tionary turbulence, the two-time correlation function
depends on only the difference of its time arguments:
Ck(t, t′)

.
= Ck(t− t′). The infinitesimal response function

(nonlinear Green’s function) Rk(t, t′) is the ensemble-
averaged infinitesimal response to a source function η̄k(t)
added to the right-hand side of Eq. (1):

Rk(t, t′)
.
=

〈
δψk(t)

δη̄k(t′)

〉 ∣∣∣
η̄k=0

. (5)

We adopt the convention that the equal-time re-
sponse function Rk(t, t) evaluates to 1/2 [although
limt′→t−Rk(t, t′) = 1].

B. Statistical closures; the direct-interaction
approximation

The general form of a statistical closure in the absence
of mean fields is
(
∂

∂t
+ νk

)
Ck(t, t′) +

∫ t

0

dt̄Σk(t, t̄)Ck(t̄, t′)

=

∫ t′

0

dt̄Fk(t, t̄)R∗k(t′, t̄), (6a)

(
∂

∂t
+ νk

)
Rk(t, t′) +

∫ t

t′
dt̄Σk(t, t̄)Rk(t̄, t′)

= δ(t− t′). (6b)

These equations specify an initial-value problem for
which t = 0 is the initial time.

The original nonlinearity in Eq. (1) is split in Eqs. (6)
into two separate effects: one describing nonlinear damp-
ing (Σk) and one modeling nonlinear noise (Fk). This
structure is reminiscent of a Langevin equation. How-
ever, the nonlinear damping and noise in Eqs. (6) are de-
termined on the basis of fully nonlinear statistics. Given
appropriate forms for Σk and Fk, Eqs. (6) would yield
an exact description39 of the second-order statistics. Un-
fortunately, this merely shifts the difficulty to the deter-
mination of these new functions.

The direct-interaction approximation provides specific
approximate forms for Σk and Fk:
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Σk(t, t̄) = −
∑

k+p+q=0

MkpqM
∗
pqkR

∗
p(t, t̄)C∗q (t, t̄), (7a)

Fk(t, t̄) = 1
2

∑

k+p+q=0

|Mkpq|2C∗p (t, t̄)C∗q (t, t̄). (7b)

These renormalized forms can be obtained from the for-
mal perturbation series by retaining only selected terms.
While there are infinitely many ways of obtaining a renor-
malized expression, Kraichnan4 has shown that most of
the resulting closed systems of equations lead to phys-
ically unacceptable solutions. For example, they might
predict the physically impossible situation of a negative
value for Ck(t, t) (i.e., a negative energy)! Such behavior
cannot occur in the DIA or other realizable closures.

The DIA also conserves all of the same generalized en-
ergies [given by Eq. (4)] that are conserved by the prim-
itive dynamics. To elucidate this important property we
first rewrite the equal-time DIA covariance equation in
the form

∂

∂t
Ck(t) + 2 ReNk(t) = 2 ReFk(t), (8a)

where

Nk(t)
.
= νkCk(t) −

∑

k+p+q=0

MkpqM
∗
pqkΘ̄∗

pqk(t), (8b)

Fk(t)
.
= 1

2

∑

k+p+q=0

|Mkpq|2Θ̄∗
kpq(t), (8c)

Θ̄kpq(t)
.
=

∫ t

0

dt̄ Rk(t, t̄)Cp(t, t̄)Cq(t, t̄). (8d)

The symmetries Eqs. (2) and (3) ensure that Eq. (8a)
conserves the generalized energy E

.
= 1

2

∑
k σkCk(t) in

the dissipationless case where Re νk = 0:

2
∂

∂t
E = 2 Re

∑

k

σk

∑

k+p+q=0

MkpqM
∗
pqkΘ̄∗

pqk(t)

+ Re
∑

k

σk

∑

k+p+q=0

MkpqM
∗
kpqΘ̄∗

kpq(t)

= Re
∑

k,p,q

k+p+q=0

(σkMkpq + σqMqkp

+σpMpqk)M∗
pqkΘ̄∗

pqk(t)

= 0. (9)

The DIA has a covariant multiple-field formulation.
This means that the form of the closure equations re-
mains unaltered under general (nonunitary) linear trans-
formations of the fundamental field variables. Physically,
this is important for the unambiguous definition of the
closure. Covariance ensures that the closure predictions

are independent of the choice of variables used to formu-
late the statistical equations.11

Let us illustrate a representation for the DIA that is
explicitly covariant. Consider the n-field system

∂

∂t
ψα + να

µψ
µ = 1

2

∑

∆

Mα
βγψ

β∗ψγ∗. (10)

We introduce the compact notation α
.
= (α̂,k), β

.
=

(β̂,p), and γ
.
= (γ̂, q), where α̂, β̂, and γ̂ are (inho-

mogeneous) “species indices” that distinguish the mul-
tiple fields. The symbol ∆ means obey the condi-
tion k + p + q = 0, while summing over β and γ.

The mode-coupling coefficients have the symmetry

Mα
βγ = Mα

γβ. (11)

Suppose

σαᾱM
ᾱ

βγ + σβᾱM
ᾱ

γα + σγᾱM
ᾱ

αβ = 0 (12)

for some (not necessarily unique) Hermitian matrix σ so
that the real quantity

E
.
= 1

2ψ
α∗σαα′ψα′

(13)

is conserved. Here we invoke the convention that, un-
less otherwise indicated, summation over repeated Greek
indices is implied. It is natural to interpret σ as the “fun-
damental tensor” that raises and lowers indices according
to ψα

.
= σαα′ψα′

so that 2E = ψα∗ψα has the form of a
naturally covariant scalar product.

We define the correlation function

Cαα′

(t, t′)
.
=
〈
ψα(t)ψα′∗(t′)

〉
(14)

and the response function

Rα
α′(t, t′)

.
=

〈
δψα(t)

δψα′(t′)

〉 ∣∣∣
η̄k=0

. (15)

The covariant DIA equations are then found to be11

∂

∂t
Cαα′

(t, t′) + να
µC

µα′

+

∫ t

0

dt̄Σα
µ(t, t̄)Cµα′

(t̄, t′)

=

∫ t′

0

dt̄Fαµ(t, t̄)Rα′

µ
∗(t′, t̄), (16a)

∂

∂t
Rα

α′(t, t′) + να
µR

µ
α′ +

∫ t

0

dt̄Σα
µ(t, t̄)Rµ

α′(t̄, t′)

= δ(t− t′)δα
α′ , (16b)

where

Σα
ᾱ(t, t̄)

.
= −

∑

∆

Mα
βγM

β̄
γ̄ᾱ

∗Rβ
β̄
∗(t, t̄)Cγγ̄∗(t, t̄),

(17a)
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Fαᾱ(t, t̄)
.
= 1

2

∑

∆

Mα
βγM

ᾱ
β̄γ̄
∗Cββ̄∗(t, t̄)Cγγ̄∗(t, t̄).

(17b)

In Appendix A, these multiple-field equations are shown
to conserve any quadratically nonlinear invariant E de-
fined by Eq. (13) and the mode-coupling symmetry (12).
The structure of Eqs. (16) and (17) will play an impor-
tant role in our development of a multiple-field Marko-
vian closure in Sec. III.

C. Symmetric form of the closure equations

Normally, Eqs. (6) are solved as an initial-value prob-
lem by evolving them from specified initial conditions on
the equal-time covariances. However, Eq. (6b) can be
used to write Eq. (6a) instead as

Ck(t, t′) =

∫ ∞

−∞
dt̄

∫ ∞

−∞
d¯̄t Rk(t, t̄)Fk(t̄, ¯̄t)R∗k(t′, ¯̄t), (18)

or, formally, Ck = Rk FkR
†
k. Here we regard the two-

time indices as continuum matrix indices. This rep-
resentation, which will play a crucial role in our de-
velopment of realizable Markovian closures, relates the
desired positive-semidefinite nature of Ck(t, t′) to that
of Fk(t, t′). In this work, we say that a Hermitian ma-
trix Ck(t, t′) is positive-semidefinite if

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ φ∗(t)Ck(t, t′)φ(t′) ≥ 0 ∀φ(t) ∈ F, (19)

where F is the set of all generalized functions that are
continuous almost everywhere (i.e., except possibly on a
set of measure zero).

Equation (18) is not well suited to numerical work
because the nonlinearity appears in two places: partly
in Rk and partly in Fk. Care must be taken when mak-
ing further approximations to treat all of the nonlinear
terms consistently, lest conservation laws be violated. In
addition, the initial conditions are intricately entangled
within Fk, obscuring the causal nature of the equation.
In this work the numerical computations will be per-
formed using Eqs. (6); the symmetric form, Eq. (18), will
be used only to investigate certain analytical properties.

D. DIA-based Markovian closures

The formally cubic computational scaling20 of the DIA
with the number of time steps Nt places severe re-
strictions on the time scales that can be simulated. If
a wavenumber-partitioning technique such as that de-
scribed by Leith and Kraichnan27 is employed, the pri-
mary limitation is not the lack of computer memory but
the lack of sufficient CPU time.20

Often, only the final saturated turbulent state is
of interest. One might therefore consider solving the
steady-state DIA equations,40 which scale like N2

t rather
than N3

t ; this requires solving a highly nonlinear set
of equations by an iterative scheme. Alternatively,
one could exploit the turbulent decay of the response
functions.41,42 However, in practice the O(N3

t ) initial
scaling of this scheme may be prohibitive. Even the op-
timistic scaling of O(N2

t ) quickly becomes restrictive; we
will therefore consider such possibilities no further.

There also exist ways of Markovianizing the DIA so
that all time-history effects are carried by an auxiliary
parameter, reducing the computational scaling to O(Nt).
To help illuminate the possibilities for Markovianization,
consider the alternate form, Eq. (8a), of the equal-time
DIA covariance equation, expressed in terms of the aux-
iliary parameter Θ̄kpq(t). Markovianization amounts to
developing an approximation for Θ̄kpq(t) that can be
computed knowing only the most recent values of Ck

and Θ̄kpq. No matter how crude the approximation is,
the argument in Sec. II B ensures that all of the quadrat-
ically nonlinear invariants will be conserved.

For example, a Markovian closure is obtained upon
substitution of the following forms for Σk and Fk into
Eqs. (6):

Σk(t, t̄) = η̂k(t) δ(t− t̄), (20a)

Fk(t, t̄) = Fk(t) δ(t− t̄). (20b)

One must then provide expressions for η̂k(t) and Fk(t)
based either on physical insight or on comparison to a
more sophisticated closure such as the DIA. Since the
DIA is realizable and arises naturally as the lowest-order
truncation of the MSR formalism, it appears to be an
appropriate starting point for the development of Marko-
vian closures.

Another reason for considering Markovian closures re-
lates to the statistical property of the exact dynamics
known as random Galilean invariance (RGI).15 The fail-
ure of the DIA to observe this property is responsible for
its incorrect modeling of the inertial-range energy spec-
trum. Kraichnan pointed out that it is the two-time cor-
relation functions that spuriously carry the interactions
between large and small scales into the equal-time DIA
equations. Since Markovian closures involve equal-time
correlation functions, it is not surprising that the ad-
ditional freedom gained by leaving the intricacies of the
two-time behavior unspecified permits modifications that
restore RGI. An example of such a heuristically modified
Markovian closure is the test-field model.21,22

III. THEORY OF MARKOVIAN CLOSURES

One way of developing Markovian closures is to dis-
card the detailed time-history information in the tempo-
ral convolutions of the DIA in favor of a triad interaction
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time θ(t). This auxiliary parameter is closely related to
the quantity Θ̄(t) introduced in the alternate form for
the DIA in Sec. II B.43

In the next subsection we will identify various Marko-
vian closures that have been used in the literature and
discuss their nomenclature. We will then focus on a par-
ticular Markovian closure that is derivable from the DIA.
We emphasize serious difficulties in its application to sys-
tems involving wave phenomena. In investigating this
difficulty we will be led to propose a new but related
closure that does not share this deficiency.

A. Overview of Markovian closures

Historically, the first references to Markovian clo-
sures appear in the works of Kraichnan,21 Leith,26 and
Orszag.25 Kraichnan’s interest in Markovian closures was
connected with his (unsuccessful) search for alterations to
the generalized Langevin model underlying the DIA that
would provide a model representation for his Lagrangian-
history DIA.44

Leith26 presents a related Markovian closure that
is credited to Orszag. This eddy-damped quasi-
normal Markovian closure is discussed extensively by
Orszag.25,45 According to Leith, the EDQNM is obtained
by making the “best Markovian fit” to the DIA that is
consistent with an underlying Langevin representation.
He uses the term “EDQNM” to refer to an entire fam-
ily of closures that depends on the choice of an eddy-

damping parameter µk, which “we still have freedom
to adjust. . . to match the phenomenology of the inertial
ranges.” In three dimensions, the scaling of the turbu-
lent contribution to µk is often estimated as ǫ1/3k2/3. A
more general form that involves a spectral weighting of
the energy is25

µk = νk +

[∫ k

0

k2 dkE(k)

]1/2

. (21)

Lesieur46 acknowledges that “the choice of µk is more
difficult in non isotropic situations, for instance for prob-
lems where waves (Rossby waves, inertial or gravity
waves) interact with turbulence. . . and this is still an open
question.”

Eddy damping was introduced by Orszag1 as a remedy
for the unphysical behavior of the quasinormal approx-
imation, which neglects fourth-order cumulants in the
evolution equation for the triplet correlation function:

(
∂

∂t
+ 2νk

)
Ck(t) =

∫ t

0

dt̄ exp (−(νk + νp + νq)(t− t̄))

×
∑

k+p+q=0

[
M2

kpqCp(t̄)Cq(t̄) + 2MkpqMpqkCq(t̄)Ck(t̄)
]
,

(22)

for real νk and Mkpq. Orszag traced the nonrealizabil-
ity of the quasinormal closure (demonstrated numeri-
cally by Ogura47) to the appearance of only linear vis-
cous effects in the memory-cutoff integral in Eq. (22).
Noting that the discarded fourth-order cumulants could
no longer provide a damping mechanism to bound the
third-order cumulants, he advocated replacing the vis-
cous damping νk by a total (linear plus turbulent) eddy
viscosity µk. Unfortunately, the resulting closure, which
Leith26 calls the “eddy-damped quasinormal approxima-
tion,” is still not realizable.25 However, by making the
Markovian assumption48 that the rate at which the mem-
ory integral decays is much faster than the time scale
on which the covariances evolve, Orszag arrived at the
eddy-damped quasinormal Markovian closure, in which
the covariances on the right-hand side are now evaluated
at the current time t:
(
∂

∂t
+ 2νk

)
Ck(t) =

∫ t

0

dt̄ exp (−(µk + µp + µq)(t− t̄))

×
∑

k+p+q=0

[
M2

kpqCp(t)Cq(t) + 2MkpqMpqkCq(t)Ck(t)
]
.

(23)

For real µk, an underlying Langevin equation26 estab-
lishes the realizability of this closure.

Unfortunately, the terminology in the literature is con-
fusing. In addition to suggesting the phenomenological
form (21) for µk, Orszag1 proposed a more fundamen-
tal treatment based on the DIA. This is how µk is ob-
tained in Kraichnan’s Markovian closure. We will refer
to this choice as the “DIA-based EDQNM,” or simply
the EDQNM.49

The DIA-based EDQNM does not solve the problem
of random Galilean invariance. The “phenomenological
EDQNM” obtained by using Eq. (21) for µk is invari-
ant to random Galilean transformations25 and has con-
sequently been used extensively in the fluid-dynamics lit-
erature. Nevertheless, the use of a scaling relation like
Eq. (21) has the disadvantage of permitting an unknown
coefficient (omitted here) multiplying the spectral inte-
gral. This adjustable parameter detracts from the pre-
dictive power of the phenomenological EDQNM. Further-
more, RGI can be achieved (somewhat) more systemat-
ically with the test-field model, which is closely related
to the DIA-based EDQNM. Numerical comparison of the
phenomenological EDQNM and the TFM has shown that
the former “may be regarded as a rational approxima-
tion to, and simplification of the TFM, except at small
wavenumbers, where an additional eddy-dissipative term
is needed to produce satisfactory results. . . .”50 It is pre-
cisely these kinds of difficulties we are trying to avoid by
using a more systematically derived closure.

