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Renormalization group analysis is applied to the two-dimensional Navier–Stokes vorticity
equation driven by a Gaussian random stirring. The energy-range spectrum CKε

2/3
k
−5/3

obtained in the one-loop approximation coincides with earlier double epsilon expansion re-
sults, with CK = 3.634. This result is in good agreement with the value CK = 3.35 ob-
tained by direct numerical simulation of the two-dimensional turbulent energy cascade using
the pseudospectral method.

PACS: 47.27.Gs, 47.27.Eq, 11.10.Gh

Statistical hydrodynamics constitutes one of the most promising applications of quantum
field theory methods to the physics of classical systems. The statistical description of two-
dimensional hydrodynamic turbulence is in turn one of the most challenging problems in hy-
drodynamics. In addition to having intrinsic mathematical beauty, the renormalization group
(RG) model of turbulence in three dimensions has provided realistic values of the Kolmogorov
constant in the range 1.4 to 1.7 [1, 2, 3]. Along with the energy, which is conserved by the
nonlinear terms of the incompressible Navier–Stokes equation in any dimension; there exists in
two dimensions an additional positive-semidefinite invariant, the mean-squared vorticity. This
enstrophy conservation law forbids universal scaling in the whole range of scales from energy
injection to energy dissipation, making the dynamical RG technique [4, 2] hardly applicable in
two dimensions [5, 6].

The goal of applying the RG technique to hydrodynamic turbulence is to decrease the num-
ber of modes required to describe the system, retaining at the same time all basic symmetries
and properties of the system [4]. The same idea underlies the spectral reduction method, where
the effect of discarded modes is taken into account by enhancing the nonlinear interaction coef-
ficients [7]. This is accomplished by coarse-graining the vorticity equation in Fourier space in
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such a way that the averaged equations automatically respect the energy and enstrophy invari-
ants. For the two-dimensional enstrophy cascade, spectral reduction has been shown to provide
an efficient numerical approximation to the turbulent statistics. In the RG approach, the effect
of the deleted small scale modes is taken into account by integrating over these modes in the
presence of a random stirring force added to the right-hand side of the Navier–Stokes equation.

Technically, two-dimensional turbulence RG calculations are more complicated than three-
dimensional ones because of extra one-loop divergences that require a counterterm having no
counterpart in the original action [8]. A significant breakthrough in this problem was achieved
when the double parametric renormalization group [6] was applied to the field theory formalism
of two-dimensional turbulence to cancel the extra one-loop divergence [9]. However, it has been
difficult to estimate by other theoretical means if the obtained value of CK = 3.634 is relevant
and to confirm it with appropriate numerical simulations.

In this paper we apply the double parametric expansion RG method to essentially the same
vorticity equation in Fourier space that is used for pseudospectral simulations of two-dimensional
turbulence. Our analytical calculations match the result CK = 3.634 obtained by Honkonen [9]
and M. Hnatich et al. [3]. The numerical simulation performed with the pseudospectral code
gives CK ≈ 3.35. The RG method for two-dimensional turbulence is based on a two-term
force correlator that models the phase transition between laminar flow and developed turbulence:
the first term matches the (asymmetric) turbulent regime, while the second term matches the
symmetric (with respect to (3)) laminar regime.

We briefly review the field theory approach to stochastic hydrodynamics [4, 8], starting from
the two-dimensional Navier–Stokes equation ∂tv + (v · ∇)v = ν∆v − ∇P + f , where the
velocity field v is incompressible (∇ ·v = 0), ν is the viscosity, P is the pressure, and f denotes
an external stirring force. The curl of this equation describes the evolution of the vorticity vector
ζ(t, x) = ∇×v(t, x) = ζẑ, where ẑ is the normal to the plane of flow [10],

∂tζ − ν∆ζ = −∇×
[

∆−1(∇×ζ)×ζ
]

+ ξẑ; (1)

the incompressible velocity field being the inverse Laplacian of the curl of the vorticity field:
v(t, x) = −∆−1

∇×ζ(t, x). The random stirring force ξẑ = ∇×f is supposed to be Gaussian:

〈ξ(x)ξ(x′)〉 = D(x − x′), P [ξ] = exp

(

−1

2

∫

ξ(x)D−1(x − x′)ξ(x′) dx dx′

)

. (2)

Here we use the 1 + d notation x ≡ (x0, x), where x0 = t and d = 2 is the dimension.
Consider a stochastic process u(t, x), governed by the stochastic integro-differential equation

F [u] = ξ − η̂, where F is a nonlinear integro-differential operator, η̂(x) is a regular force,
and ξ(x) is a Gaussian random force satisfying (2). The field theory approach is based on the
characteristic functional

Z[η, η̂] =

〈

exp

(

i

∫

dx η(x)u(x)

)〉

, 〈un〉 =
δn

inδηn

∣

∣

∣

∣

η=0

.

By prescribing to each trajectory u = u(t, x) the weight P [u, ξ] = δ(F [u] − ξ + η̂)P [ξ] and
representing the δ-function as a functional integral over an auxiliary field û, one finds that
Z[η, η̂] =

∫

DuDû exp (iS[û, u] + iηu + iη̂û) , where the action S[û, u] can be expressed in
terms of the random force correlation function D as S[û, u] = ûF [u] + iûDû/2.
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In the absence of a random force, the vorticity equation (1) is invariant under the Lie group G
of scale transformations:

t′ = e2γt, x′ = eγx, ζ ′ = e−2γζ, (3)

where γ is the infinitesimal transformation parameter. The corresponding Lie algebra generators
are Γ̂t = 2t∂t, Γ̂x = x∂x, Γ̂ζ = −2ζ∂ζ . In terms of the characteristic functional, invariance
under a Lie group implies [11]:

Γ̂

[

δ

iδη
, iη, x, ∂x

]

Z[η, η̂] = 0 (4)

for all generators Γ̂[u, ∂u, x, ∂x] of the symmetry group of the equation F [u] = 0.
Following [11], we can easily find the constraints on the correlators that underly the symme-

try (3) even in the case of a random force (D 6= 0). Since ζ̂ is just an auxiliary field with no
dynamical constraints imposed on it, we can fix the transformation law of ζ̂ with respect to scale
transformations to satisfy the invariance of

∫

ζ̂(t, x)F [ζ(t, x)]dt ddx identically with respect
to (3). This means that ζ̂ ′ = eγD

ζ̂ ζ̂, where Dζ̂ = 2 − d.

Now the invariance of the action S[ζ, ζ̂] with respect to scale transformations is completely
determined by the transformation properties of ζ̂Dζ̂ with respect to (3). To keep it invariant, the
identity

∫

ζ̂ ′1D
′ζ̂ ′2d

dx′
1dt1

′ddx′
2dt2

′ =
∫

ζ̂1Dζ̂2d
dx1dt1d

dx2dt2 should hold. Simple power
counting gives D′ = eγDDD, with DD = −8, or D = 0. The second possibility corresponds
to the free equation, i.e. decaying turbulence. The first case corresponds to a special power-type
stirring, say

D(x, t) ∼ δ(t)|x|−6 or D(x, t) ∼ |t|α|x|β with 2α + β = −8. (5)

Thus, for a white-noise random forcing, a correlator that is invariant under (3) must have a Fourier
transform proportional to k4.

Now, assuming the invariance of the characteristic functional with respect to scale transfor-
mations (3), let us derive the scaling equations for the correlation and response functions. Here
we follow the method already used to derive the governing statistical equations for the Navier–
Stokes velocity field in a similar setting [11]. The correlation and response functions are

C(12) = − δ2 ln Z[η̂, η]

δη(x1)δη(x2)
, G(12) = i

δ2 ln Z[η̂, η]

iδη(x1)iδη̂(x2)
. (6)

Since the action should be identically invariant under (3), we have to account only for the vari-
ation of the “generating part”

∫

dx dt (ηζ + η̂ζ̂) in the exponent of the generating functional,
so that the invariance of the characteristic functional under the group of scale transformations
〈δG

∫

dx dt (ηζ + η̂ζ̂)〉 = 0, where δG means variation with respect to (3), will hold.
After straightforward calculations, similar to those presented in [11], we obtain the sym-

metries of the correlation and Green function, which hold when the scaling symmetry (3) is
observed, i.e. for the class (5) of random force correlators,

