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On inertial-range scaling laws
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Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined
within a unified framework. A new correction to Kolmogorov’s k−5/3 scaling is derived
for the energy inertial range. A related modification is found to Kraichnan’s logarithmi-
cally corrected two-dimensional enstrophy-range law that removes its unexpected diver-
gence at the injection wavenumber. The significance of these corrections is illustrated
with steady-state energy spectra from recent high-resolution closure computations. Im-
plications for conventional numerical simulations are discussed. These results underscore
the asymptotic nature of inertial-range scaling laws.

1. Introduction

The energy spectrum of fully developed homogeneous turbulence is thought to be com-
posed of three distinct wavenumber regions: a region of energy injection at the largest
scales, an intermediate inertial range characterized by zero forcing and zero dissipation,
and, at the very smallest scales, a region dominated by viscosity. In 1941, Kolmogorov
proposed his famous k−5/3 scaling law for the inertial-range energy spectrum of ho-
mogeneous and isotropic three-dimensional turbulence. Since then, extensive numerical
and experimental scrutiny has essentially confirmed this result. Kolmogorov’s argument
was extended to the two-dimensional enstrophy range by Kraichnan, who suggested the
scaling

E(k) ∼ k−3

[

log

(

k

k1

)]

−1/3

, (1.1)

where k1 is the lowest wavenumber in the inertial range (Kraichnan 1971a). Falkovich &
Lebedev (1994) have offered an alternative explanation for this same scaling. However,
the true inertial-range behaviour of two-dimensional turbulence is still a subject of much
controversy.

Until the recent high-resolution work of Borue (1993), virtually all numerical simula-
tions of two-dimensional Navier–Stokes turbulence have suggested an energy spectrum
steeper than k−3, often more like k−4. Those results conflict not only with Kolmogorov’s
dimensional reasoning but also with atmospheric observations (Boer & Shepherd 1983)
and statistical theories of turbulence. Many researchers attribute this steepening to the
presence of coherent structures (McWilliams 1984) since these long-lived formations are
mistreated by low-order statistical theories. Santangelo et al. (1989) and Benzi et al.

(1990) have argued that the actual spectral behaviour depends strongly on the initial
vorticity distribution.

The present work began with the idea that at least some of the observed steepening
might actually be due to the logarithmic correction in (1.1), which has often been ignored
by previous researchers. In Fig. 1 we compare the functions k−3, k−4, and equation (1.1).
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Figure 1. Comparison of the scalings k−3, k−4, and k−3(log k)−1/3, with arbitrary
normalizations.

As pointed out by Herring et al. (1974), the logarithmically corrected k−3 law can easily
be mistaken for a k−4 law at low wavenumbers. The logarithmic correction is certainly
not negligible near the injection wavenumber; in fact, it diverges at k = k1. This is
illustrated in the graphs of the logarithmic slope

d log E(k)

d log k
= −3 −

1

3 log k
(1.2)

of E(k) in Fig. 2 for several values of the parameter N , the number of inertial-range
decades. For most conventional simulations, N is no larger than 2. Since the data
from direct simulations tends to be noisy, the slope of the energy spectrum is usually
determined from the slope of a tangent line fitted to the data at some point in the middle
of the inertial range. The vertical line in Fig. 2 is intended to indicate the effective
wavenumber at which the slope would be evaluated by this technique. We suggest that
the logarithmic correction could be especially significant in older simulations, where the
forcing and dissipation scales were not well separated.

To add further fuel to this debate, it would be interesting to investigate the predictions
of a class of analytical approximations known as statistical closures. These descriptions
of turbulence provide approximate evolution equations for the statistical correlation func-
tion rather than the velocity field itself. The test-field model [TFM] (Kraichnan 1971b)
seems ideally suited for this purpose. Despite the fact that the TFM equations were
argued to be dimensionally consistent with (1.1) by Kraichnan (1971a), this has never
actually been demonstrated numerically in the literature (e.g. cf. Herring (1985)).
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Figure 2. Logarithmic slope of the scaling (1.1) for various values of N , the number of
decades in the inertial range.

2. Inertial-range scalings

We begin with a systematic review of the dimensional analysis underlying the Kol-
mogorov and Kraichnan scalings, focusing on the separate cases of two- and three-
dimensional turbulence.