In plasma physics, the term EDQNM is often used
as here, to describe a Markovian closure obtained from
the DIA. One of the reasons for this is that it is not
clear how to include nonlinear wave effects in the phe-
nomenological EDQNM since the eddy viscosity defined
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by Eq. (21) is inherently real. Proper renormalization of
linear wave effects has also been an issue in geophysical
applications.46,51 In fluid turbulence, the term EDQNM
usually refers to the phenomenological closure, which has
the advantage of predicting the correct Kolmogorov in-
ertial range.

The confusion seems to center on whether the modifier
“eddy-damped” refers to the general mechanism of non-
linear scrambling or to the specific case of decorrelation
on the eddy-turnover time scale. We have adopted the
terminology that seems appropriate based on an exami-
nation of the earliest references to the EDQNM.26,25 It
appears that the original motivation in these works was
to fix the gross violations of the quasinormal closure by
introducing some sort of eddy damping, phenomenolog-
ical or otherwise, while Markovianizing to ensure realiz-
ability. Especially in plasma transport problems where
RGI does not seem to be significant, it thus seems un-
reasonable to restrict the use of the term “EDQNM” to
only the phenomenological member of this family.

B. DIA-based one-field EDQNM closure

Let us now focus our attention on the DIA-based eddy-
damped quasinormal Markovian closure. In this subsec-
tion we present a systematic derivation of this closure
from the DIA. The material represents an amalgama-
tion of the works of Orszag1,25 and Kraichnan21 writ-
ten in the general notation of our fundamental equa-
tion (1). We allow for a linear frequency and complex
mode coupling, but unlike the related work of Holloway
and Hendershott32 we renormalize the frequency as well
as the growth rate. A related complex version of the DIA-
based EDQNM was previously presented by Koniges and
Leith,52 but no mention was made of its serious deficien-
cies, which we will soon encounter.53

1. Derivation of the EDQNM from the DIA

We begin by writing the DIA equation for the equal-
time correlation function, using Eqs. (6a) and (7):
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(
∂

∂t
+ 2 Re νk

)
Ck(t) − 2 Re

∫ t

0

dt̄
∑

k+p+q=0

MkpqM
∗
pqkR

∗
p(t, t̄)C∗q (t, t̄)Ck(t̄, t)

= Re

∫ t

0

dt̄
∑

k+p+q=0

|Mkpq|2C∗p (t, t̄)C∗q (t, t̄)R∗k(t, t̄). (24)

Let us attempt to replace the Rk equation,

(
∂

∂t
+ νk

)
Rk(t, t′) −

∫ t

t′
dt̄

∑

k+p+q=0

MkpqM
∗
pqkR

∗
p(t, t̄)C∗q (t, t̄)Rk(t̄, t′) = δ(t− t′), (25)
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with a Markovian form such as

∂

∂t
Rk(t, t′) + µk(t, t′)Rk(t, t′) = δ(t− t′). (26)

Such a form is actually equivalent to Eq. (25) for54

µk(t, t′) =

{
− ∂

∂t
lnRk(t, t′) for Rk(t, t′) 6= 0;

0 otherwise.
(27)

Thus there always exists a µk that reduces Eq. (25) to
Eq. (26); therefore, there is no inherent loss of generality
in considering Markovian forms like Eq. (26). Of course,
in practice one does not know µk(t, t′) or Rk(t, t′) and
one must be content with an approximation.

a. Fluctuation–dissipation ansatz. The equal-time
covariance equation (24) contains unknown two-time cor-
relation functions. Is it possible to use information in
the two-time response function (which is essential to any
theory of turbulence) to approximate the two-time corre-
lation function? Perhaps the answer is affirmative, for in
thermal equilibrium there exists an exact relation, known
as the Fluctuation–Dissipation Theorem,55–57 between
these two statistical quantities:

Ck(t, t′) = Rk(t, t′)Ck(∞) (t > t′). (28)

[The case t < t′ is obtained by using the Hermiticity
relationship Ck(t′, t) = C∗k (t, t′).]

In thermal equilibrium, statistical quantities are sta-
tionary, so Ck(t, t′) = Ck(t− t′). Hence Ck(t) = Ck(0) =
Ck(t′) and Eq. (28) is equivalent to either

Ck(t, t′) = Rk(t, t′)Ck(t) (t > t′) (29)

or

Ck(t, t′) = Rk(t, t′)Ck(t′) (t > t′). (30)

Let us adopt the former relationship even out of ther-
mal equilibrium. Although not exact, this assumption is
not entirely unreasonable, as one often finds empirically
that the qualitative two-time behavior of Ck and Rk are
similar (e.g., see Figs. 17 and 18). The primary reason
for choosing Eq. (29) over Eq. (30) is that in the absence

of wave phenomena Eq. (29) always leads to a realizable
closure, while Eq. (30) does not.25 We will return to this
issue later.

The FD ansatz, as we shall call Eq. (29), results in a
remarkable simplification of Eq. (24). It is convenient to
express the result in terms of the triad interaction time

θkpq(t)
.
=

∫ t

0

dt̄ Rk(t, t̄)Rp(t, t̄)Rq(t, t̄). (31)

Then one obtains(
∂

∂t
+ 2 Re νk

)
Ck(t)

− 2 Re
∑

k+p+q=0

MkpqM
∗
pqkθ

∗
kpq(t)Cq(t)Ck(t)

= Re
∑

k+p+q=0

|Mkpq|2θ∗kpq(t)Cp(t)Cq(t). (32)

It is instructive to compare this covariance equation to
the alternate form (8a) of the equal-time DIA.

Physically, the new quantity θkpq represents the ef-
fective time for which the modes k, p, and q are ac-
tive. Equation (31) predicts that at time t the interac-
tion should cease if any of these three modes, excited by
disturbances in the interval [0, t), have decayed.

Note that Eq. (32) can be written in the compact form

(
∂

∂t
+ 2 Re νk

)
Ck(t) + 2 Re η̂k(t)Ck(t) = 2Fk(t) (33)

by defining a nonlinear damping rate,

η̂k(t)
.
= −

∑

k+p+q=0

MkpqM
∗
pqkθ

∗
kpq(t)Cq(t), (34)

and a nonlinear noise term,

Fk(t)
.
= 1

2 Re
∑

k+p+q=0

|Mkpq|2θ∗kpq(t)Cp(t)Cq(t). (35)

b. Markovianization of the mass operator. To com-
pute the interaction time, one needs an approximate
equation for the response function. First, note that
Eq. (33) can be quickly recovered from the original DIA
covariance equation (6a) upon invoking the Markovian
approximations (20). Suppose we apply Eq. (20a) to the
DIA equation for Rk, Eq. (6b). Then we obtain

∂

∂t
Rk(t, t′) + ηk(t)Rk(t, t′) = δ(t− t′), (36)

in terms of the total linear and nonlinear damp-
ing ηk(t)

.
= νk + η̂k(t). Equation (36) is a special case of

Eq. (26) with µk(t, t′) = ηk(t).
Finally, let us determine a differential equation for θkpq

using Eq. (36). To avoid the difficulty of a δ function
appearing in a one-sided integral, evaluate Eq. (31) as58

θkpq(t) =

∫ t−

0

dt̄ Rk(t, t̄)Rp(t, t̄)Rq(t, t̄). (37)

Upon differentiating this form, one obtains the equation

∂

∂t
θkpq + (ηk + ηp + ηq)θkpq = 1, (38)

with the initial condition θkpq(0) = 0.
In summary, the entire Markovianization proceeds as

follows. We apply the FD ansatz (29) to the equal-time
DIA covariance equation and note that the resulting form
is equivalent to assuming Eqs. (20). We then use one
of these, Eq. (20a), to also Markovianize the response-
function equation. We are left with the following closed
system known as the EDQNM:

∂

∂t
Ck(t) + 2 Re ηk(t)Ck(t) = 2Fk(t), (39a)

9



ηk(t)
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkθ

∗
kpq(t)Cq(t), (39b)

Fk(t)
.
= 1

2 Re
∑

k+p+q=0

|Mkpq|2θ∗kpq(t)Cp(t)Cq(t), (39c)

∂

∂t
θkpq + (ηk + ηp + ηq)θkpq = 1, θkpq(0) = 0.

(39d)

As desired, the computational scaling of this system
is O(Nt), a vast improvement over the O(N3

t ) scaling
of the DIA.

2. Properties of the EDQNM

a. Short-time behavior. For small t, θkpq ∼ t. This
scaling is consistent with weak-turbulence perturbation
theory. No effect of nonlinear scrambling enters θkpq

initially because the phase decorrelations that lead to
loss of memory have not yet developed: the nonlinear
interactions are allowed to act for the full time t over
which the system has evolved.

b. Steady state. In a steady-state, the effects of non-
linear scrambling lead to the limiting form

θkpq(∞) =
1

ηk + ηp + ηq

. (40)

Only the real part of Eq. (40),

Re θkpq(∞) =
Re(ηk + ηp + ηq)

[Re(ηk + ηp + ηq)]2 + [Im(ηk + ηp + ηq)]2

(41)

explicitly enters the steady-state energy balance. From
the exact solution

θkpq(t) =

∫ t

0

dt′ exp

(
−
∫ t

t′
dt̄ [ηk(t̄) + ηp(t̄) + ηq(t̄)]

)
,

(42)

it is clear that a steady state will be achieved only if

lim
t→∞

Re(ηk + ηp + ηq) > 0. (43)

Therefore, if a steady state exists, Re θkpq(∞) will be
positive.

c. Energy conservation. The EDQNM conserves the
generalized energy defined by Eq. (4). This is implied
by the relation Re

∑
k σk[Fk − η̂kCk] = 0, which is a

result of Eqs. (2) and (3). Alternatively, the defini-
tion Θ̄kpq = θkpqCp(t)Cq(t) may be used to write the
EDQNM equations in the form of Eqs. (8). The argu-
ment in Sec. II B can then be applied to prove that any
quadratic invariant of the fundamental equation is con-
served by the nonlinear terms of the EDQNM.

3. Realizability and the EDQNM

a. Wave-free dynamics. In the absence of wave
phenomena or complex mode-coupling coefficients, the
EDQNM closure is the exact statistical solution of the
Langevin equation26

(
∂

∂t
+ νk

)
ψk(t) + η̂k(t)ψk(t) = fk(t). (44)

Here νk is real; Eqs. (39b), (39d), and (36) then imply
that η̂k, θkpq, and Rk are also real. The driving term fk

is a white-noise random process with autocorrelation
function

〈
fk(t) f∗k (t′)

〉 .
= 2Fk δ(t− t′). Lemma 1 in Ap-

pendix B establishes that this is possible if and only if the
realizability condition Fk(t) ≥ 0 holds. From Eq. (39c)
it is clear that this is equivalent to θkpq ≥ 0. The real-
izability condition is obeyed here because Eq. (42) is the
integral of a real, non-negative function. This result is re-
assuring since the interpretation of θkpq as an interaction
time makes sense only if θkpq is real and non-negative.

The response function Rk of ψk clearly obeys
Eq. (36). Moreover, upon using the relation ψk(t) =∫ t

0
dt̄ Rk(t, t̄) fk(t̄), one obtains from Eq. (44) the evo-

lution equation Eq. (39a) for the quadratic quantity
Ck(t)

.
=
〈
ψk(t)ψ∗k(t)

〉
. The EDQNM closure thus ex-

actly predicts the energy evolution of the system de-
scribed by Eq. (44) in the absence of wave phenomena
or complex mode-coupling coefficients. This implies that
the EDQNM is realizable for wave-free dynamics such as
the incompressible Navier–Stokes turbulence for which
it was originally proposed.26,25 In the next subsection
we will discover that wave effects can lead to a viola-
tion of the above realizability condition. The numeri-
cal consequence of this may entail violently unstable be-
havior, which can result in energies that approach ±∞
(cf. Fig. 1)!

b. Wave dynamics. Now let us consider the general
case, where either linear waves are present, the mode
coupling is complex, or both. Denote η

.
= ηk + ηp + ηq

.
=

ρ+ ia for real ρ and a.
For simplicity, first consider the case where η is con-

stant in time. If η = 0, the solution θkpq = t to Eq. (39d)
obviously satisfies the realizability condition. For η 6= 0,

θkpq(t) =
1 − e−(ρ+ia)t

ρ+ ia
. (45)

Wave effects cause θkpq to be no longer real. The neces-
sary and sufficient condition for the existence of Eq. (44)
is still that the real function Fk(t) be non-negative, or
equivalently,

Re θkpq(t) ≥ 0. (46)

Since only Re θkpq enters the energy equation, it seems
natural that only the real part of θkpq should be thought
of as the interaction time, which the realizability con-
straint dictates must remain non-negative.

10



FIG. 1. Nonrealizable behavior that can arise in the appli-
cation of the EDQNM closure to drift-wave turbulence. One
observes that near t = 490 the sample mode energies Ek di-
verge to ±∞.

When a = 0, Eq. (46) satisfies the realizability condi-
tion for both positive and negative values of ρ. However,
when a 6= 0,

Re θkpq(t) =
1

ρ2 + a2

[
ρ− ρe−ρt cos(at) + ae−ρt sin(at)

]
.

(47)

It is easy to find values of ρ, a, and t that violate
the realizability condition. For example, in the spe-
cial case ρ = 0 one obtains the oscillatory solution
Re θkpq(t) = sin(at)/a.

c. Example of the nonrealizability of the EDQNM.
The previous discussion is pedagogical and is inadequate
as an actual demonstration of the nonrealizability of the
EDQNM closure. Realizability requires only that there
exist some underlying amplitude equation; it does not
actually demand a Langevin representation. We now
present a degenerate system of three interacting waves
for which the corresponding EDQNM closure cannot be
written as the exact statistical solution to any underlying
amplitude equation:

(
∂

∂t
+ 1

2 iω − 1
2γ

)
ψk(t) = Mψ∗pψ∗q , (48a)

(
∂

∂t
+ 1

2 iω − 1
2γ

)
ψp(t) = −Mψ∗q ψ∗k , (48b)

∂

∂t
ψq(t) = 0. (48c)

For this system, the EDQNM closure is:

∂Ck

∂t
− γCk + 2M2 Re θ CqCk = 2M2 Re θ CpCq, (49a)

∂Cp

∂t
− γCp + 2M2 Re θ CqCp = 2M2 Re θ CkCq, (49b)

∂Cq

∂t
= 0, (49c)

∂θ

∂t
+ ηθ = 1, (49d)

η = −γ + iω + 2M2θ∗Cq. (49e)

Set Cq(0) = 1, so that Cq(t) = 1 for all t. One can
solve this system by noting that

∂

∂t
(Ck + Cp) = γ(Ck + Cp), (50)

so that E(t)
.
= 1

2 [Ck(t) + Cp(t)] = E0e
γt, with E0

.
=

1
2 [Ck(0) + Cp(0)] > 0. The covariance equation for
mode k is then found to be

∂Ck

∂t
− γCk + 4M2 Re θ Ck = 4M2E0e

γt Re θ, (51)

which has the solution

Ck = eγt

(
E0 +K exp (−4M2

∫
dtRe θ)

)
, (52)

where K is a constant. To find θ we specialize to the case
where ω = γ and take ǫ

.
= M2|θ|/γ ≪ 1, so that η =

γ[−1 + i+ O(ǫ)]. Upon letting ν = (−1 + i)γ, we obtain

∫
dt θ =

∫
dt

(
1 − e−νt

ν

)
+ O(ǫ)

= −
(

1 + i

2γ

)
t+

i

2γ2
e(1−i)γt + O(ǫ), (53)

so that

Re

∫
dt θ =

1

2γ

[
−t+ γ−1eγt sinγt

]
+ O(ǫ). (54)

We substitute this into Eq. (52) to obtain

Ck(t) = eγt{E0 + [Ck(0) − E0]

× exp (2M2[γ−1(t− γ−1eγt sin γt) + O(ǫ)])}, (55)

where we have evaluated K = Ck(0) − E0.
For the EDQNM to be realizable, this solution must be

non-negative. However, this is not always so. Consider
the case where Ck(0) = 0 and evaluate

11
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FIG. 2. Demonstration of the nonrealizability of the
EDQNM for wave phenomena. The exact, DIA, and RMC
solutions nearly coincide.

