
Multithreaded Implicitly Dealiased Pseudospectral

Convolutions

Malcolm Roberts and John C. Bowman

Department of Mathematical and Statistical Sciences,

The University of Alberta, Edmonton, AB, T6G 2G1, Canada

Email: mroberts@math.ualberta.ca

ABSTRACT

Convolutions are used in data and image analysis and

form the crux of the pseudospectral method for di-

rect numerical simulations of fluids. Their calcula-

tion is a computationally expensive task that is facil-

itated by the use of FFTs at the expense of increased

memory, which is required for the removal of aliased

terms. Here, we present a multithreaded version of the

method of implicit dealiasing (Bowman and Roberts,

SIAM J. Sci. Comput. 33, 2011). Implicit dealiasing

requires less memory than conventional explicit zero

padding without increasing computational complexity

or communication cost.

1 INTRODUCTION

Discrete linear convolutions arise in correlation anal-

ysis, digital signal processing, and spectral simula-

tions of nonlinear partial differential equations such as

the Navier–Stokes equations. The convolution of two

infinite-length vectors F and G is

(1)(F ∗ G)k
.
= ∑

ℓ∈Z

FℓGk−ℓ, k ∈ Z.

If only N contiguous elements of the input vectors

are nonzero, calculating equation (1) directly requires

O(N2) operations and results in significant numeri-

cal error. One can avoid these difficulties by making

use of the convolution theorem, which states that the

Fourier transform of a convolution is a component-

wise multiplication. Since fast Fourier transforms re-

quire O(N logN) operations [5, 3] and the multipli-

cation requires O(N) operations, FFT-based convolu-

tions can be performed much more quickly than com-

puting the convolution as a direct sum. However, FFTs

treat arrays as periodic, so the indices in equation (1)

are considered mod N, introducing extra terms called

aliases in the summation.

Zero padding dealiases FFT-based convolutions by

concatenating zero data to the input vectors. For non-

centered input data {Fk}
N−1
k=0 (as is used in correlation

analysis and digital signal processing), the data must

be padded from length N to length 2N, which is re-

ferred to as “1/2 padding”. In the case of spectral sim-

ulations of nonlinear differential equations, the input

data {Fk}
N−1
k=−N+1 is centered, and the data is padded

from length 2N − 1 to 3N [6], which is referred to as

“2/3 padding”.

We have developed implicitly padded FFT-based con-

volution routines that in n dimensions reduce the mem-

ory requirements by a factor of 2n−1 for non-centered

convolutions and (3/2)n−1 for centered convolutions,

while increasing speed by a factor of approximately

two in both cases [2]. These algorithms were orig-

inally developed for serial computation; here, we

present a multithreaded version of the algorithm.

2 IMPLICITLY PADDED FFTS

Implicitly padded convolution routines are based on

the one-dimensional implicitly padded Fourier trans-

form. Suppose that the input vectors F and G are

of length N, to which we would like to apply 1/2

padding, i.e. we pad the vector with zeroes so that the

total length of each input is 2N. The inverse discrete

Fourier transform (DFT) of this data is equal to

fx =
2N−1

∑
k=0

ζxk
2NFk =

N−1

∑
k=0

ζxk
2NFk, x = 0, . . . ,2N−1 (2)

since Fk = 0 for k ≥ N. Here, ζ2N is the 2Nth root of

unity. Notice that the right-hand side of equation (2) is

not directly amenable to computation via FFT. How-



ever, if we instead consider

f2 j =
N−1

∑
k=0

ζ
2 jk
2N Fk =

N−1

∑
k=0

ζ
jk
N Fk, (3)

f2 j+1 =
N−1

∑
k=0

ζ
(2 j+1)k
2N Fk =

N−1

∑
k=0

ζ
jk
N (ζk

2NFk) (4)

for j = 0, . . . ,N−1, then equation (3) can be computed

by performing a FFT on {Fk}
N−1
k=0 and equation (4) can

be computed by performing an FFT on {ζk
2NFk}

N−1
k=0 .

Inverting this transformation involves calculating

2NFk =
2N−1

∑
x=0

ζ−kx
2N fx =

N−1

∑
j=0

ζ
−k j
N f2 j +ζ−k

2N

N−1

∑
j=0

ζ
−k j
N f2 j+1

(5)

for k = 0, . . . ,N − 1.