2.1. Three-dimensional turbulence

The Kolmogorov hypothesis relies on the fact that energy is not created or destroyed
within the inertial range; it is merely redistributed among the inertial-range wavenum-
bers. Kolmogorov (1941) suggested that the significant dynamical interactions between
the turbulent eddies are local in wavenumber space. That is, very large eddies will not
interact directly with very small eddies, but only via eddies of an intermediate size.

The total energy in all eddies larger than a given scale k−1 is
∫ k

0
E(k) dk, where E(k)

is the energy spectrum. While the shearing effect of the large eddies will significantly
distort the small eddies, the random interactions of the many small eddies with the large
ones tends to average out their distorting effect. Let us denote the rate of energy transfer
to eddies of size k−1 and energy kE(k) from larger eddies by η(k) kE(k), where η(k) is
the rate at which a unit amount of energy is transferred. Dimensional analysis and the
fact that eddies are distorted by the shear in the large-scale flow, rather than by the
mean flow itself, lead to the scaling (Kraichnan 1971a)

η2(k) ∼

∫ k

0

k
2

E(k) dk. (2.1)

The rate of energy transfer from eddies larger than k−1 to eddies smaller than k−1 is
hence proportional to the quantity (Ellison 1962)

Π(k)
.
=

[

∫ k

0

k
2

E(k) dk

]1/2

kE(k); (2.2)
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we will see below that the constant of proportionality is related to the Kolmogorov
constant. (We emphasize definitions with the notation ‘

.
=’.)

For statistically stationary turbulence, the amount of energy contained in eddies of a
given size is independent of time. Kolmogorov’s locality hypothesis would then imply that
Π must be independent of k. However, it is well known that real turbulent interactions are
not strictly local (particularly in the two-dimensional case discussed below). Indeed, the
weighted integral of the energy spectrum appearing in (2.1) actually allows for nonlocal
energy transfer. Instead of assuming locality, let us adopt the less restrictive ansatz that,
for wavenumbers lying well within the inertial range, the self-similarity of the turbulent
interactions makes Π(k) independent of k. We will see in §3 that within the context
of statistical closure models, the constancy of Π is actually a very good approximation,
even for the nonlocal two-dimensional enstrophy cascade.

Upon denoting f(k) = kE(k), one may then differentiate the identity

Π2

f2(k)
=

∫ k

0

kf(k) dk (2.3)

with respect to k to determine that −2Π2f ′/f4 = k. Integration of this result between
some reference wavenumber k0 and k leads to the modified Kolmogorov law

E(k) = k−1

[

3

4Π2
(k2 − k2

0
) + k−3

0
E−3(k0)

]

−1/3

(k > k0). (2.4)

This result may be written more compactly as

E(k) =

(

4

3

)1/3

Π2/3k−5/3χ−1/3(k) (k > k0), (2.5)

in terms of the correction factor

χ(k)
.
= 1 −

k2
0

k2
(1 − χ0), (2.6)

where χ0

.
= 4Π2k−5

0
E−3(k0)/3 = χ(k0) > 0. It is often convenient to choose k0 to be the

lowest wavenumber in the inertial range.
The correction factor χ(k) in (2.5) is analogous to the logarithmic correction in Kraich-

nan’s two-dimensional enstrophy cascade law, (1.1). However, (2.5) does not predict
a divergence of the energy spectrum at the injection wavenumber since χ0 > 0. For

k � k0|1 − χ0|
1/2

, the inertial-range energy spectrum reduces to the usual Kolmogorov
law

E(k) =

(

4

3

)1/3

Π2/3k−5/3. (2.7)

As was pointed out by Kraichnan (1971a), the dominant contribution to η(k) in this
limit comes from wavenumbers k ≈ k, as can be seen by substituting (2.7) into (2.1).
This is consistent with Kolmogorov’s locality hypothesis.