Ck(π/γ) = E0e
π{1 − exp (2M2[π + O(ǫ)])}

< 0 (ǫ≪ 1). (56)

We verify this conclusion in Fig. 2, where we illustrate
both the nonrealizable EDQNM closure prediction and
the (by definition, realizable) exact ensemble-averaged
solution for the parameters γ = 0.02, M = 0.003,
and E0 = 1. We emphasize that the difficulty is related
to the negative interaction time depicted in Fig. 3. In
contrast, the DIA solution is realizable and accurately
tracks the exact dynamics.59

This failure represents a serious deficiency of the
EDQNM that to our knowledge has not been previously
reported in the literature, although some researchers60,61

have been aware of the possibility that θkpq can become
negative. Therefore, let us carefully assess the origin of
this difficulty.

d. Origin of nonrealizability in the EDQNM. We now
show that the nonrealizability of the EDQNM closure
arises from the application of the FD ansatz to the (re-
alizable) DIA equations. Recall the formal representa-

tion Ck = Rk FkR
†
k [Eq. (18)] for the two-time DIA co-

variance equation. By Lemma 1, a second-order closure
is realizable if and only if Ck is a positive-semidefinite
matrix in the sense of Eq. (19). The latter condition
guarantees that at each time t one can construct an un-
derlying stochastic amplitude ψk(t), from which an entire
moment hierarchy can then be generated.

From Eq. (7b), we note that Fk is positive-semidefinite
if Cp and Cq are since

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ φ∗(t)Fk(t, t′)φ(t′) = 1

2

∑

k+p+q=0

|Mkpq|2

0 50 100 150
-1000

-500

0

500

FIG. 3. Illustration of the negative interaction time under-
lying the nonrealizability encountered in Fig. 2.

×
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ φ∗(t)C∗p (t, t′)C∗q (t, t′)φ(t′) (57)

is nonnegative, according to Theorem 1 of Appendix B.
One concludes that Eq. (18) preserves the positive-
semidefinite nature of the covariances.

The energy evolution equation in the form of Eq. (18)
is thus consistent with the realizability of the DIA. How-
ever, the EDQNM applies the FD ansatz (29) to Eq. (7b),
yielding

Fk(t, t̄) = 1
2

∑

k+p+q=0

|Mkpq|2
[
R∗p(t, t̄)C∗p (t)R∗q (t, t̄)C∗q (t)

+Rp(t̄, t)Cp(t̄)Rq(t̄, t)Cq(t̄)
]
. (58)

All of the two-time information can then be absorbed
into a single quantity θkpq. However, realizability has
been lost, as this expression for Fk is no longer always
positive-semidefinite (cf. Appendix C).

Of the two assumptions, Eqs. (29) and (20a), that were
used to transform the DIA into the EDQNM, only the
former is responsible for the loss of realizability. Al-
though Markovianization of the Rk equation does alter
the value of Rk appearing (symmetrically) in Eq. (18),
the non-negative character of the energy spectrum is pre-
served by that Markovianization.

e. Steady-state ansatz. We noted previously that if a
steady state exists, Re θkpq(∞) > 0. This implies, at the
very least, that the steady-state Fk will be positive. If
one is interested in only the steady-state physics, in prin-
ciple one can simply solve the EDQNM equations in a
steady state. However, there may be computational and
theoretical difficulties associated with extracting the cor-
rect root of the resulting nonlinear coupled system.62,41
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Normally, the practice is to evolve the energy equa-
tion coupled to the steady-state “quasistationary” form,
Eq. (40), of θkpq.32,31 The acausal nature of this formu-
lation is physically disturbing. Even worse, there is no
guarantee that at each time step exactly one of the roots
of the coupled system will correspond to a non-negative
Re η. Hence, neither realizability nor uniqueness of the
solution is guaranteed by this approach.

C. Restoring realizability to the EDQNM

A preliminary attempt63,20 at constructing a generally
realizable EDQNM, while highly constrained, was unfor-
tunately rather ad hoc; furthermore, it could not be ex-
tended to handle multiple fields properly. We proposed
to replace Eq. (39d) with an equation that possesses a
solution satisfying the criteria

1. θkpq ∼ t for small t.

2. limt→∞ θkpq = 1/(ηk + ηp + ηq).

3. Re θkpq ≥ 0 ∀t ≥ 0.

4. θkpq must reduce to Eq. (39d) for real η.

In other words, we sought a modification of the transient

dynamics that would yield a realizable evolution to the
steady state consistent with criterion 2. The EDQNM
is actually realizable for any θkpq satisfying criterion 3.
The other criteria ensure that the resulting approxima-
tion corresponds as closely as possible to a DIA-based
Markovian closure. Criterion 1, which follows from both
the DIA and perturbation theory, implies that the ini-
tial condition θkpq(0) = 0 must be respected. Initially,
criterion 4 was imposed to restrict our attention only to
closures that are generalizations of the EDQNM for appli-
cations involving wave phenomena. In Sec. III D we will
drop this restriction, although at first criterion 4 seemed
reasonable since the difficulties experienced with realiz-
ability are not present in the absence of waves.

For the scalar case, a realizable but somewhat arbitrary
modification to the EDQNM equations was eventually
found. A technique described by Kraichnan22 was then
used to extend these one-field equations to the multiple-
field case. Unfortunately, the resulting multiple-field gen-
eralization of our closure was seriously flawed: it did not
conserve all of the quadratic invariants of the primitive
equations. Given the close connection between the num-
ber and type of inviscid invariants and the resulting cas-
cade phenomena in the inertial range, it seems essential
that any admissible approximation should respect these
properties.64

We were eventually led to abandon this preliminary
attempt at restoring realizability to the EDQNM. Never-
theless, reconsideration of the problem turned out to be

quite fruitful.

D. Realizable Markovian closure (RMC)

In the derivation of the EDQNM, realizability is first
violated at the point where the FD ansatz, Eq. (29), is
introduced. Since the FD ansatz is an approximation
anyway, perhaps we should be seeking another way of
relating Ck and Rk that will Markovianize the DIA co-
variance equation and fix the realizability problem in a
single step. In the next section we will discover that such
a relation indeed exists.

1. Modified fluctuation–dissipation ansatz

The FD ansatz used to develop the EDQNM,

Ck(t, t′) = Rk(t, t′)Ck(t) + Ck(t′)R∗k(t′, t), (59)

differs from the appropriate result for the transient two-
time covariance computed from a Langevin equation:

Ck(t, t′) = Rk(t, t′)Ck(t′) + Ck(t)R∗k(t′, t). (60)

The latter result is also in agreement with perturbation
theory.7,65,66 Of course, in a steady state these two equa-
tions agree. The question before us is: in general, which
of these two relations is appropriate for constructing the
transient evolution of a Markovian closure? It turns out
that neither of the above forms guarantees realizability
since the covariance is not evaluated symmetrically in the
time indices. The example given in Appendix C can be
used to demonstrate this for both forms.67

Realizability is guaranteed if Ck(t, t′) is a positive-
semidefinite Hermitian matrix in its time indices. We
are therefore motivated to look at the following “com-
promise” between Eqs. (59) and (60):

Ck(t, t′) = C
1/2
k (t) rk(t, t′)C

1/2
k

∗(t′), (61)

where

rk(t, t′)
.
= Rk(t, t′) +R∗k(t′, t). (62)

Here Rk is determined from Eq. (36) and C
1/2
k is the

principal branch68 of the square root of Ck. It is inter-
esting to note that the form of Eq. (61) has previously
appeared in the literature,21 although to our knowledge
only in the context of steady-state turbulence, in which
it cannot be distinguished from Eqs. (59) or (60).

The conditions under which this two-time Ck, or equiv-
alently rk, is positive-semidefinite are given by the follow-
ing theorem, proved in Appendix B.

Theorem 2: The Hermitian function r defined by

r(t, t′)
.
=

{
exp (−

∫ t

t′ η(t̄) dt̄) for t ≥ t′,

exp (−
∫ t′

t
η∗(t̄) dt̄) for t < t′,

(63)

13



with η(t) ∈ F, is positive-semidefinite if and only if
Re η(t) ≥ 0 almost everywhere in t.

Provided that Re ηp(t) ≥ 0 and Re ηq(t) ≥ 0, Theo-
rem 2 may be used to show that the noise term

Fk(t, t̄) = 1
2

∑

k+p+q=0

|Mkpq|2

×C1/2
p

∗(t) r∗p(t, t̄)C1/2
p (t̄)C1/2

q
∗(t) r∗q (t, t̄)C1/2

q (t̄) (64)

is positive-semidefinite, upon making use either of Theo-
rem 1 or the condition Re ηp(t) + Re ηq(t) ≥ 0, which
guarantees that r(t, t′)

.
= rp(t, t′)rq(t, t′) is positive-

semidefinite.
If the initial condition is non-negative, it then follows

that Ck(t) is real and non-negative:

Ck(t, t) =

∫
dt̄ d¯̄t Rk(t, t̄)Fk(t̄, ¯̄t)R∗k(t, ¯̄t) ≥ 0. (65)

This leads to the following modification of the
EDQNM, which we call the realizable Markovian closure
(RMC):

∂

∂t
Ck(t) + 2 Re ηk(t)Ck(t) = 2Fk(t), (66a)

ηk
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkΘ∗

pqk C
1/2
q C

−1/2
k

, (66b)

Fk
.
= 1

2 Re
∑

k+p+q=0

|Mkpq|2ΘkpqC
1/2
p C1/2

q , (66c)

∂

∂t
Θkpq + [ηk + P(ηp) + P(ηq)]Θkpq = C1/2

p C1/2
q ,

(66d)

Θkpq(0) = 0, (66e)

where P(η)
.
= Re ηH(Re η) + i Im η and H is the Heav-

iside unit step function. The P operator forces the real
part of the effective η entering Eq. (66d) to be non-
negative. As desired, this modification has no effect in
a steady state since Re η must already be non-negative
in order for the Rk equation to reach a steady state.
Upon comparing Eq. (66c) to Eq. (39c), one sees that the
effective triad interaction time θeffkpq entering the noise

equation is θeffkpq(t)
.
= Θkpq(t)C

−1/2
p (t)C

−1/2
q (t). Note

that θeffkpq(∞) equals the interaction time θkpq(∞) de-

fined in Eq. (40).
The physical content of Eq. (61) may be expressed

as follows. For t ≥ t′, the FD equilibrium rela-
tion Ck(t, t′)/Ck(∞) = Rk(t, t′) should be restated out
of equilibrium as a balance between the correlation co-
efficient Ck(t, t′)/[Ck(t)Ck(t′)]1/2 and the response func-
tion Rk(t, t′). This means that the time for which tempo-
rally displaced finite amplitudes are correlated with each

FIG. 4. Evolution of the quantities Θkpq and Θpqk for the
RMC solution to the degenerate three-wave case of Fig. 2.

other is equal to the time scale on which the response to
infinitesimal perturbations decays. It is intuitively rea-
sonable that the time scales for amplitude decorrelation
and decay of infinitesimal disturbances should be equal
since these processes both occur by interaction with the
turbulent background.

Theorem 2 establishes that Re ηk(t) ≥ 0 is a nec-
essary and sufficient condition for Ck(t, t′) in Eq. (61)
to be positive-semidefinite. This restriction on ηk also
has a physical basis. In the case of constant ηk the
Markovianized response function is just Rk(t, t′) =
exp (−ηk(t− t′))H(t − t′). For a turbulent system, the
condition Re ηk ≥ 0 expresses the expectation that
as t− t′ → ∞ the response function should decay to zero,
so that memory of initial perturbations is lost. In light of
Eq. (61), this implies that Ck(t, t′) → 0 as |t− t′| → ∞.
In other words, the condition Re ηk ≥ 0 is physically
necessary to ensure that amplitudes evaluated at well-
separated times are decorrelated from one another.

To elucidate the realizability of the RMC, let us return
to the degenerate three-wave system depicted in Fig. 2,
for which we proved that the EDQNM closure is not re-
alizable. The energy Ck predicted by the RMC remains
non-negative and is in excellent agreement with the exact
and DIA solutions.

Since the quantity Θkpq is symmetric only in its last
two indices (unlike θkpq, which is completely symmet-
ric in all three indices), we obtain for the degenerate
three-wave case two generalized interaction times, Θkpq

and Θpqk. These quantities are graphed in Fig. 4.
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2. Properties of the RMC

We now describe some of the properties of the RMC.
a. Short-time behavior. For small t, Eq. (66d) implies

that Θkpq ∼ t C
1/2
p (0)C

1/2
q (0). Thus for nonzero initial

conditions on the energies, the effective triad interaction
time θeffkpq has the correct initial scaling: θeffkpq ∼ t.

b. Steady state. Provided that limt→∞ Re ηk > 0,
limt→∞ Re ηp > 0, and limt→∞ Re ηq > 0, the effective
triad interaction time achieves the desired steady-state
value θeffkpq(∞) = (ηk + ηp + ηq)−1.

c. Langevin representation. The RMC has the un-
derlying Langevin representation

∂

∂t
ψk(t) + ηk(t)ψk(t) = fk(t), (67)

which is constructed as follows.
Since the P operator ensures that the effective Re ηp(t)

and Re ηq(t) entering Eq. (64) are both non-negative,
the two-time noise function Fk is positive-semidefinite.
According to Lemma 1 in Appendix B, a source func-
tion fk(t) can then be constructed from the factoriza-
tion Fk(t, t′) =

〈
fk(t)f∗k (t′)

〉
.

Unlike the corresponding quantities for the EDQNM,
the functions fk are not δ correlated. This gives the RMC
more credibility than the EDQNM, especially in applica-
tions to oscillatory phenomena for which the time scales
may be crucial. It is intuitively plausible that much of
the difficulty we have experienced in developing a realiz-
able EDQNM may reside in a subtle connection between
the white-noise approximation and the presence of wave
phenomena.