Implicitly padded FFTs are performed on 2/3 padded

data in an analogous fashion, with the output consist-

ing of three vectors each of length N. Taking advan-

tage of Hermitian symmetry, i.e. that F−k = F∗
k , with ∗

denoting complex conjugation, the inverse implicitly

2/3 padded transform is

f3ℓ+r =
m−1

∑
k=−m+1

ζℓkm ζrk
3mFk =

m−1

∑
k=0

ζℓkm wk,r, (6)

where ℓ= 0, . . . ,N − 1, r ∈ {−1,0,1}, and

wk,r
.
=

{

F0 if k = 0,

ζrk
3m(Fk + ζ−r

3 Fk−m) if 1 ≤ k ≤ m− 1.
(7)

The forwards transform is accomplished in a fashion

analogous to equation (5).

The ternary convolution of three input vectors F , G,

and H is denoted ∗(F,G,H) and given by

∗(F,G,H)k
.
= ∑

a,b,c

Fk1
Gk2

Hk3
δk,k1+k2+k3

(8)

where δ is the Kronecker delta function. For non-

centered data, one can use the fact that ∗(F,G,H) =
F ∗(G∗H), but this does not hold for centered data [7],

in which case one pads each vector from length 2N−1

to length 4N and performs the computation all at once.

Ternary convolutions can arise in pseudospectral simu-

lations of compressible fluids or when considering the

evolution of higher-order moments of incompressible

turbulence [1].

In this paper, we consider complex non-centered con-

volutions in one, two, and three dimensions; centered

Hermitian-symmetric convolutions in one, two, and

three dimensions; and centered Hermitian symmetric

ternary convolutions in one and two dimensions.

3 MULTITHREADED 1D

CONVOLUTIONS

Parallelizing one-dimensional FFT-based convolutions

is typically advantageous only for problems involving

more than a few thousands data points. A compar-

ison of parallel and serial timings for implicit one-

dimensional complex non-centered convolutions is

shown in Figure 1. Error bars indicate one-sided stan-

dard deviations. The multi-threaded version is faster

starting at problems of size N = 2048 with 4 cores,

yielding an asymptotic speed-up of a factor of approx-

imately 3 (only one thread is used for N < 2048). The

execution times for threaded implementations of im-

plicit and explicit convolutions are given in Figure 2.

In one dimension, the explicit and implicit algorithms

are observed to have similar speeds.

3

4

5

6

7

8

9

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

serial

4 cores

Figure 1: Computation times for non-centered com-

plex 1D implicitly-padded convolutions on data of

length N using one core vs. up to four cores.

Timing results for Hermitian centered one-

dimensional implicit convolutions are shown in

Figure 3 and compared with multithreaded explicitly

padded convolutions in Figure 4. The multithreaded

implicitly padded algorithm is faster than the serial

implicitly padded algorithm for N ≥ 2048 with four

cores. The mutithreaded versions of the implicit and

explicit methods perform similarly. The maximum

speedup with four cores is only around a factor of two

in this case.

Timing results for a ternary version of the Hermitian

centered one-dimensional convolutions shown in Fig-

ure 5 and compared with an explicit method in Fig-



2

3

4

5

6

7

8

9
ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

explicit

implicit

Figure 2: Computation times for explicit and implicit

non-centered complex 1D convolutions of size N using

up to four cores.

3

4

5

6

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

serial

4 cores

Figure 3: Computation times for centered Hermitian

1D implicitly padded convolutions on data of length N

using one core vs. up to four cores.

3

4

5

6

7

8

9

10

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

explicit

implicit

Figure 4: Computation times for explicit and implicit

centered Hermitian 1D convolutions of size N using up

to four cores.

ure 6. The version with four cores is faster than the

serial version for N ≥ 2048. The maximum speedup is

around a factor of two when using four cores. The im-

plicit and explicit methods exhibit similar performance

with multiple cores.

4 MULTITHREADED 2D

CONVOLUTIONS

Implicitly dealiased convolutions are performed on

two-dimensional data by first performing an implicitly

padded FFT in the x direction, performing implicitly

padded one-dimensional convolutions in the y direc-

tion, and then inverting the FFT in the x direction.

Since the zero-padding must be done in all dimensions,

some of the x transforms in the explicit method can be

skipped as they are performed on data that is known a

priori to be zero. This optimization, known as pruning,

reduces the computational complexity of the problem

but does not reduce the memory requirements. Implic-

itly dealiased convolutions automatically skip FFTs on

zero-data while also reducing memory requirements.