To the author’s knowledge the correction factor χ(k) in (2.5) has not been reported
previously. When χ0 � 1, the spectrum will differ from (2.7) only for wavenumbers very
close to the injection wavenumber k0, where χ(k) will lead to a steepening of the energy
spectrum, as illustrated in Fig. 3. Notice that the discrepancy is more subtle than in
Fig. 2. In the case χ0 ≈ 1, the spectrum will be indistinguishable from (2.7). Finally,
in the case χ0 > 1, there will be a region above k0 over which the spectrum will be less
steep than k−5/3. We present numerical evidence for this case in §3. In the extreme
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Figure 3. Logarithmic slope of the scaling (2.5) for χ0 = 0 and various values of N , the
number of decades in the inertial range.

limit where k0 6 k � k0(χ0 − 1)
1

2 , one expects the energy spectrum to exhibit a k−1

behaviour.

2.2. Two-dimensional turbulence

Kolmogorov’s arguments are based on the conservation of

E =

∫

∞

0

E(k) dk. (2.8)

Turbulence in two dimensions is complicated by the presence of an additional enstrophy

invariant:

Z =

∫

∞

0

k2E(k) dk. (2.9)

Kolmogorov’s picture of energy transfer to the smallest scales cannot be correct in two
dimensions since such a redistribution of the energy would imply the creation of new
enstrophy (Fjørtoft 1953). Instead, Kraichnan (1967, 1971a) postulated that it is the
rate of enstrophy, not energy, transfer that is independent of k. The enstrophy transfer
rate from eddies larger than k−1 to eddies smaller than k−1 is proportional to

ΠZ(k)
.
=

[

∫ k

0

k
2

E(k) dk

]1/2

k3E(k). (2.10)

Upon letting f(k) = k3E(k) and differentiating as before, we find that −2Π2f ′/f4 =
1/k. We may integrate this result between some reference wavenumber k1 and k to obtain

E(k) = k−3

[

3

2Π2

Z

log

(

k

k1

)

+ k−9

1
E−3(k1)

]

−1/3

(k > k1). (2.11)

It is often convenient to let k1 be the lowest wavenumber in the enstrophy inertial range.
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Let us rewrite (2.11) in the form

E(k) =

(

2

3

)1/3

Π
2/3

Z k−3χ−1/3(k) (k > k1), (2.12)

where

χ(k)
.
= log

(

k

k1

)

+ χ1 (2.13)

and χ1

.
= 2Π2

Zk−9

1
E−3(k1)/3 = χ(k1). Since χ1 > 0, the divergence exhibited by (1.1) at

k = k1 has been removed in (2.12). The logarithmic factor will be significant when χ1 � 1
and for wavenumbers near k1. Upon substitution of (2.12) into (2.1), it is evident that
the dominant contribution to η(k) is from wavenumbers k ≈ k1. The enstrophy transfer
in two-dimensional turbulence is thus seen to be highly nonlocal.

At wavenumbers below k1 an energy inertial range of the form (2.5) will develop,
governed by a uniform rate of energy transfer. In this case k0 still represents the lowest
wavenumber in the energy inertial range; it is equivalent now not to the highest injection
wavenumber but to the highest large-scale dissipation wavenumber. In either two or
three dimensions, the eddy distortion (turnover) rate ηk for the energy inertial range is
given by

ηk =

[

∫ k

0

k
2

E(k) dk

]1/2

∼
1

kE(k)
∼

[

k2 − k2

0
(1 − χ0)

]1/3

, (2.14)

while for the two-dimensional enstrophy range,

ηk =

[

∫ k

0

k
2

E(k) dk

]1/2

∼
1

k3E(k)
∼

[

log

(

k

k1

)

+ χ1

]1/3

. (2.15)

2.3. Discussion

It should be emphasized that the expressions for χ(k) in (2.6) and (2.13) rely only on the
assumption that the quantity Π(k) defined in (2.2) is independent of k. This conjecture
is based on the form of ηk given in (2.1). One might argue that, while this relation
is perhaps valid asymptotically for high k, it could miss important large-scale physics
and should not be used to determine the form of the energy spectrum near the injection
wavenumber. The possibility of new physics entering (2.1) certainly cannot be ruled out;
however, the point of the calculation given here is that the self-similarity arguments of
Kolmogorov and Kraichnan are actually consistent with scaling relations more general
than the classical k−5/3 and log-corrected k−3 laws.

Even if (2.1) breaks down near the injection wavenumber, (2.5) and (2.12) still contain
useful information, provided that (2.1) is approximately valid for wavenumbers k larger
than some reference wavenumber k0. In this case, these formulae describe how the
asymptotic Kolmogorov–Kraichnan scalings should be matched to the dynamics at scales
larger than k−1

0
.