The equal-time moment of Eq. (67) is

∂

∂t
Ck(t) + 2 Re ηk(t)Ck(t) = 2 Re

〈
fk(t)ψ∗k(t)

〉
, (68)

from which one deduces, in agreement with Eq. (66a),

∂

∂t
Ck(t) + 2 Re ηk(t)Ck(t) = 2 Re

∫ t

0

dt̄Fk(t, t̄)R∗k(t, t̄)

= Re
∑

k+p+q=0

|Mkpq|2Θkpq(t)C1/2
p (t)C1/2

q (t). (69)

To further illuminate the physics contained in our mod-
ified FD ansatz, let us differentiate Eq. (61) with respect
to t for the case t > t′. One finds

∂

∂t
Ck(t, t′) =

∂

∂t

[
C

1/2
k (t)Rk(t, t′)C1/2

k (t′)
]

= −η̆k(t)Ck(t, t′), (70)

where

η̆k(t)
.
= ηk(t) − 1

2

∂

∂t
lnCk(t) (71)

represents the total effective damping rate. Still restrict-
ing our attention to the case t > t′, let us now compare

Eq. (70) to the equation for Ck(t, t′) obtained by taking
the appropriate moment of Eq. (67):

[
∂

∂t
+ ηk(t)

]
Ck(t, t′) =

∫ t′

0

dt̄Fk(t, t̄)R∗k(t′, t̄). (72)

It then becomes clear that η̆k includes the effects of both
damping (nonlinear and linear) in the term ηk(t) and
nonlinear noise in the term 1

2∂ lnCk/∂t.
One can obtain corresponding definitions of η̆k for

the closures obtained by applying the FD relations (59)
and (60). These are, respectively,

η̆k EDQNM
.
= ηk(t) − ∂

∂t
lnCk(t), (73)

η̆k Langevin
.
= ηk(t). (74)

Although Eq. (73) contains a term modeling nonlinear
noise that is similar to the one in Eq. (71), the form
of Eq. (73) is inconsistent with the two-time covariance
equation deduced from the wave-free EDQNM Langevin
equation, which is (for t > t′):

∂

∂t
Ck(t, t′) + ηk(t)Ck(t, t′) =

∫ t′

0

dt̄ δ(t− t̄)R∗k(t′, t̄)

= 0. (75)

Thus, the assumption that fk is δ correlated implies
that the time-displaced covariance equation has no source
term at all! Although an underlying Langevin represen-
tation exists for the wave-free EDQNM, the statistics it
predicts are in conflict with the FD ansatz, Eq. (59). It
is clear that substantial physics has been sacrificed in the
EDQNM. On the other hand, Eq. (74) is consistent with
Eq. (75) but is incomplete since it omits the important
effect of nonlinear noise. In contrast, Eq. (71) indicates
that the two-time statistics predicted by the modified FD
ansatz are consistent with an underlying Langevin equa-
tion. Moreover, one sees from Eq. (72) that the temporal
convolution structure of the DIA noise term is preserved
by the RMC.

d. Energy conservation. In the absence of dissipa-
tion, the RMC conserves the generalized energy defined
by Eq. (4), as implied by the relation Re

∑
k σk

[
Fk −

η̂kCk

]
= 0. Alternatively, by defining Θ̄kpq =

ΘkpqC
1/2
p (t)C

1/2
q (t), one may write the RMC equations

in the form of Eqs. (8). The argument in Sec. II B can
then be applied to prove that any quadratic invariant of
the fundamental equation is conserved by the nonlinear
terms of the RMC.

3. Comparison of the RMC with the EDQNM

As in the case of the EDQNM, the derivation of the
RMC involves only two approximations: the modified

15



FD ansatz (61) and the Markovian assumption (20a) sys-
tematically transform the DIA equations into the RMC
equations. Note that in a stationary state the EDQNM
[Eqs. (39)] and the RMC [Eqs. (66)] are identical.

We will see in the next subsection that the RMC read-
ily generalizes to multiple-field problems, conserving all
of the quadratic invariants of the primitive dynamical
equations. In contrast, our multiple-field generalization
of the EDQNM, inspired by Kraichnan’s work on the in-
homogeneous test-field model, can only be constructed
to conserve a single invariant. We point out that no gen-
eral multiple-field formulation of the EDQNM has been
reported in the literature.69,70

The RMC is not merely a generalization of the
EDQNM since even in the wave-free case the transient
dynamics predicted by these closures differ. It should
be clear from the nonrealizability of the EDQNM, the
obstacles encountered in the multiple-field formulation,
and the physically limiting assumption of δ-correlated
Langevin noise statistics that the EDQNM approach is
not well-founded. By dropping criterion 4 of Sec. III C we
have been led to a closure that is more closely connected
to the DIA. We have already shown that criteria 1 and 2
of Sec. III C are satisfied by the RMC, along with the
appropriate realizability criterion, Eq. (65), which now
replaces criterion 3.

E. Multiple-field RMC

The structure of the multiple-field RMC we are about
to develop will be closely tied to the DIA so that it will
lead to the desired conservation properties. We first need
to develop a multiple-field generalization of our modified
FD ansatz.

1. Modified fluctuation–dissipation ansatz

Upon recalling the multiple-field notation of Sec. II B,
let us construct the equal-time covariance matrix Ck(t)

from the components Cαα′

(t, t). We need to define the

analog of the square-root factors C
1/2
k that appear in

the one-field formulation. Temporarily adopting any
fixed but arbitrary coordinate system, we diagonalize
the Hermitian part Ch

k

.
= 1

2 (Ck + Ck
†) of Ck to ob-

tain Ĉh
k. (In the end, we will show that the Ck pre-

dicted by the RMC is in fact Hermitian, so that tak-
ing the Hermitian part of Ck here will have no effect.)
That is, there exists a matrix with components Uα

µ such

that Ch αα′ .
= Uα

µĈh µµUα′

µ
∗. We then define

Sαα′ .
= Uα

µ(Ĉh µµ)1/2 Uα′

µ
∗, (76)

where for each value of µ, (Ĉh µµ)1/2 is the principal

square root68 of the real eigenvalue Ĉh µµ. We also define

other components from the relations Ch αα′

= Sα
µS

µα′

,
Sαµ(S−1) µα′ = δα

α′ , and Sα
µ(S−1) µ

α′ = δα
α′ .

To obtain the multiple-field RMC equations, we re-
place the covariances appearing in the noise term of the
equal-time DIA with

Cαα′

(t, t′) = Sα
µ(t) R̄µ

µ′(t, t′)Sα′µ′∗(t′)

+Sα′

µ
∗(t′) R̄µ

µ′

∗(t′, t)Sαµ′

(t). (77)

The elements R̄α
α′ obey R̄α

α′(−∞, t′) = 0 and

∂

∂t
R̄α

α′(t, t′) + η̄α
µ(t) R̄µ

α′(t, t′) = δ(t− t′)δα
α′ , (78)

where the transformation η̄α
α′

.
= (S−1) α

µη
µ

µ′Sµ′

α′ en-
sures that in a steady state our FD ansatz reduces to the
classical FD Theorem,56

Cαα′

(t, t′) = Rα
µ(t, t′)Cµα′

(∞) + Cαµ(∞)Rα′

µ
∗(t′, t).

(79)

Realizability is guaranteed if Ck(t, t′) is a positive-
semidefinite Hermitian matrix in both its species and time
indices:
∫
dt dt′ φ∗α(t)Cαα′

(t, t′)φα′(t′) ≥ 0 ∀φ(t) ∈ F, (80)

where F is the set of all generalized vector functions with
components that are continuous almost everywhere. This
holds if and only if

2 Re

∫
dt dt′ φ∗α(t)Sα

µ(t) R̄µ
µ′(t, t′)Sα′µ′∗(t′)φα′ (t′)

= 2 Re

∫
dt dt′ Φ∗

α(t) R̄α
α′(t, t′)Φα′

(t′)

≥ 0 ∀φ(t) ∈ F, (81)

where Φµ
.
= φαS

α
µ
∗ and Φµ .

= φαS
αµ∗. Since the left-

hand side of Eq. (81) is a scalar, this condition cannot
depend on the choice of coordinate system. In a coor-
dinate frame where the components Sα

α′ and Sαα′

have
identical values, Eq. (81) is equivalent to the statement

that the matrix R̄ + R̄
†

is positive-semidefinite, since

(Φ†R̄Φ)∗ = (Φ†R̄Φ)† = Φ†R̄
†
Φ. Theorem 4 in Ap-

pendix B may then be used to establish that Eq. (81) is
satisfied whenever the following criterion is met:

Re

∫
dt dt′ Φ∗

α(t) η̄α
α′(t, t′)Φα′

(t′) ≥ 0 ∀Φ(t) ∈ F.

(82)

Subject to this condition, the application of Lemma 1
to an augmented stochastic space that incorporates
species indices along with time indices then allows one

to factorize Cββ̄(t, t̄) =
〈
ψβ(t)ψβ̄∗(t̄)

〉
. In terms of the

notation of Theorem 1, one may thus write Eq. (17b) as
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Fαᾱ(t, t̄) =
∑

∆

Mα
βγM

ᾱ
β̄γ̄
∗
∫
dP
∫
dQ

×ψβ
P
∗(t)ψβ̄

P (t̄)ψγ
Q
∗(t)ψγ̄

Q(t̄)

=

∫
dP
∫
dQAα

PQ
∗(t)Aᾱ

PQ(t̄), (83)

where Aα
PQ(t) = Mα

βγ
∗ψβ

P(t)ψγ
Q(t). Hence Fk is

positive-semidefinite in both its species and time indices.
Now let Ck(t)

.
= Ck(t, t) evolve according to

Cαα′

(t) =

∫
dt̄ d¯̄t Rα

µ(t, t̄)Fµµ′

(t̄, ¯̄t)Rα′

µ′

∗(t, ¯̄t). (84)

If the initial condition Ck(0) is Hermitian and positive-
semidefinite, it then follows that Ck(t) is Hermitian and

positive-semidefinite. The eigenvalues of Ck = Ch
k are

therefore non-negative and Sαα′

= Sα′α∗.
In a steady state, Sα

µR̄
µ

µ′ = Rα
µS

µ
µ′ . Equation (77)

then becomes

Cαα′

(t, t′) = Rα
µ(t, t′)Sµ

µ′(∞)Sµ′α′

(∞)

+Rα′

µ
∗(t′, t)Sµ

µ′

∗(∞)Sµ′α∗(∞)

= Rα
µ(t, t′)Cµα′

(∞) + Cαµ(∞)Rα′

µ
∗(t′, t), (85)

in agreement with Eq. (79).
We thus arrive at the multiple-field RMC equations,

written here in a covariant representation:

∂

∂t
Cαα′

+ ηα
δC

δα′

+ ηα′

δ
∗Cαδ = Fαα′

+ Fα′α∗, (86a)

Cαα′

= Sα
δS

δα′

, (86b)

ηα
δC

δα′ .
= να

δC
δα′

−
∑

∆

Mα
βγM

β̄
γ̄ᾱ

∗Sγ
γ′

∗ Sα′

β′

∗Θβγ′β′

β̄
γ̄ᾱ∗, (86c)

Fαα′ .
= 1

2

∑

∆

Mα
βγM

ᾱ
β̄γ̄
∗Sβ

β′

∗ Sγ
γ′

∗Θα′β′γ′

ᾱ
β̄γ̄∗,

(86d)

∂

∂t
Θα′β′γ′

ᾱ
β̄γ̄ +

[
ηα′

µδ
β′

ǫδ
γ′

λ + δα′

µP(η̄p)β′

ǫδ
γ′

λ

+δα′

µδ
β′

ǫP(η̄q)γ′

λ

]
Θµǫλ

ᾱ
β̄γ̄ = δα′

ᾱS
β′β̄Sγ′γ̄ , (86e)

Θα′β′γ′

ᾱ
β̄γ̄(0) = 0, η̄α

α′

.
= (S−1) α

µη
µ

µ′Sµ′

α′ . (86f)

Here P(H) for any Hermitian tensor H is defined in the
diagonal frame of H to be the tensor composed of the
diagonal elements Reλi H(Re λi), where λi are the eigen-
values of H . For any tensor η̄ with components η̄α

α′ ,
we then define P(η̄)

.
= 1

2P(η̄ + η̄†) + 1
2 (η̄ − η̄†), where

the components of the tensor η̄† are given by η̄†α
α′

.
=

(S−1) α′µ
∗ηµ

µ′
∗Sµ′α∗. The P operator ensures that the

effective η̄ entering Eq. (86e) satisfies Eq. (82).
The introduction of the P operator has no effect in a

steady state, provided that the thermal-equilibrium FD
relation is actually realizable in the steady state. Sup-
pose that Eq. (79) holds exactly and that it predicts a
positive-semidefinite two-time covariance. Upon multi-
plying Eq. (79) by (S−1) ᾱ

α(∞)(S−1) α′µ̄(∞), one con-

cludes that η̄−1
k + η̄−1

k
† = η̄−1

k (η̄†
k + η̄k)η̄−1

k
† must satisfy

Eq. (82). Thus, in a steady state P(η̄k) = η̄k if and only
if the two-time covariance predicted by the FD relation
is positive-semidefinite.71

We emphasize that the final RMC equations are in-
variant under arbitrary linear transformations. The con-
struction above holds equally well in all frames of ref-
erence; Eqs. (86) may therefore be conveniently evalu-
ated in a coordinate system where the components Sα

α′

and Sαα′

have identical values.

2. Properties

a. Short-time behavior. For small t, Θα′β′γ′

ᾱ
β̄γ̄ ∼

t δα′

ᾱ S
β′β̄(0)Sγ′γ̄(0). Given nonzero initial conditions

on the energies, the effective triad interaction matrix in
the noise equation is then θeff ∼ t1. This result agrees
with the short-time behavior of the matrix generalization

∂

∂t
θ + η θ = 1 (87)

of Eq. (39d).
b. Steady state. If η̄p(∞) and η̄q(∞) exist and sat-

isfy Eq. (82), the effective triad interaction matrix ap-
proaches the solution θeff(∞) = η−1. We therefore ob-
tain the same steady-state solution as predicted by the
unmodified matrix equation, Eq. (87). This is consistent
with the observation that in a steady state the modified
FD ansatz Eq. (77) reduces to Eq. (79).

c. Langevin representation. The multiple-field RMC
equations have the corresponding underlying Langevin
representation

∂

∂t
ψα(t) + ηα

µ(t)ψµ(t) = fα(t). (88)

The force term fα is determined from the factoriza-

tion Fαα′

(t, t′) =
〈
fα(t)fα′∗(t′)

〉
upon using Lemma 1

in an augmented stochastic space.
d. Conservation of quadratic invariants. Since the

structure of the multiple-field DIA coupling has not been
altered in the development of the multiple-field RMC,
one finds that all quadratic invariants of the fundamen-
tal equation are conserved by the nonlinear terms of the
RMC. Thus, by defining Θ̄αβγ

ᾱ
β̄γ̄ .

= Sβ
ǫS

γ
λΘαǫλ

ᾱ
β̄γ̄ ,

one may write Eqs. (86) in the form of Eqs. (A1). The
proof of energy conservation in Appendix A can then be
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applied to establish that any quadratic invariant in the
form of Eq. (13) is conserved by the nonlinear terms of
the RMC.

F. Summary

In this section we have demonstrated an important and
previously unrecognized result: in the presence of linear
wave dynamics, the DIA-based EDQNM is not necessar-
ily realizable since the triad interaction time can become
negative. The expression for the triad interaction time
in this closure is derived from the DIA and not from a
phenomenological model. This allows us to renormalize
the frequency as well as the damping rate.

To investigate drift-wave turbulence with statistical
methods, we require a closure that is both Markovian
and realizable, as was explained in Secs. I and II. In
this section we have developed such a tool, the realiz-
able Markovian closure, which unlike the EDQNM always
meets these criteria. Like the EDQNM, the RMC has an
underlying Langevin representation; however, the under-
lying Langevin noise term of the RMC is not assumed to
be δ correlated. This is an important feature of the RMC
that lends it more credibility than the EDQNM even in
the absence of wave effects. In Appendix D, we will nu-
merically demonstrate another significant difference: un-
like the EDQNM, but like the DIA, the RMC does not
predict a monotonic increase in entropy. That is, the
RMC exhibits no Boltzmann-type H theorem; this is a
consequence of its close connection to the DIA. The final
accomplishment of this section was the demonstration
that the RMC has a natural multiple-field generalization
that is covariant to arbitrary linear transformations.