For non-centered data with an input array of size Nx ×
Ny, the x FFT produces output in two arrays of size

Nx ×Ny, each which can be done in parallel using a

standard parallelized FFT. Then, each thread uses its

own copy of a single-threaded y convolution, each of

which requires two work arrays of size Nx. If there

are P threads in total, then the total work memory used



5

6

7

8

9

10

11

12
ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

serial

4 cores

Figure 5: Computation times for centered Hermitian

1D implicitly padded ternary convolutions on data of

size N using one core vs. up to four cores.

5

6

7

8

9

10

11

12

13

14

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105

N

explicit

implicit

Figure 6: Computation times between explicit and im-

plicit centered Hermitian 1D ternary convolutions of

size N using up to four cores.

is 2(Nx +P)Ny, whereas the explicit method requires

6NxNy words of extra memory. The timing results for

this algorithm are shown in Figure 7. A comparison

with the explicit method is shown in Figure 8.

3

4

5

6

7

8

9

10

11

ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

102 103

N

serial

4 cores

Figure 7: Computation times for non-centered im-

plicitly padded complex 2D convolutions on data of

size N ×N using one core vs. four cores.

Centered data with Hermitian symmetry is stored in

an array of dimensions (2Nx − 1)×Ny. The implicitly

padded transform in the x direction requires an addi-

tional work array of size (Nx + 1)×Ny. For simplic-

ity we describe only the case where Ny is even. The

3Nx convolutions in the y direction are divided between

threads, with each thread requiring two work arrays

of size Ny/2+ 1. Thus, the implicit method requires

work arrays of size 2(Nx + 1)Ny +P(Ny + 2), whereas

the explicit method requires (5Nx − 4)Ny words of ex-

tra memory. The results of our timing tests are shown

in Figure 9, and a comparison with the explicit version

is shown in Figure 10.

Ternary centered Hermitian convolutions operate on

data of size (2Nx − 1)Ny. The total work memory

for the implicit convolution is then 3(2NxNy + 4Nx +
Ny−1)+P(3Ny+6), whereas the explicit method uses

18NxNy + 15Ny. The results of our timing tests are

shown in Figure 11. A comparison with the explicitly

padded version is shown in Figure 12.

The multithreaded implicit algorithm is significantly

faster for all tested two-dimensional problem sizes

when using four cores and produces a speedup factor

between 3 and 3.5. As for the serial case, the implicit

version is faster than explicit methods.



3

4

5

6

7

8

9
ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

102 103

N

explicit

y-pruned

implicit

Figure 8: Computation times for explicit and implicit

non-centered complex 2D convolutions of size N ×N

using four cores.

5

10

15

ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

102 103

N

serial

4 cores

Figure 9: Computation times for centered Hermitian

2D implicitly padded convolutions on data of size

(2N − 1)×N using one core vs. four cores.

5

6

7

8

9

10

11

12

13

14

ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

103

N

explicit

y-pruned

implicit

Figure 10: Computation times for explicit and im-

plicit centered Hermitian 2D convolutions of size

(2N − 1)×N using four cores.

10

20

30

ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

102 103

N

serial

4 cores

Figure 11: Timing results for centered Hermitian 2D

ternary convolutions on data of size (2N−1)×N using

one core vs. four cores.



10

20

30
ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

103

N

explicit

y-pruned

implicit

Figure 12: Computation times for explicit and implicit

centered Hermitian 2D ternary convolutions of size

(2N − 1)×N using four cores.

5 MULTITHREADED 3D

CONVOLUTIONS

Three-dimensional convolutions are calculated by

Fourier transforming in the x direction, performing

two-dimensional convolutions in the yz plane, and

then transforming back in the x direction. This idea

can be extended to general n-dimensional convolu-

tions in a straightforward fashion by Fourier trans-

forming in one dimension, performing several (n−1)-
dimensional convolutions, and then inverting the initial

Fourier transform.

Three-dimensional non-centered convolutions have in-

put data of size Nx × Ny × Nz. The x direction im-

plicitly padded Fourier transform uses the input mem-

ory and an additional work array of the same size,

whereas sub-convolutions each require a work array

of size NyNz. The total work memory required is then

2NxNyNz+2P(Ny+1)Nz for the implicit method, com-

pared with 14NxNyNz for the explicit method. Timing

results are shown in Figure 13. A comparison with the

explicit method is shown in Figure 14.