[x∂x + 2t∂t + 4] C(t, x) = 0, [k∂k + 2ω∂ω − 4]C(ω, k) = 0, (7)
[x∂x + 2t∂t + d] G(t, x) = 0, [k∂k + 2ω∂ω − d] G(ω, k) = 0. (8)
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The vorticity equation (1) gives rise to the field theory

Z[J ] =

∫

eiS[Φ]+iJ·ΦDΦ, S[Φ] = i
1

2
ζ̂Dζ̂ + ζ̂

[

∂tζ − ν∆ζ − U [ζ]
]

. (9)

The notation Φ = (ζ, ζ̂), J = (η, η̂) is used for book-keeping, where the nonlinear interaction in
two dimensions is given by the nonlocal vertex

U [ζ] =

∫

U(k|p, q)ζ(p)ζ(q) dp dq, U(k|p, q) =
δ(k − p − q)

2(2π)3
(p×q)z

(

1

|q|2
− 1

|p|2

)

.

The force correlation operator D is chosen in accord with the double parametric expansion:
〈ξ(k1)ξ(k2)〉 = (2π)d+1δ(k1 + k2)D(k1) and D(k) = ν3(g1µ

2εk4−2ε + g2k
4), where µ is the

renormalization mass [6, 9, 3].
The coupling constants g1 and g2 can be made dimensionless by rescaling both vorticity

and time (1): t′ = tν0Λ
2, ζ ′ = ζ

√

ν0/D0, η′ = η/(Λ2
√

ν0D0), where D0 = g1,0ν
3
0 is the

unrenormalized strength of the vorticity forcing and Λ is the ultraviolet momentum cutoff.
The renormalized viscosity is given by a one-loop contribution to the Green function 〈ζ̂ζ〉,

G2(k) = 4G2
0(k)

∫

[

(q×k)z

2

(

1

|q2| −
1

|k − q|2

)]

D(q)|G0(q)|2

[

(−q×k)z

2

(

1

|q|2
− 1

|k|2

)]

G0(k − q)
dd+1q

(2π)d+1
,

where G0(q) = (−iq0 + ν0 |q|2)−1.
In the long-wave limit k → 0 this results in a turbulent dressing of the viscosity,

ν̃ = ν0

[

1 + g1,0
1

32π

1

2ε
+ g2,0

1

32π
ln

Λ

m

]

, (10)

(for ε > 0), where m and Λ are the lower (infrared) and the upper (ultraviolet) limits of inte-
gration and g1,0 and g2,0 are the “bare” constants of the vorticity force correlation. The positive
turbulent dressing of the viscosity (10) can be absorbed into the renormalization of the viscosity
ν0 = νZν ,

Zν = 1 − A

[

g1
1

2ε
+ g2 ln

Λ

m

]

, A =
1

32π
. (11)

Similarly, the one-loop divergent contribution to the correlation function 〈ζζ〉 is

D2(k) = 2ν6
∫ Λ

m
qdq

(2π)2 dθ 1
4q2k2 sin2 θ

[

−k2+2kq cos θ
q2(k2+q2−2kq cos θ)

]2

(g1q4−2ε+g2q4)(g1|k−q|4−2ε+g2|k−q|4)
2ν3(2q2+k2−2kq cos θ)q2(k2+q2−2kq cos θ) .

In the limit k → 0 the one-loop contribution to the correlator is

D2(k) =
ν3k2

32π

(

g2
1,0

1

4ε
+ g1,0g2,0

1

ε
+ g2

2,0 ln
Λ

m

)

, (12)
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which can be absorbed into the renormalization of the coupling constant g2,

Z2 = 1 − A

(

g2
1

g2

1

4ε
+ g1

1

ε
+ g2 ln

Λ

m

)

. (13)

The renormalization of g1 is related to Zν in the usual way: g1,0 = µ2εg1Z1, g2,0 = g2Z1Z2,
Z1 = Z−3