IV. APPLICATION TO THREE INTERACTING
WAVES

Let us consider a slight generalization36,37 of the sys-
tem of three interacting waves originally studied by
Kraichnan35 in an early test of the DIA. We explicitly in-
dicate the real and imaginary parts of the linearity, which
model growth and oscillatory phenomena, respectively:

(
∂

∂t
− γk + iωk

)
ψk = Mkψ

∗
pψ

∗
q , (89a)

(
∂

∂t
− γp + iωp

)
ψp = Mpψ

∗
q ψ

∗
k , (89b)

(
∂

∂t
− γq + iωq

)
ψq = Mqψ

∗
kψ

∗
p . (89c)

It is instructive to study this problem as a precursor to
the more difficult computation of turbulence involving

many interacting modes. Indeed, except for the sever-
ity of the truncation embodied in the above system, this
model can be tailored to represent most of the other dis-
tinctive features of turbulence. For example, it provides
for the mechanisms of both linear drive and nonlinear
coupling. If the mode-coupling coefficients are chosen to
satisfy Eq. (3) simultaneously for σk = 1 and σk = k2,
then the corresponding invariants, energy and enstro-
phy, will be conserved. Furthermore, the system can
exhibit true stochastic behavior for particular choices of
the parameters.72 The three-wave model thus presents
us with a paradigm for the study of more realistic two-
dimensional turbulence problems.73

We shall begin with the case in which the mode-
coupling coefficients are all real.74 In the absence of dissi-
pation, it is well known that Eqs. (89) are derivable from
a conserved Hamiltonian and that there are two addi-
tional integrals of the motion; consequently, the resulting
motion is regular, or nonstochastic. We will first consider
Eqs. (89) in the absence of any linear terms to make con-
tact with Kraichnan’s results. We are able to reproduce
Kraichnan’s figures completely and thereby partially val-
idate our numerical code.

Next, we will include the effects of finite real frequen-
cies. This problem is amenable to treatment with the
action-angle formalism (cf. Meiss75,76). In the case where
the frequencies satisfy the resonance condition ∆ω

.
=

ωk+ωp+ωq = 0, the transformation ψk → exp(−iωkt)ψk

reduces Eqs. (89) to the first case in which frequencies are
absent. However, the nonresonant case, in which the fre-
quency mismatch ∆ω is nonzero, cannot be reduced to
the zero-frequency case.77 In the nonresonant case, the
Hamiltonian plays a nontrivial role, modifying the ex-
pected statistical equilibrium. The Hamiltonian is cubic
in the fundamental variable and is conserved by both the
exact dynamics and the DIA but not by the EDQNM or
RMC. Consequently, the DIA leads to the expected final
energies, but the Markovian closures do not. However, we
speculate that the discrepancy encountered in such situ-
ations will diminish as the number of interacting modes
is increased.

After examining Eqs. (89) in the absence of growth
phenomena, we will proceed to the case of finite growth
rates. We present analytical expressions for the steady-
state solution (when it exists) to the exact dynamics and
also to the closure equations. We compare these pre-
dictions to our numerical findings and obtain excellent
agreement.

Finally, we consider the case of both complex mode-
coupling coefficients and complex linearity, which is the
one studied by Terry and Horton,36 Krommes,37 and
Koniges and Leith.52 Here we note significant differences
between the closure predictions and the ensemble results,
which we again attribute to the low dimensionality of the
system.
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A. Real mode coupling and zero growth

Suppose that the mode-coupling coefficients are real
and satisfy Eq. (3) for both σk = 1 and σk = k2. If in
addition the growth rates vanish, one finds that the total
energy E

.
= Ek+Ep+Eq and enstrophy U

.
= Uk+Up+Uq

are conserved, where

Ek
.
= 1

2

〈
|ψk|2

〉
= 1

2Ck, Uk
.
= 1

2k
2
〈
|ψk|2

〉
= 1

2k
2Ck.

(90)

We assume that k2, p2, and q2 are not all equal, so that
the invariants E and U are linearly independent.

There is also a third invariant, which we shall denote

by H̃ . This corresponds to the Hamiltonian for a de-
scription of the dynamics in which ψk and −iψ∗k /Mk are
regarded as canonical variables:78,75,36

H̃
.
= −2 Im(ψkψpψq) −

ωk

Mk
|ψk|2 −

ωp

Mp
|ψp|2 −

ωq

Mq
|ψq|2.

(91)

The invariance of H̃ for dissipationless systems is proved
in Appendix E.

In general, the interest in the case of zero dissipa-
tion stems from the existence of analytical solutions for
the statistics of dissipationless systems that are mixing.1

These analytical solutions are given in Appendix D along
with proofs that they satisfy the closure equations. In
this section, we illustrate statistical equilibria for the
three-wave problem. However, in the absence of dissi-
pation Eqs. (89) are known to be integrable;79,80 thus,
this system is never mixing. We therefore expect dis-
crepancies between the equipartition solutions and the
exact dynamics. Consequently, we also anticipate dis-
agreement between the predictions of the closures and
the exact dynamics. The following study underscores
the differences between several of the closures we have
discussed and also represents a preliminary test of our
numerical implementation.

1. Resonant case

In the resonant case we may (without loss of general-
ity) restrict our attention to the case where the linear fre-
quencies in Eqs. (89) are all zero. The ensemble-averaged

Hamiltonian H
.
=
〈
H̃
〉

then vanishes identically for ini-

tially Gaussian statistics. This means that H does not
enter the statistical equilibrium Gibbs distribution func-
tion. Equations (89) then have only two nontrivial inde-
pendent constants of the motion, E and U .

In Appendix D we recall that these two invariants and
the assumption that the dynamics is mixing lead to the
following forms for the steady-state spectra:81

Ek = 1
2

(
1

α+ βk2

)
, Uk = 1

2

(
k2

α+ βk2

)
. (92)

For example, consider the case where

k2 = 3, p2 = 9, q2 = 6, (93)

Mk = 1, Mp = 1, Mq = −2. (94)

For the initial conditions

Ck(0) = 3/2, Cp(0) = 0, Cq(0) = 3/2, (95)

one determines

α =
4 ± 2

√
7

3
, β = −2 ± 4

√
7

27
. (96)

The only admissible solution is given by

Ck = 1.9114, Cp = 0.4114, Cq = 0.6771. (97)

In terms of the evolution of second-order statistics, this
case is equivalent to the one studied by Kraichnan in
Fig. 3 of Ref. 35. In Fig. 5 we reproduce Kraichnan’s com-
parison of the evolution predicted by the DIA [Eqs. (6)
and (7)] with the exact behavior obtained by averag-

ing the evolution of |ψ(t)|2 over a Gaussianly distributed
ensemble.59 The DIA predicts final energies close to the
expected statistical equilibrium values; upon extending
the time integration further, the equal-time covariances
converge to those given in Eq. (97). However, there is
a substantial discrepancy between the exact steady state
and the statistical equilibrium since this three-wave sys-
tem is not mixing.

Figure 5 also illustrates the predictions of the DIA-
based EDQNM closure [Eqs. (39)], the quasistation-
ary EDQNM closure [Eqs. (39 a–c) and (40)], and the
RMC [Eqs. (66)]. Although the steady-state values ob-
tained with the EDQNM are in complete agreement with
Eq. (97), this closure predicts a much faster relaxation to
the steady state than either the DIA or the exact solu-
tion. In other words, the EDQNM poorly represents the
transient behavior, as one might expect from the nature
of its construction.

For a system of three waves, the quasistationary clo-
sure can be implemented either by directly solving the
quadratic θ–η system or by using a two-pass scheme in
which the initial value82 of θ is determined iteratively.
Note that the transient modeling of the quasistationary
EDQNM is much worse than that of the other approxi-
mations; in particular, the predicted short-time behavior
is totally wrong. This is a consequence of the acausal
nature of this closure (cf. Sec. III B 3).

The RMC solution approaches the steady state less
rapidly than the EDQNM closure but more rapidly than
the DIA. In fact, it appears that the rate of approach
is about the same as that for the exact solution. The
final RMC values obtained in Fig. 5 agree to four decimal
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FIG. 5. Comparison of the exact, DIA, EDQNM, quasista-
tionary EDQNM, and RMC solutions for the evolution of Cq

in Kraichnan’s three-wave problem.

places with the expected statistical equilibrium given in
Eq. (97).

Kraichnan35 also considered the degenerate case in
which the mode q does not evolve,

Mk = −1, Mp = 1, Mq = 0. (98)

He chose the initial covariances

Ck(0) = 2, Cp(0) = 0, Cq(0) = 1. (99)

The resulting coupled linear system is a special case of
the one considered earlier in Sec. III B 3. Calculations
similar to the one given there may be used to obtain
analytical expressions for the closure solutions. In ad-
dition, the exact solution may be obtained by averaging
the analytical solution of the fundamental equation over
the joint Gaussian distribution of the initial conditions.

The results can be expressed in the form

Ck(t) = 1 +G(2t), (100a)

Cp(t) = 1 −G(2t), (100b)

Cq(t) = 1, (100c)

where the appropriate values of G(t) for various approx-
imations are given by

perturbation: G(t) = 1 − 1
2 t

2, (101a)

quasinormal: G(t) = cos t, (101b)

quasistationary EDQNM: G(t) = e−
√

2t, (101c)

EDQNM: G(t) = cosh−2

(
t√
2

)
, (101d)

DIA: G(t) = J1(2t)/t, (101e)

exact: G(t) =

∫ ∞

0

cos(t
√
s)e−sds. (101f)

With the exception of the two EDQNM results, these an-
alytic solutions were previously reported by Kraichnan.35

An EDQNM result was given incorrectly by Koniges
and Leith in Ref. 52.83 Note that with the exception of
the quasistationary EDQNM, all of these results agree
through O(t2): G(t) ≈ 1 − t2/2.

Graphs of the perturbation and quasinormal approxi-
mations may be found in Ref. 35. The divergence of the
perturbation solution as t→ ∞ is clearly evident. For the
quasinormal approximation, Kraichnan pointed out that
negative energies never arise in the presence of only three
waves because the zero-fourth-cumulant assumption is
satisfied exactly; indeed, the inequality |G(t)| ≤ 1 for the
above quasinormal solution supports this observation.84

However, the oscillatory nature ofG(t) is at odds with the
exact dynamics, for which G(t) decays to zero as t→ ∞.

The full EDQNM result given above is obtained
upon substituting the solution θ = tanh(

√
2 t)/

√
2 into

Eq. (52) for the case where M2 = 1 and γ = 0. The qua-
sistationary result is obtained by substituting the limit-
ing value θ(∞) = 1/

√
2 into Eq. (52). Note that since

the initial conditions forceG(0) = 1, the time-asymptotic
form of G(t) for the full EDQNM disagrees with that of
the quasistationary formulation by a factor of 4. For this
reason, the temporal behavior of a quasistationary clo-
sure should not be trusted.

We have not succeeded in deriving an analytical for-
mula for the RMC prediction. The RMC equations for
this problem are

∂

∂t
Ck + 2ηkCk = 2ΘkC

1/2
p , (102a)

∂

∂t
Θk + (ηk + ηp)Θk = C1/2

p , (102b)

∂

∂t
Θp + (ηk + ηp)Θp = C

1/2
k , (102c)

where ηk = ΘpC
−1/2
k , ηp = ΘkC

−1/2
p , and Cp = 2 − Ck.

In this case ηk and ηp are equal to the effective interac-
tion times. The above system may be written more con-
veniently in terms of only Ck and the interaction times.
One finds85

∂Ck

∂t
+ 2ηkCk = 2ηp(2 − Ck), (102d)
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FIG. 6. Comparison of the exact, DIA, EDQNM, RMC,
and quasistationary EDQNM covariance Cp for the degener-
ate case, Eq. (98).

(
1 − ∂ηk

∂t

)
Ck = 2ηkηp, (102e)

(
1 − ∂ηp

∂t

)
(2 − Ck) = 2ηkηp, (102f)

subject to the initial conditions Ck(0) = 2, ηk(0) = 0,
and ηp(0) = 0.

We used a Runga-Kutta method with a step size of
0.0005 to integrate the above system of three equa-
tions numerically from t = 0 to t = 1. We thereby
obtained Cp(1) = 0.98, in agreement with the value
of 0.9823 obtained from the code DIA

86,87,20 with a time
step of 0.05. This provides us with a consistency check
that the RMC has been properly implemented. Note
that relative to the EDQNM and the quasistationary
EDQNM, the RMC and the DIA both yield superior
agreement with the exact solution.

2. Nonresonant case

To test the realizable Markovian closure developed in
Sec. III, we need to examine a problem with nonzero
frequencies. In this case the Hamiltonian H of the three-
wave problem no longer vanishes, which significantly
modifies the expected statistical equilibrium. However,
this third invariant is not conserved by the Markovian
closures. The predictions of the RMC therefore differ
substantially from the true solution; this closure yields
instead the expected steady-state values for a system

characterized by only the invariants of energy and en-
strophy. This failure is characteristic of any closure that
conserves only quadratic invariants.

Before proceeding, let us note that the transforma-
tion ψk → exp (i(∆ω/3 − ωk)t)ψk reduces Eqs. (89) (in
the case of zero growth) to the form

(
∂

∂t
+ i

∆ω

3

)
ψk = Mkψ

∗
pψ

∗
q , (103a)

(
∂

∂t
+ i

∆ω

3

)
ψp = Mpψ

∗
q ψ

∗
k , (103b)

(
∂

∂t
+ i

∆ω

3

)
ψq = Mqψ

∗
kψ

∗
p , (103c)

in which all three frequencies are equal.
As in the resonant case, the existence of three con-

stants of the motion implies that the system is integrable;
one may in principle solve for the time evolution in each
realization.36 However, the quadrature involves the non-
trivial task of inverting an elliptic integral. Moreover,
we wish to know the mean evolution; the result of the
quadrature must therefore be averaged over a Gaussian
ensemble. In general, this appears to be an analytically
intractable problem.

In principle, one might attempt to follow the statis-
tical arguments of Appendix D, which assume that the
system is mixing. The cubic form of the Hamiltonian,
however, complicates the procedure. Fortunately, in the
nonresonant case it is possible to obtain an exact analyt-
ical expression that relates the final amplitudes in each
realization to the initial conditions through the values of
the three invariants. This may be accomplished without
invoking the (incorrect) assumption that the system is
mixing.

In Appendix E, we derive from Eqs. (103) a formula
for the final amplitudes in each realization:88

∆ω

2

[
H̃ +

∆ω

3

(
|ψk|2
Mk

+
|ψp|2
Mp

+
|ψq|2
Mq

)]

= Mk|ψp|2|ψq|2 +Mp|ψq|2|ψk|2 +Mq|ψk|2|ψp|2. (104)

Together with the energy and enstrophy conservation re-
lations

2Ẽ = |ψk|2 + |ψp|2 + |ψq|2, (105a)

2Ũ = k2|ψk|2 + p2|ψp|2 + q2|ψq|2, (105b)

this completes the system of equations needed to relate
the final amplitudes to the values of the invariants. An
interesting geometrical interpretation of Eq. (104) due to
Johnston88 is discussed in Ref. 20.

Unfortunately, the closure problem is encountered if
one attempts to take moments of Eq. (104) since ψp

21



and ψq are (in general) statistically independent only

at t = 0. We note that the value of H
.
=
〈
H̃
〉

may

be readily determined from the initial conditions:

H(0) = −∆ω

3

[
Ck(0)

Mk
+
Cp(0)

Mp
+
Cq(0)

Mq

]
, (106)

since 〈Im(ψkψpψq)〉 vanishes for the initial Gaussian en-
semble. However, the relation between H and the final
energies involves an unknown triplet correlation function.