We also implemented a three-dimensional non-

centered Hermitian binary convolution, which requires

a work array of size 4NxNyNz − 2NxNy − 2NxNz +
6NyNz −3Ny−Nz+P(2NxNy+3Ny+2), while the ex-

plicit method requires (19NxNy+4Nx+4Ny−2)Nz ex-

tra words. Timing results are shown in Figure 15.

As with the two-dimensional case, multiple threads

5

10

15

ti
m
e/
(N

3
lo
g
2
N

3
)
(n
s)

101 102

N

serial

4 cores

Figure 13: Computation times for non-centered com-

plex 3D implicitly padded convolutions on data of size

N ×N ×N using one core vs. four cores.

10

20

30

ti
m
e/
(N

3
lo
g
2
N

3
)
(n
s)

101 102

N

explicit

xz-pruned

implicit

Figure 14: Computation times for explicit and implicit

non-centered complex 3D convolution size N ×N ×N

using four cores.



10

20

30

40

50

60

70

80

90

100

ti
m
e/
(N

3
lo
g
2
N

3
)
(n
s)

101 102

N

serial

4 cores

Figure 15: Timing results for centered Hermitian 3D

implicitly padded convolutions on data of size (2N −
1)× (2N− 1)×N using one core vs. four cores.

and implicit padding offer significant performance

benefits in terms of both processing time and mem-

ory requirements. Using an implicit method with four

cores led to an increase in speed by a factor between 3

and 3.6. The implicit method was significantly faster

than the explicit method, even when transforms on

zero data were omitted.

6 IMPLEMENTATION AND USE

The convolution routines described above are available

as open-source libraries under the LGPL in the project

FFTW++[4], at fftwpp.sourceforge.net. The code

is written it C++ and makes use of SIMD extensions for

vectorization and OpenMP for multithreading. Fourier

transforms were performed using FFTW.

In addition to offering high-performance convolution

routines, FFTW++ offers wrappers for FFTW, taking

care of much of the house-keeping automatically.

These implicit convolutions are also designed to be

easy to use and are illustrated with online examples.

7 FUTURE WORK

In this paper, we have demonstrated the benefit of us-

ing multiple cores to compute convolutions using the

method of implicit dealiasing. One of the most com-

mon questions we have received when discussing im-

plicit padding is whether the method is adaptable to

distributed-memory architectures. While this work is

on-going, the theoretical groundwork has been laid,

and we expect that the method of implicit dealiasing

will offer significant improvements in grid computing

environments in terms of memory required, computa-

tional complexity, and communication costs.

8 CONCLUSION

The method of implicit padding is an efficient method

for computing linear convolutions. In one dimension,

it performs similarly to conventional methods. How-

ever, in multiple dimensions, it requires significantly

less memory and is approximately twice as fast as con-

ventional methods. It is also amenable to parallel com-

putation on shared-memory architectures. While im-

plicit dealiasing is more complex to implement, the

availability of high-performance open-source libraries

makes it easy for programmers to use these algorithms.

We therefore expect implicit dealiasing to become a

standard method for performing convolutions.

REFERENCES

[1] J. C. Bowman. Casimir cascades in two-

dimensional turbulence. J. Fluid Mech, 2012. To

be submitted.

[2] J. C. Bowman and M. Roberts. Efficient dealiased

convolutions without padding. SIAM J. Sci. Com-

put., 33(1):386–406, 2011.

[3] J. W. Cooley and J. W. Tukey. An algorithm for

the machine calculation of complex Fourier se-

ries. Mathematics of Computation, 19(90):297–

301, April 1965.

[4] M. Frigo and S. G. Johnson. The design and im-

plementation of FFTW3. Proceedings of the IEEE,

93(2):216–231, 2005.

[5] C. F. Gauss. Nachlass: Theoria interpolationis

methodo nova tractata. In Carl Friedrich Gauss

Werke, volume 3, pages 265–327. Königliche

Gesellschaft der Wissenschaften, Göttingen, 1866.

[6] S. A. Orszag. Elimination of aliasing in finite-

difference schemes by filtering high-wavenumber

components. Journal of the Atmospheric Sciences,

28:1074, 1971.

[7] M. Roberts and J. C. Bowman. Dealiased convo-

lutions for pseudospectral simulations. Journal of

Physics: Conference Series, 318(7):072037, 2011.