ν . The corresponding anomalous dimensions γi = µ∂µ ln Zi|g1,0,g2,0,ν0=const and the
functions βi = µ∂µgi|g1,0,g2,0,ν0=const are evaluated as a series in the coupling constants g1 and
g2. Retaining up to second-order terms in g1 and g2, we find β1 = g1(−2ε + 3Ag1 + 3Ag2) and
β2 = A(−g2

1 + g1g2 + 2g2
2). This yields the nontrivial infrared fixed point (g∗

1 , g∗2), where [6]

g∗1 =
4ε

9A
, g∗2 =

2ε

9A
. (14)

Our results (11) and (13), obtained in the one-loop approximation, exactly match the results
obtained in two dimensions for the forced stream function [9] and velocity [3] equations. Among
a variety of controversial theoretical and numerical results for two-dimensional turbulence ob-
tained by different means, it seems most natural to compare the value of the Kolmogorov constant
obtained by a two parameter renormalization group (Zν , Z2) with a quasistationary numerical
result obtained by pseudospectral simulation of the same vorticity equation used to derive the val-
ues Zν and Z2. Referring the reader to [9, 3] for details of the derivation of the energy spectrum
determined by the fixed point (14), we just state the final results.

The mean energy dissipation rate ε is related to the field theory model parameters: ε =
ν3
0g1,0k

4−2ε
d /(16π), where kd is the dissipation wavenumber and ε = 2.

We now evaluate the constant CK in the Kolmogorov law for the energy cascade, E(κ) =
CKε2/3κ−5/3, where κ = |k| and the two-dimensional energy spectrum E(κ) is defined by

E(κ) =
1

2
Tr

∫

2πκ dκ

∫

dω

2π

〈v(k)v(−k)〉
(2π)2

= π

∫

κ dκ

∫

dω

2π

〈ζ(k)ζ(−k)〉
(2πκ)2

.

This yields [9, 3]

CK =

(

1

2π

)1/3
g∗1 + g∗2
g∗1

2/3
= (24ε)1/3, (15)

so that CK ≈ 3.634 for ε = 2 and d = 2.
Euclidean field theory (9) describing two-dimensional turbulence is similar to the Landau-

Ginzburg phase transition theory. In the absence of a random force or a symmetry preserv-
ing force (ε = 0), two-dimensional turbulence in an unbounded domain is invariant under the
Lie group of scale transformations (3), which formally corresponds to the vorticity correlator
〈ζ(k)ζ(−k)〉 ∼ k4. The Kolmogorov regime requires that the mean energy dissipation rate ε is
exactly compensated by energy injection. This state (ε = 2) corresponds to the breaking of the
original Lie group (3) symmetry down to a new state of the system determined by the anomalous
dimensions γi = γi(ε, g1, g2). For a given value of ε, the existence of the stable fixed point
βi(ε, g

∗
1,ε, g

∗
2,ε) = 0 implies, in the language of phase transitions, the existence of a stable phase.

The trivial fixed point g1 = g2 = 0 corresponds to the symmetric phase (laminar flow); the
infrared stable fixed point (14) at ε = 2 corresponds to the asymmetric phase, the Kolmogorov
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Fig. 1. (a) Transient spectral energy density E(κ) obtained from a 2731 × 2731 dealiased pseudospectral
simulation. The dashed line indicates the fitted Kolmogorov spectrum 3.35ε

2/3
κ
−5/3. (b) Variation of the

estimated value of Kolmogorov constant for the inverse energy cascade with wavenumber.

regime. The diffeomorphism between phases is controlled by a single parameter ε that deter-
mines the symmetry of the forcing. If other fields are incorporated (e.g. passive scalar advection)
the phase diagram of the combined system becomes multidimensional [3].

In Fig. 1, we depict the transient energy spectrum and estimated Kolmogorov constant CK =
3.35 obtained with a dealiased pseudospectral simulation of the two-dimensional energy cas-
cade driven by a white-noise random forcing restricted to κ ∈ [1198, 1202], taking ε = 1 and
ν = 6.4 × 10−5. To minimize the required resolution, we replaced the viscous term νκ2ζ by
νκ2H(κ−1202)ζ, where H(κ) denotes the Heaviside unit step function. An adaptive fifth–order
Cash–Karp–Fehlberg Runge–Kutta integrator was used to advance (1) and its second moment.
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