One may still attempt to solve Eqs. (104) and (105)
in each realization. Let us consider the case where ωk =
ωp = ωq = 1 and use the mode-coupling coefficients given
in Eq. (94), along with the asymmetric initial condition

|ψk|2(0) = 3/2, |ψp|2(0) = 0, |ψq|2(0) = 3/2. (107)

The three constants of the motion evaluate to

Ẽ = 3/2, Ũ = 27/4, H̃ = −3/4, (108)

which we may then substitute into Eqs. (104) and (105)
to determine the final amplitudes. The only admissible
solution is given by

|ψk|2 = 1.75, |ψp|2 = 0.25, |ψq|2 = 1. (109)

Since the motion is integrable, one does not expect ex-
ponential sensitivity to the initial conditions. Therefore,
it is plausible that upon averaging over an ensemble of
initial conditions one should obtain covariances in the
vicinity of these values.

Let us compare these approximate findings to the ex-
act and DIA results shown in Fig. 7, which differ from
the case studied in Fig. 5 by the inclusion of the linear
frequencies ωk = ωp = ωq = 1. For the exact solution we
obtain the steady-state values

Ck = 1.69, Cp = 0.21, Cq = 1.10, (110)

whereas for the DIA we obtain

Ck = 1.72, Cp = 0.22, Cq = 1.10. (111)

These results are in excellent agreement with each other
and are reasonably close to the values calculated for a
single realization above, thus confirming that this sys-
tem does not exhibit exponential sensitivity to the initial
conditions.

As mentioned earlier, the RMC closure predicts the
wrong stationary state since it respects only two of the
three invariants. It is interesting to note that the RMC,
which is structurally more similar to the DIA than to the
EDQNM, exhibits an oscillation with the same period as
the first half-oscillation of the exact solution and only
gradually relaxes to the incorrect equilibrium. It appears
that this closure initially attempts to track the DIA solu-
tion, but due to its Markovian nature it must ultimately
relax to the appropriate EDQNM steady state. In an

FIG. 7. Exact, DIA, and RMC evolution of the covariances
of three waves with the mode coupling of Eq. (94) and the
frequencies ωk = ωp = ωq = 1.

extended run of the RMC, we found that the final ener-
gies predicted by this Markovian closure are identical to
those of the resonant case. Incidentally, the steady-state
Markovian solution is also a stationary solution of the
DIA equations, corresponding to the choiceH = 0. How-
ever, since H 6= 0 in the nonresonant case, this solution
is not continuously connected to the initial conditions.

We speculate that the discrepancy between the pre-
dictions of the RMC and the exact solution for the non-
resonant case will be less significant for nonintegrable
systems with many interacting modes. In Part II of this
work we will describe our studies of multimode turbu-
lence designed to test this conjecture.

B. Real mode-coupling and finite growth

When growth rates are included in the three-wave

problem, the quantities Ẽ, Ũ , and H̃ are no longer con-
served. However, one can still obtain (cf. Appendix F)
exact solutions for the steady-state energies, if these ex-
ist, and a closed expression for the ensemble-averaged
solution:88

Ck =
γpγq

MpMq

[
1 +

(
∆ω

∆γ

)2
]
. (112)

A nontrivial steady state is possible only if γk/Mk,
γp/Mp, and γq/Mq all have the same sign. Even if this
criterion is satisfied, the existence of a nontrivial steady-
state solution depends on other factors such as the initial
conditions. We now illustrate a case where a nontrivial
steady state is achieved for both a single realization and
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FIG. 8. Exact, DIA, and RMC evolution of the covariances
for the case considered in Fig. 7 but with the assignments
γk = −1, γp = −3, γq = 1.

for an ensemble of realizations initialized in the neigh-
borhood of the values in Eq. (95).

Let us add the growth rates

γk = −1, γp = −3, γk = 1 (113)

to the nonresonant case of Fig. 7 and Eq. (94). Equa-
tion (112) predicts the exact final energies

Ck = 3, Cp = 1, Cq = 6. (114)

Indeed, from Fig. 8 one sees that this agrees with the
results obtained for the ensemble. The DIA achieves es-
sentially the same values at t = 10:89

Ck = 3.00, Cp = 1.01, Cq = 5.99. (115)

However, we note that the transient behavior of the exact
solution is poorly modeled by the DIA. This may be due
to the mistreatment of phase coherence by the DIA.

The transient behavior predicted by the RMC in Fig. 8
is similar to that of the DIA. However, this Markovian
closure achieves the incorrect steady-state values

Ck = 3.66, Cp = 1.23, Cq = 7.31. (116)

We note that each of these values is about 23% higher
than the exact levels. Although this may seem like a
large error, we emphasize that these values are obtained
irrespective of the initial conditions. If one did not know
the steady-state level, one could use a Markovian closure
as a tool to evolve the system to this approximate level
and then “fine tune” the results with the DIA closure.
This can be accomplished by initializing the DIA with

FIG. 9. DIA vs. exact two-time covariances Ck(τ )/Ck(0)
vs. τ for the case considered in Fig. 8. To illustrate the FD
relation, we also graph the DIA solution for Rk.

the final values obtained from the Markovian closure and
allowing it to evolve until the transients have died away.

Even the DIA fails to represent some aspects of the
nonlinear dynamics properly. In Fig. 9, we compare the
DIA solution for the two-time covariance Ck(τ)/Ck(0)
with the very different behavior of the exact solution.
The pronounced disagreement here is probably a result of
the fact that this three-wave system is not sufficiently tur-
bulent for the principle of maximal randomness,3 upon
which the DIA is founded, to hold.

In this case of three growing waves with real mode
coupling, a simple analytical solution (cf. Appendix G)
can be given for the steady-state EDQNM (or RMC)
equations:90

Ck =
γpγq

MpMq

1

P

[
1 +

(∆ω)2

(∆γ)2

]
(117)

in terms of the dimensionless parameter P
.
=

(∆γ)2/(γ2
k+γ2

p+γ2
q ). This result differs from Eq. (112) by

the factor 1/P . For the growth rates given in Eq. (113)
the value of 1/P is 11/9 ≈ 1.22, which is consistent
with our finding that the Markovian levels are about 23%
higher than the exact ones. We recall that the derivation
of the Markovian closures involved the application of a
fluctuation–dissipation ansatz [Eq. (29) or Eq. (61)] and
a Markovianization procedure [Eq. (20a)]. It seems prob-
able that the discrepancy just demonstrated arises from
the Markovianization process itself and not from the use
of the FD ansatz since the steady-state DIA solution we
have found roughly satisfies the FD relation (see Fig. 9)
and is in agreement with Eq. (114).
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C. Complex mode-coupling and finite growth

Our ultimate interest in statistical closures derives
from the problem of nonadiabatic drift-wave turbulence
such as that described, using complex mode-coupling co-
efficients, by the Terry–Horton equation. The complex
three-mode truncation of this system was first consid-
ered by Hald78 in the absence of linear effects. As in
the case of real mode-coupling, he noted that the motion
is integrable: it exhibits “sometimes periodic, in general
ergodic, but never mixing” behavior.

Here, we include both growth and oscillatory effects
in the linearity, so that this problem constitutes the
most general case of Eq. (89). Let us illustrate the so-
lution of this system for the parameters given by Terry
and Horton.36 This problem, which is expected to ex-
hibit intrinsic stochasticity, has also been considered by
Krommes37 and Koniges and Leith.52

First, let us clear up some misprints in the litera-
ture regarding the numerical values of the drift-wave
parameters. The caption of Fig. 6 in Ref. 36 should
state that G = (−0.035, 0.2297,−0.1947) so that the
sum G1 +G2 +G3 equals zero, as required by Eq. 12 of
Ref. 36. There is also a typographical error in Ref. 52
on p. 3066. The values of the mode-coupling coeffi-
cients should read Mk = −0.1888 + i0.0588, Mp =
0.1448 − i0.1562, Mq = 0.05390 + i0.1537. Note that
the coefficient ẑ·p×q is arbitrarily set to 1 for this case.
With these corrections, the parameters of these works
are in agreement with the values given in Ref. 37. The
growth rates and frequencies are given by

γk = 0.1600, γp = −0.2500, γq = −0.0191,

ωk = 0.8349, ωp = −1.2305, ωq = 0.4989. (118)

We point out that the invariant given in Ref. 37 is incor-
rect for the case of complex mode-coupling. The correct

result is W̃
.
= 1

2

∑
k |1 + χk|2|Φk|2.

In Fig. 10 we compare the solution of the DIA to the
ensemble average.91 We see that the DIA results are
higher than the exact ones by as much as 36%. How-
ever, it is plausible that as more interacting modes are
included in the system the agreement will become better
since the weak-dependence assumption will have greater
validity.

In Fig. 11 we plot the two-time covariance for this case.
We note significant disagreement between the DIA and
the exact solutions as far as the phases are concerned,
although the amplitude levels are similar.

Figure 12 presents the RMC solution. In this case
we see that the RMC is a poorer model of the true dy-
namics than the DIA. In particular, the RMC predicts
that mode q should be the most weakly excited of the
three modes, whereas in the true dynamics it is the most
strongly excited. Nevertheless, as we have previously ar-
gued, one may use a Markovian closure to determine the
steady-state fluctuation level approximately and thereby

FIG. 10. DIA vs. exact evolution of the covariances of three
turbulent drift waves.

FIG. 11. Normalized two-time covariances Cq(τ )/Cq(0)
vs. τ evaluated at t = 120 for the turbulent drift-wave case.
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FIG. 12. RMC vs. exact evolution of the covariances of
three turbulent drift waves.

reduce the amount of computation required to obtain a
saturated DIA solution.

Finally, let us refer to Figs. 8 of Ref 52. Koniges
and Leith used the initial conditions Ck(0) = Cp(0) =
Cq(0) = 1.0. The complex version of their quasistation-
ary EDQNM adopted the unusual definition

θkpq(t) =
1

η∗k (t) + η∗p (t) + η∗q (t)
, (119)

instead of the correct quasistationary form, Eq. (40).92,93

A missing factor of one-half in the labeling of their
Fig. 8b, which describes the ensemble-averaged evolu-
tion of the quantity 1

2 〈ΦkΦ−k〉 (the covariance divided
by two), invalidates the comparison made of the closure
results to the exact solution. The correctly scaled graph
is shown in Fig 13; here, our closure solution uses the
above conjugate definition for the quasistationary θ.

The use of the correct quasistationary form of θkpq

leads to the evolution shown in Fig. 14. The only moti-
vation for the conjugate operator in Eq. (119) was that
it was believed to yield better agreement with the exact
solution;92 however, upon comparison with the correctly
scaled results, we see that this is not the case.

For comparison purposes, we illustrate the results ob-
tained with the RMC and the DIA for this case in Figs. 15
and 16. We note that only the DIA predicts even approx-
imate agreement with the exact solution.

In Appendix D we discuss the existence of equilibrium
DIA solutions that satisfy the Fluctuation–Dissipation
Theorem. One may appreciate the qualitative validity
of this relation even for nonstationary systems by exam-
ining Figs. 17 and 18, which depict the DIA behaviors
of Ck(τ)/Ck(0) and Rk(τ) at the transient time t = 15

FIG. 13. Correctly scaled results, obtained using Eq. (119),
that correspond to Fig. 8 of Ref. 52.

FIG. 14. Quasistationary EDQNM vs. exact solution ob-
tained using Eq. (40) and corresponding to the case of Fig. 13.
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FIG. 15. RMC vs. exact solution corresponding to the case
of Fig. 13.

FIG. 16. DIA vs. exact solution corresponding to the case
of Fig. 13.

FIG. 17. DIA vs. exact two-time covariances
ReCk(τ )/Ck(0) vs. τ evaluated at t = 15 for the turbulent
drift-wave case.

for the turbulent drift-wave case of Fig. 16. We also il-
lustrate the modified FD ansatz, Eq. (61).

While these results may seem to cast some doubt on
the utility of closures, we emphasize that this problem
represents a severe test of these approximations in that
only three interacting modes are retained. For example,
one does not expect the principle of maximal random-
ness to hold. Furthermore, coherent effects, which are
mistreated by statistical closures, probably play a more
important role in the three-wave problem than in multi-
mode turbulence.

D. Multiple-field formulation

A partial test of the multiple-field closures in this work
was constructed by rewriting the one-field complex sys-
tem, Eqs. (89), as a two-field system of real equations.
The numerical predictions for the two-field formulations
of the DIA and RMC agreed exactly with the one-field
formulation for all of the cases discussed in this section,
including the resonant and nonresonant cases.

E. Summary

In this section we have tested the predictions of several
statistical closures (including the DIA, the EDQNM, and
the RMC) against the exact statistical evolution of three
interacting waves. In the resonant, dissipationless case
we generally obtained good agreement; the closures all
relaxed to the expected equilibrium form. However, in
the nonresonant, dissipationless case the predictions of
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FIG. 18. DIA vs. exact two-time covariances
Im Ck(τ )/Ck(0) vs. τ evaluated at t = 15 for the turbulent
drift-wave case.

the RMC differed substantially from both the expected
equilibrium form and the exact statistics. We pointed
out that this discrepancy results from the failure of the
Markovian closures to conserve the Hamiltonian for this
problem. In contrast, the DIA, which conserves this in-
variant, relaxes to the correct equilibrium form.

When dissipation was introduced into the three-wave
problem, we generally found that the closures represented
the transient dynamics poorly. However, in a case where
each realization of the exact solution achieves a steady
state the DIA did obtain the correct final energies. In
the case of complex mode-coupling, the disagreement was
more pronounced; the closures appear to be incapable
of modeling such highly truncated dynamical systems.
The inability of closures to describe three-wave dissipa-
tive dynamics is most likely a consequence of the severity
of the truncation. Indeed, we will see in Part II of this
work that the discrepancies encountered in applications
to multimode turbulence are substantially smaller.

V. CONCLUSIONS

The construction of the realizable Markovian closure
constitutes the most important contribution of this work.
This new closure has an important property: although
the steady-state form of the RMC equations agrees
with that of the widely used eddy-damped quasinormal
Markovian closure, the temporal evolution of the RMC is
always realizable. In contrast, we have established both
analytically and numerically that in the presence of linear
wave dynamics the EDQNM equations can violate real-
izability and develop negative energies. This deficiency

is of more than just academic concern: numerically, we
have witnessed (cf. Fig. 1) that once negative energies
develop the intensities may even diverge to infinity, ter-
minating the numerical computation prematurely. Even
in the case of wave-free dynamics, we have demonstrated
on both theoretical and numerical grounds that the RMC
is superior to the EDQNM closure as an approximation
of transient behavior.

A. Summary

In this work we have stressed the importance of the
realizability constraint in the construction of a statistical
closure; this ensures the existence of an underlying prob-
ability distribution for the predicted statistics, which in
turn guarantees that an infinity of realizability inequali-
ties are satisfied.

For a typical turbulence problem, the solution of the
DIA is a formidable task. We therefore considered a sim-
pler alternative to the DIA known as the EDQNM. In
keeping with our desire for a systematically derived the-
ory of turbulence, we focused on a particular version
of the EDQNM that is derivable from the DIA. This
derivation rests on two assumptions: the application of a
fluctuation–dissipation ansatz and a Markovianization of
the evolution equation associated with the response func-
tion. However, the invalidity of the first assumption out
of thermal equilibrium can lead to nonrealizable behavior
when the EDQNM is applied to systems with waves.

To remedy this difficulty, we introduced a modified
FD ansatz that guarantees the positive-semidefiniteness
of the approximation used for the two-time covariances
in the DIA convolution integrals. Physically, the mod-
ified FD ansatz expresses a balance between the corre-
lation coefficient of the turbulent fluctuations and the
infinitesimal response function. We substituted this rela-
tion into the DIA covariance equation and Markovianized
the response-function equation as before. The resulting
approximation was named the realizable Markovian clo-
sure after its most important characteristics.

Besides being realizable, the RMC has another sig-
nificant advantage over the EDQNM: its underlying
Langevin representation does not assume δ-correlated
statistics. In addition, there exists a covariant multiple-
field generalization of the RMC equations. This is con-
structed with a general modified FD ansatz that reduces
to the appropriate equilibrium relation in a steady state.

A pedagogical study of three interacting modes af-
forded a comparison of the relative merits of the DIA,
EDQNM, and RMC approximations against the exact
statistics obtained by taking moments of many primitive
realizations. In the inviscid case, we noted that these clo-
sures all relaxed to the expected equilibrium form for the
resonant problem, but only the DIA closure predicted the
correct equilibrium result in the nonresonant case. We
identified the origin of this discrepancy: the Markovian
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closures do not conserve the Hamiltonian, which consti-
tutes a nontrivial third invariant in the nonresonant case.
This additional constraint on the dynamics modifies the
expected equilibrium state. We also examined a degen-
erate case where an exact analytical solution exists for
most of the closures under study.

Upon the inclusion of growth rates in the three-wave
problem, we developed exact expressions for the steady-
state energies that are valid when each realization in the
ensemble possesses a steady-state solution. In this case
we found that although the DIA grossly misrepresents
the transient evolution, it correctly predicts the energies
in the final (nonstochastic) state. On the other hand, the
EDQNM and RMC both predict final energies that differ
from the true values by a dimensionless parameter that
depends on the distribution of the growth rates among
the three modes.

Next, we included the effects of complex mode-
coupling to make contact with previous studies of the
three-wave Terry–Horton system performed by Terry and
Horton,36 Krommes,37 and Koniges and Leith.52 We
found that in this highly truncated system the closures
could not properly model the dynamics. Perhaps by
considering a related system with five or more modes,
one could determine whether these discrepancies are due
solely to the limited number of modes.

B. Final remarks

Future research efforts could profitably apply the RMC
to a variety of nonlinear physics problems involving lin-
ear wave phenomena. Part II of this work will discuss
the numerical implementation of the RMC and the DIA
for anisotropic models of drift-wave turbulence such as
the Hasegawa–Mima and Terry–Horton equations in the
presence of many interacting modes. A key advance upon
which these computations rely is the extension of the
isotropic wavenumber-partitioning scheme of Leith and
Kraichnan27 to anisotropic turbulence.87,20

Ultimately, it appears to the authors that a complete
mathematical and physical understanding of turbulence
will require the interaction of many approaches. To real-
ize the ambitious goal of understanding turbulent trans-
port, we expect that direct numerical simulation, various
analytic bounding methods,94–97 and statistical closures
will all play important roles. In particular, since closures
deal naturally with the statistical variables that describe
transport phenomena, they represent a compelling choice
as tools for the study of turbulence.
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APPENDIX A: CONSERVATION PROPERTIES
OF THE MULTIPLE-FIELD DIA

We show here that the multiple-field DIA conserves
the generalized energy defined by Eqs. (13) and (3) in
the absence of dissipation. The equal-time covariance
equation of the multiple-field DIA, Eq. (16a), may be
written

∂

∂t
Cαα′

(t) +Nαα′

(t) +Nα′α∗(t) = Fαα′

(t) + Fα′α∗(t),

(A1a)

where

Nαα′

(t)
.
= να

α′ −
∑

∆

Mα
βγM

β̄
γ̄ᾱ

∗Θ̄βγα′

β̄
γ̄ᾱ∗, (A1b)

Fαα′

(t)
.
= 1

2

∑

∆

Mα
βγM

ᾱ
β̄γ̄
∗Θ̄α′βγ

ᾱ
β̄γ̄∗, (A1c)

Θ̄αβγ
ᾱ

β̄γ̄(t)
.
=

∫ t

0

dt̄ Rα
ᾱ(t, t̄)Cββ̄(t, t̄)Cγγ̄(t, t̄). (A1d)

Note that Eq. (11) leads to the symmetry

Θ̄αβγ
ᾱ

β̄γ̄ = Θ̄αγβ
ᾱ

γ̄β̄ . (A2)

In the dissipationless case να
α′ + να′

α
∗ = 0. One may

use the Hermiticity of σ to write

2
∂

∂t
E = σα′α

∂

∂t
Cαα′

= σα′α(Fαα′ −Nαα′

) + σαα′

∗(Fα′α∗ −Nα′α∗)

= 2 Reσαα′ (Fα′α −Nα′α). (A3)

Thus
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2
∂

∂t
E = 2 Re σαα′

∑

∆

Mα′

βγM
β̄

γ̄ᾱ
∗Θ̄βγα

β̄
γ̄ᾱ∗ + Re σαα′

∑

∆

Mα′

βγM
ᾱ

β̄γ̄
∗Θ̄αβγ

ᾱ
β̄γ̄∗

= Re σαα′

∑

∆

Mα′

βγM
β̄

γ̄ᾱ
∗Θ̄βγα

β̄
γ̄ᾱ∗ + Re σγα′

∑

∆

Mα′

βαM
β̄

ᾱγ̄
∗Θ̄βαγ

β̄
ᾱγ̄∗ (α↔ γ, ᾱ↔ γ̄)

+ Re σβα′

∑

∆

Mα′

γαM
β̄

γ̄ᾱ
∗Θ̄βγα

β̄
γ̄ᾱ∗ (α→ β → γ → α, ᾱ→ β̄ → γ̄ → ᾱ)

= Re
∑

∆

[
σαα′Mα′

βγ + σγα′Mα′

αβ + σβα′Mα′

γα

]
M β̄

γ̄ᾱ
∗Θ̄βγα

β̄
γ̄ᾱ∗

= 0. (A4)
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To obtain the last two lines, we invoked Eqs. (11), (12),
and (A2).

APPENDIX B: PROOFS OF THEOREMS

Lemma 1: Let S be a stochastic function space

with inner product ρ(a, b) =
〈
ab∗
〉

and for which the
white-noise process u(t) provides an orthonormal ba-

sis:
〈
u(t)u∗(t′)

〉
= δ(t − t′). A two-time nonstochas-

tic function C can then be factorized as C(t, t′) =〈
ψ(t)ψ∗(t′)

〉
for some stochastic function ψ if and only

if C is Hermitian and positive-semidefinite.

Proof. Since the inner product is bilinear and ρ(a, a) ≥
0, the function

〈
ψ(t)ψ∗(t′)

〉
is clearly Hermitian and

positive-semidefinite.
Conversely, suppose that a Hermitian matrix C is

positive-semidefinite. Then there exists a diagonalizing
unitary transformation U such that

C(t, t′) = U(t, t̄) Λ(t̄)δ(t̄− ¯̄t)U∗(t′, ¯̄t), (B1)

with Λ(t̄) ≥ 0 ∀t̄. Construct ψ(t) = U(t, t̄) Λ1/2(t̄)u(t̄).
Then

〈
ψ(t)ψ∗(t′)

〉

= U(t, t̄) Λ1/2(t̄)
〈
u(t̄)u∗(̄t̄)

〉
Λ1/2(̄t̄)U∗(t′, ¯̄t)

= C(t, t′). (B2)

Q.E.D.
Theorem 1: If the two-time Hermitian functions F

and G are positive-semidefinite, then so is the matrix

with elements F (t, t′)G(t, t′).
Proof. By Lemma 1, one may factorize F (t, t′) =〈
f(t)f∗(t′)

〉
and G(t, t′) =

〈
g(t)g∗(t′)

〉
in terms of the

ensemble average 〈x〉 .
=
∫
dP xP where xP are the

realization-dependent values of the stochastic variable x
and P is the probability distribution for each realization.
We assume that the integration over P converges uni-
formly.

For any function φ(t) ∈ F consider

PT
.
=

∫ T

−T

dt

∫ T

−T

dt′ φ∗(t)F (t, t′)G(t, t′)φ(t′)

=

∫
dP
∫
dQ
∫ T

−T

dt

∫ T

−T

dt′

×φ∗(t)fP(t)gQ(t) f∗P(t′)g∗Q(t′)φ(t′)

=

∫
dP
∫
dQ |APQ|2, (B3)

where APQ =
∫ T

−Tdt φ
∗(t)fP (t)gQ(t). From this last

expression one sees that PT ≥ 0 for all T ; thus,
limT→∞ PT ≥ 0. Hence the element-by-element product
of F and G is positive-semidefinite. Q.E.D.

Theorem 2: The Hermitian function r defined by

r(t, t′)
.
=

{
exp (−

∫ t

t′ η(t̄) dt̄) for t ≥ t′,

exp (−
∫ t′

t η∗(t̄) dt̄) for t < t′,
(B4)

with η(t) ∈ F, is positive-semidefinite if and only if

Re η(t) ≥ 0 almost everywhere in t.

Proof. Define u(t) =
∫ t

0 Re η(t̄) dt̄ and v(t) =∫ t

0 Im η(t̄) dt̄. Then

r(t, t′) =

{
exp (−[u(t) − u(t′)] − i[v(t) − v(t′)]) for t ≥ t′,
exp (−[u(t′) − u(t)] − i[v(t) − v(t′)]) for t < t′.

(B5)

Suppose that r(t, t′) is positive-semidefinite. Then
for φ(t) = exp (−iv(t))[xδ(t− t1) + δ(t− t0)], with fixed
but arbitrary t1 ≥ t0 and real x, the condition

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ φ∗(t) r(t, t′)φ(t′) ≥ 0 (B6)

implies that f(x)
.
= x2 + 2x exp (−[u(t1) − u(t0)]) + 1

is never negative. One deduces that f(x) can have
at most one root in x; consequently, the discriminant
4 exp (−2[u(t1) − u(t0)]) − 4 must be negative or zero.
Hence u(t1) − u(t0) ≥ 0. Since this must hold for all t0
and all t1 ≥ t0, one concludes that Re η(t) ≥ 0 almost
everywhere in t.

Conversely, suppose that Re η(t) ≥ 0 everywhere ex-
cept on a set S of measure zero. Values of t ∈ S will not
contribute to Eq. (B6). For values of t and t′ not in S,

t ≥ t′ ⇒ u(t) ≥ u(t′); (B7a)

t < t′ ⇒ u(t) ≤ u(t′). (B7b)

Thus r(t, t′) = exp (−|u(t) − u(t′)| − i[v(t) − v(t′)]).
Consider

PT
.
=

∫ T

−T

∫ T

−T

dt dt′ φ∗(t) r(t, t′)φ(t′)

=

∫ T

−T

∫ T

−T

dt dt′ Φ∗(t)e−|u(t)−u(t′)|Φ(t′), (B8)

where Φ(t)
.
= φ(t)eiv(t) ∈ F. We want to prove

that limT→∞ PT ≥ 0.
For real x, we note the identity

e−|x| =
1

π

∫ ∞

−∞

dω

1 + ω2
e−iωx, (B9)

proved by Fourier transformation. This integral con-
verges uniformly. Hence,

PT =

∫ T

−T

∫ T

−T

dt dt′ Φ∗(t)

×
[

1

π

∫ ∞

−∞

dω

1 + ω2
e−iω[u(t)−u(t′)]

]
Φ(t′)

=
1

π

∫ ∞

−∞

dω

1 + ω2

∫ T

−T

dtΦ∗(t)e−iωu(t)

∫ T

−T

dt′ Φ(t′)eiωu(t′)

=
1

π

∫ ∞

−∞

dω

1 + ω2
|AT (ω)|2, (B10)
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where AT (ω)
.
=
∫ T

−T
dtΦ(t)eiωu(t). From this last expres-

sion one sees that PT ≥ 0 ∀T ; thus, limT→∞ PT ≥ 0.
Q.E.D.

Theorem 3: Every complex square matrix A has a

polar decomposition of the form A = HU , where H =
H† is positive-semidefinite and U †U = UU † = 1.

Proof. See Ref. 98.
Theorem 4: Let η(t) be a complex square matrix

and R(t, t′) be the solution to

∂

∂t
R(t, t′) + η(t)R(t, t′) = δ(t− t′)1, (B11)

with R(−∞, t′) = 0. If ηh(t)
.
= 1

2 [η(t)+η†(t)] is positive-
semidefinite ∀t, then r defined by r(t, t′)

.
= R(t, t′) +

R†(t′, t) is positive-semidefinite.

Proof. Let P be the solution to

∂

∂t
P (t) = P (t)η(t), P (0) = 1. (B12)

Write r in terms of this integrating factor:

r(t, t′)
.
=

{
P−1(t)P (t′) for t ≥ t′,
P †(t)P−1†(t′) for t < t′.

(B13)

Theorem 3 establishes the existence of a polar decompo-
sition P = HU for some positive-semidefinite Hermitian
matrix H and unitary matrix U . One then finds

r(t, t′) = U †(t)

{
H−1(t)H(t′), for t ≥ t′

H(t)H−1(t′), for t < t′

}
U(t′).

(B14)

Consider

PT
.
=

∫ T

−T

∫ T

−T

dt dt′ φ†(t) r(t, t′)φ(t′)

=

∫ T

−T

∫ T

−T

dt dt′ Φ†(t)

{
H−1(t)H(t′), for t ≥ t′

H(t)H−1(t′), for t < t′

}
Φ(t′),

(B15)

where Φ(t)
.
= U(t)φ(t) ∈ F. We want to prove

that limT→∞ PT ≥ 0.
Denote the eigenvalues and orthonormal eigenvectors

of H(t) by λn(t) and Φn(t), respectively. Since H
is positive-semidefinite, one knows that λn ≥ 0. Fur-
ther, P−1 always exists, being the solution to

∂P−1

∂t
= −P−1 ∂P

∂t
P−1 = −ηP−1, (B16)

so that

0 6= detP = detH detU = detH. (B17)

Therefore one concludes that λn > 0 and deduces the
following relations:

HΦn = λnΦn, (B18a)

H−1Φn = λ−1
n Φn, (B18b)

Φ†
nΦm = δnm. (B18c)

Since the eigenvectors form a complete basis for
this space, one may, at each time t, expand Φ(t) =∑

n an(t)Φn(t). One then obtains

PT =

∫ T

−T

∫ T

−T

dt dt′
∑

n,m

a∗n(t)Φ†
n(t)

×
{
λ−1

n (t)λm(t′), for t ≥ t′

λn(t)λ−1
m (t′), for t < t′

}
am(t′)Φm(t′). (B19)

We now demonstrate that λn(t) is a monotonic nonde-
creasing function of t. Differentiate H2Φn = λ2

nΦn and

multiply by Φ†
n on the left to obtain

Φ†
n

∂H2

∂t
Φn + Φ†

nH2 ∂Φn

∂t
= Φ†

n

∂λ2
n

∂t
Φn + Φ†

nλ
2
n

∂Φn

∂t
.

(B20)

Upon expanding

∂Φn

∂t
=
∑

m

bnmΦm, (B21)

one sees that

Φ†
nH2 ∂Φn

∂t
= bnnλ

2
n = Φ†

nλ
2
n

∂Φn

∂t
. (B22)

This reduces Eq. (B20) to

Φ†
n

∂H2

∂t
Φn =

∂λ2
n

∂t
. (B23)

Since PP † = HUU †H = H2, one can compute

∂H2

∂t
=
∂PP †

∂t
=
∂P

∂t
P † + P

∂P †

∂t
= 2PηhP †. (B24)

Thus

2λn
∂λn

∂t
=
∂λ2

n

∂t
= 2Φ†

nP ηhP †Φn

= 2(P †Φn)†ηh(P †Φn) ≥ 0, (B25)

where we have used the condition that ηh is positive-
semidefinite. Since λn > 0, one concludes that

∂λn

∂t
≥ 0. (B26)

If one defines un(t)
.
= lnλn(t), the relations

t ≥ t′ ⇒ un(t) ≥ un(t′), (B27a)

t < t′ ⇒ un(t) ≤ un(t′), (B27b)

then allow Eq. (B19) to be rewritten in the form
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PT =

∫ T

−T

∫ T

−T

dt dt′
∑

n,m

a∗n(t)Φ†
n(t)e−|un(t)−um(t′)|am(t′)Φm(t′)

=

∫ T

−T

∫ T

−T

dt dt′
∑

n,m

a∗n(t)Φ†
n(t)

[
1

π

∫ ∞

−∞

dω

1 + ω2
e−iω[un(t)−um(t′)]

]
am(t′)Φm(t′)

=
1

π

∫ ∞

−∞

dω

1 + ω2

∫ T

−T

dt
∑

n

a∗n(t)Φ†
n(t)e−iωun(t)

∫ T

−T

dt′
∑

m

am(t′)Φm(t′)eiωum(t′)

=
1

π

∫ ∞

−∞

dω

1 + ω2
A

†
T (ω)AT (ω), (B28)
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where AT (ω)
.
=

∫ T

−T
dt
∑

n an(t)Φn(t)eiωun(t). From
this last expression one sees that PT ≥ 0 ∀T ;
thus, limT→∞ PT ≥ 0. Q.E.D.

APPENDIX C: EXAMPLE OF A
NONREALIZABLE NOISE TERM

We show here that the EDQNM expression for Fk in
Eq. (58) is not always positive-semidefinite. Consider the

case where 1
2

∑
k+p+q=0

|Mkpq|2 = 1, Cp(t) = Cq(t) =

|t|1/2
, and Rp(t, t̄) = Rq(t, t̄) = H(t− t̄). Then given

φ(t) =

{
t− 1 for 0 < t < 2,
0 otherwise,

(C1)

one finds
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ φ∗(t)Fk(t, t′)φ(t′) = − 4

15
< 0. (C2)

This simple example establishes that Fk need not be
positive-semidefinite even if Ck(t) and Rk(t, t′) are non-
negative numbers for all t and t′.99

APPENDIX D: INVISCID EQUILIBRIA

In the absence of dissipative effects a mixing system
will evolve to
statistical-mechanical equipartition.100,81,101 The expec-
tation that our fundamental equation will tend to exhibit
this relaxation to equilibrium is based on the existence
of a Gibbs-type H theorem, which states that the infor-
mation content in the distribution function is minimal

for a Gaussian state.102 For Gaussian initial conditions,
one may then conclude that the information content of
a smoothed distribution of Gaussian form cannot exceed
its initial value. Equivalently, the entropy of the system,
defined as102

S(t) = 1
2

∑

k

ln
〈
|ψk|2(t)

〉
+ const, (D1)

must always be at least as large as its initial value S(0).
It achieves a maximum for moments corresponding to a
Gibbs ensemble based on the initial energy. However, the
entropy need not increase monotonically, as is illustrated
for the exact dynamics in Fig. 19; consequently, there is
no guarantee that statistical equipartition will actually
be achieved (in fact substantial discrepancies exist for
systems of only a few modes; cf. Sec. IV). In contrast,
we will soon see that the EDQNM predicts a monotonic
increase in the entropy.

If {∑k σ
(i)
k
|ψk|2} represents a complete set of the con-

stants of the motion, one may obtain the most probable

FIG. 19. Exact, DIA, EDQNM, and RMC evolution of the
entropy for the three-wave system considered in Fig. 5.

distribution function by maximizing the entropy func-
tional subject to the constraints implied by these con-
served invariants. This procedure yields the Gibbs dis-
tribution for the ensemble:

N exp (− 1
2

∑

i

α(i)
∑

k

σ
(i)
k |ψk|2), (D2)

where N is a normalization constant and α(i) are real
constants determined by the initial conditions.

Let us exhibit the equipartition of the quantity

Ik
.
=

〈
1
2

∑

i

α(i)σ
(i)
k |ψk|2

〉
. (D3)

Upon denoting the real and imaginary parts of ψk re-
spectively by ψr

k and ψi
k, one calculates for a system of N

independent modes

〈
(ψi

k)2
〉

=
〈
(ψr

k)2
〉

=

∫
dΓ (ψr

k)2 exp (− 1
2

∑
l λl

[
(ψr

l)
2 + (ψi

l)
2
]
)∫

dΓ exp (− 1
2

∑
l λl

[
(ψr

l )
2 + (ψi

l)
2
]
)

=
1

2λk

, (D4)

where λk
.
=
∑

i α
(i)σ

(i)
k and dΓ = dψr

1 dψ
i
1 . . . dψ

r
N dψi

N .
One then obtains the equipartition Ik = 1/2, or,

Ck
.
=
〈
(ψr

k)2
〉

+
〈
(ψi

k)2
〉

= 1/λk. (D5)

For example, if the only independent constants of the mo-
tion are the quadratic invariants corresponding to σk = 1
and σk = k2, we find that Ck = 1/(α+βk2) for two con-
stants α and β.
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a. Closure solutions. We now show that Eq. (D5) is a
steady-state solution of the EDQNM and the RMC. The
steady-state covariance equation may be written as

0 = Re
∑

k+p+q=0

(
MkpqM

∗
pqkθ

∗
kpqCqCk

+MkpqM
∗
qpkθ

∗
kpqCpCk + |Mkpq|2θ∗kpqCpCq

)
. (D6)

Upon multiplying this balance equation by λk and using
Eq. (3), one sees that Eq. (D5) is a solution:

Re
∑

k+p+q=0

Mkpq

(
M∗

pqkθ
∗
kpq

1

λq

+M∗
qpkθ

∗
kpq

1

λp

+λkM
∗
kpqθ

∗
kpq

1

λp

1

λq

)

= Re
∑

k+p+q=0

Mkpq(λkM
∗
kpq + λpM

∗
pqk + λqM

∗
qpk)

θ∗kpq

λpλq

= 0. (D7)

Moreover, Eq. (D5) is also consistent with the steady-
state DIA equations. Consider the particular solution

Ck(t, t′) = [Rk(t, t′) +R∗k(t′, t)]/λk, (D8)

where Rk(t, t′) is determined self-consistently from
Eq. (6b). Provided that the latter equation has a so-
lution, one sees upon defining θkpq with Eq. (31) that
Eq. (D8) reduces the steady-state equal-time DIA to the
form (D6). Hence, subject to the above caveat, the DIA
also is consistent with equipartition. Since Eq. (D8) is
just the Fluctuation–Dissipation Theorem, one concludes
that the DIA provides a plausible description of both the
two-time and equal-time statistics in this dissipationless
steady state.

In the context of wave-free turbulence Carnevale,
Frisch, and Salmon102 proved a Boltzmann-type H the-
orem for the EDQNM, which states that the entropy S
increases monotonically from its initial value, as depicted
in Fig. 19. This guarantees that the unforced, inviscid
EDQNM actually evolves to the Gibbs distribution in
the long-time limit. We generalize their argument to our
complex fundamental equation, Eq. (1):
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∂S

∂t
= 1

2

∑

k

1

Ck

∂Ck

∂t
= 1

2

∑

k

1

Ck

∑

k+p+q=0

Re
(
2MkpqM

∗
pqkθ

∗
kpqCqCk + |Mkpq|2θ∗kpqCpCq

)

= 1
2

∑

k,p,q

k+p+q=0

CkCpCq

[
Re θkpq

(
2 ReMkpqM

∗
pqk

CkCp

+
|Mkpq|2
C2

k

)

+ Im θkpq

(
ImMkpq ReMpqk − ReMkpq ImMpqk

CkCp

)]

= 1
4

∑

k,p,q

k+p+q=0

CkCpCq Re θkpq

∣∣∣∣
Mkpq

Ck

+
Mpqk

Cp

+
Mqkp

Cq

∣∣∣∣
2

, (D9)
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where we have used the cyclic symmetry of θkpq and
noted that the terms containing Im θkpq do not con-
tribute, as can be verified by considering the symme-
try k ↔ p. Thus, whenever the realizability condition
Re θkpq ≥ 0 is met (e.g., in the wave-free case), the en-
tropy predicted by the EDQNM will increase monoton-
ically. Carnevale et al. also proved an H theorem for a
multiple-field version of the EDQNM, but only in a highly
restrictive case for which θ is assumed to be diagonal in
the field variables and positive-definite.102

In Fig. 19, one sees that the DIA does not exhibit a
Boltzmann-type H theorem; rather, it attempts to fol-
low (to some degree) the nonmonotonic entropy evolution
predicted by the exact dynamics. Similarly, one observes
that the closely related RMC closure also predicts a non-
monotonic entropy evolution. Thus, one can be certain
only in the case of the EDQNM closure (on the basis of
the entropy evolution alone) that statistical equilibrium
will actually be achieved. Carnevale et al. explain that
it is reasonable for the EDQNM to predict a monoton-
ically increasing entropy since this closure involves only
the instantaneous values of the second-order correlations
and “the information given by just the second-order cor-
relations degrades with time.” In contrast, the DIA and
RMC both involve correlation data from not only the
current time but from previous times as well.

In the preceding discussion we have not ruled out the
possibility of other steady-state solutions to the closure
equations, nor have we discussed the form of the equi-
librium solutions in the case of nonquadratic invariants.
With similar techniques, one can handle invariants of
higher order (in the field), although the calculations are
more difficult. Inviscid equilibrium solutions also exist
for multiple-field systems.102,103

It must be emphasized that these equilibria do not cor-
respond at all to the actual saturated turbulent state ob-
tained in driven systems. What one discovers from the
above considerations is that the nonlinear terms act con-
tinually toward restoring equilibrium; however, this state
is never actually reached due to the disruptive effects of
linear forcing and dissipation. Although one learns lit-
tle about the resulting fluctuation level, one does discover
much about the spectral transfer properties (e.g., the cas-
cade phenomena) embodied in the nonlinearity.

APPENDIX E: STEADY-STATE AMPLITUDES
OF THREE NON-GROWING MODES

From Eqs. (103) one deduces three relations of the form

∂ψk

∂t
ψpψq + i

∆ω

3
ψkψpψq = Mk|ψp|2|ψq|2. (E1)

Upon summing these equations, one obtains

∂

∂t
(ψkψpψq) + i∆ωψkψpψq

= Mk|ψp|2|ψq|2 +Mp|ψq|2|ψk|2 +Mq|ψk|2|ψp|2. (E2)

The real and imaginary parts of this relation are, respec-
tively,

∂

∂t
[Re(ψkψpψq)] − ∆ω Im(ψkψpψq)

= Mk|ψp|2|ψq|2 +Mp|ψq|2|ψk|2 +Mq|ψk|2|ψp|2, (E3a)

∂

∂t
[Im(ψkψpψq)] + ∆ωRe(ψkψpψq) = 0. (E3b)

As an aside, we note that the invariance78,75,36 of H̃ fol-
lows from the second relation:

∂

∂t
H̃ = −2

∂

∂t
[Im(ψkψpψq)]

−∆ω

3

[
1

Mk

∂|ψk|2
∂t

+
1

Mp

∂|ψp|
∂t

2

+
1

Mq

∂|ψq|
∂t

2
]

= −2
∂

∂t
[Im(ψkψpψq)] − 2∆ωRe(ψkψpψq) = 0. (E4)

In a steady state, Eqs. (E3a) and (91) yield Eq. (104).88

APPENDIX F: STEADY-STATE AMPLITUDES
OF THREE GROWING MODES

From Eq. (89) follow three equations of the form

∂

∂t
|ψk|2 = 2γk|ψk|2 + 2Mk Re(ψkψpψq), (F1)

from which one may deduce a steady-state balance equa-
tion:

γk|ψk|2
Mk

=
γp|ψp|2
Mp

=
γq|ψq|2
Mq

= −Re(ψkψpψq). (F2)

Upon accounting for growth effects in Eqs. (E3), one
finds

∂

∂t
[Re(ψkψpψq)] − ∆γ Re(ψkψpψq) − ∆ω Im(ψkψpψq)

= Mk|ψp|2|ψq|2 +Mp|ψq|2|ψk|2 +Mq|ψk|2|ψp|2,
(F3a)

∂

∂t
[Im(ψkψpψq)] − ∆γ Im(ψkψpψq) + ∆ωRe(ψkψpψq)

= 0, (F3b)

where ∆γ
.
= γk + γp + γq. In a nontrivial steady state

one must then satisfy

−
[
(∆γ)2 + (∆ω)2

]
Re(ψkψpψq) = ∆γ

(
Mk|ψp|2|ψq|2

+Mp|ψq|2|ψk|2 +Mq|ψk|2|ψp|2
)
. (F4)
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It is instructive to compare the form of the resulting
equation for Re(ψkψpψq) to the nonlinear terms of the
steady-state EDQNM.

One may use Eq. (F2) to express this result solely in

terms of |ψk|2:
[
(∆γ)2 + (∆ω)2

] γk

Mk

= ∆γ |ψk|2
γkMpMq

Mkγpγq
(γk + γp + γq), (F5)

from which one obtains the steady-state formula88

|ψk|2 =
γpγq

MpMq

[
1 +

(
∆ω

∆γ

)2
]
. (F6)

The corresponding results for |ψp|2 and |ψq|2 are ob-
tained by cyclic permutation of the indices. Since all
of the quantities in Eq. (F6) are independent of the ini-
tial conditions, any nontrivial steady-state solution of the
ensemble-averaged equations must satisfy Eq. (112) (the
trivial solution Ck = Cp = Cq = 0 is also possible).

APPENDIX G: STEADY-STATE EDQNM
AMPLITUDES OF THREE GROWING MODES

In the case of three growing waves with real mode cou-
pling, we present an analytical solution for the steady-
state EDQNM (or RMC) equations.90 Let us denote θ

.
=

X + iY . The steady-state balance appears as

−γkCk = MkX(MkCpCq +MpCqCk +MqCkCp),

(G1a)

−γpCp = MpX(MkCpCq +MpCqCk +MqCkCp),

(G1b)

−γqCq = MqX(MkCpCq +MpCqCk +MqCkCp), (G1c)

from which one deduces

− γkCk

MkX
= − γpCp

MpX
= − γqCq

MqX
= ξ, (G2)

where ξ
.
= MkCpCq +MpCqCk +MqCkCp.

The equation for Ck may be expressed solely in terms
of ξ upon multiplying both sides of Eq. (G1a) by γkγpγq

and using Eq. (G2):

γkγpγqMkXξ = MkX
3ξ2(γkMkMpMq

+γpMpMqMk + γqMqMkMp), (G3)

from which follows

ξ =
MkMpMq

γkγpγq
∆γX2ξ2. (G4)

It may be readily verified that the solution ξ = 0 corre-
sponds to the equipartition case considered earlier. For a
driven system, this solution is generally unstable; we are
interested in the other root,

ξ =
γkγpγq

MkMpMq

1

∆γX2
. (G5)

The stationary solution for θ is just 1/η, where

η
.
= ηk + ηp + ηq = −∆γ + i∆ω

−2(X + iY )(MkMpCq +MpMqCk +MqMkCp). (G6)

With the help of Eqs. (G2) and (G5), the real part of η
may be written

X

X2 + Y 2
= −∆γ + 2X2ξMkMpMq

(
1

γk
+

1

γp
+

1

γq

)

= −
(
γ2

k + γ2
p + γ2

q

∆γ

)
. (G7)

The imaginary part of η may be written in terms of the
real part:

( −Y
X2 + Y 2

)
= ∆ω − Y

X

(
X

X2 + Y 2
+ ∆γ

)
, (G8)

from which one concludes that Y = (∆ω/∆γ)X .
Let us solve for X and Y in terms of the dimensionless

parameter P
.
= (∆γ)2/(γ2

k + γ2
p + γ2

q ). One obtains

X = −P ∆γ

(∆γ)2 + (∆ω)2
, (G9a)

Y = −P ∆ω

(∆γ)2 + (∆ω)2
. (G9b)

The solution for Ck is then given by Eq. (117).
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