Eventually, the large-scale corrections proposed in this work should be tested by direct
comparison with experiment and numerical simulation. For the time being, the noisiness
of experimental and simulation data and the subtlety of the corrections precludes a
detailed comparison. However, as a first step towards this goal, we demonstrate in the
next section that the constancy of Π(k) and the resulting corrections to the Kolmogorov
theory are at least consistent with the predictions of statistical closure approximations.
These pedagogical tools also provide us with a measure of the wavenumber resolution
that will be required to verify the proposed modifications directly.
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3. Closure results

To illustrate the above scalings we will use a recently developed statistical approxima-
tion known as the realizable test-field model [RTFM] (Bowman & Krommes 1997). The
RTFM is closely related to Kraichnan’s TFM but has improved transient behaviour since
the random source term in its underlying Langevin representation is not δ-correlated. In
the presence of non-Hermitian linear effects (waves) such as those encountered in geo-
physical and plasma turbulence, the RTFM, unlike the TFM, is guaranteed to predict
positive energies (Bowman & Krommes 1997). We will compare the RTFM results to
those obtained with the realizable Markovian closure [RMC] (Bowman et al. 1993). Like
Kraichnan’s direct-interaction approximation [DIA] (Kraichnan 1958, 1959, 1961), the
RMC is not invariant to random Galilean transformations of the primitive equations
(Kraichnan 1964, Leslie 1973); it therefore predicts the incorrect inertial-range scaling
k−5/2 (Herring et al. 1974, Bowman 1992). The RMC is closely related to a DIA-based
eddy-damped quasinormal Markovian [EDQNM] closure (Orszag 1977, Bowman 1992)
but, unlike the EDQNM, it is realizable in the presence of a linear frequency. In a steady
state, the RTFM reduces to the TFM equations and the RMC reduces to the EDQNM
equations, so that these distinctions need not concern us here.

3.1. Energy spectra

The closure equations were solved by partitioning the wavenumbers into 64 bins, using
the convergent technique of wavenumber partitioning described by Bowman (1996). In
Fig. 4 we graph the steady-state energy spectrum for two-dimensional turbulence as
predicted by the RTFM closure. (The value 1.0 was chosen for the overall multiplicative
factor g entering the expression for the eddy turnover time in the RTFM equations.) To
obtain optimal use of the available wavenumber range we replaced the usual Laplacian
viscosity νk = ν2k

2 with the hyperviscosity νk = ν6k
6, where ν6 was chosen (in terms of

ν2) to keep the enstrophy flux invariant. It was verified that this modification had no
effect on the large-scale dynamics (Bowman 1996). We estimate the Reynolds number
R = 2π(2E)1/2/(kfν2) ≈ 1016 for this case, with kf = 4.25 and a saturated total energy
E = 5.6.

The logarithmic slope of the energy spectrum is indicated by the solid line in Fig. 5. We
verify in Fig. 6 the linear behaviour of [k3E(k)]−3 with respect to log(k/k1) as predicted
by (2.12), taking k1 = 76. From the slope of the line determined by a least-squares fit
we calculate χ1 = 3.5; this value of χ1 was then used in (2.13) to evaluate the corrected
slope

d log
[

E(k) χ1/3
]

d log k
(3.1)

plotted in Fig. 7. We thus see that an inertial range consistent with (2.12) has developed
over about four wavenumber decades. Finally, in Fig. 8 we observe that the corrected
eddy distortion rate ηkχ−1/3 is nearly constant over the inertial range, in accordance
with (2.15).

In contrast, the (DIA-based) RMC closure predicts a slope of −2.5, as is illustrated
in Fig. 5. As a consequence of its violation of random Galilean invariance, this closure
introduces a spurious transfer of enstrophy from large to small scales that leads to an
energy spectrum shallower than k−3.

By injecting energy at a high wavenumber, kf = 1.7×107, and imposing a strict cutoff
on the high-wavenumber dissipation, it is possible to focus on the energy inertial range.
The steady-state energy spectrum obtained with the RTFM closure is depicted in Fig. 9.
In Fig. 10, a region where the logarithmic slope is less than −5/3 is apparent near k = 20.



8 J. C. Bowman

Figure 4. Energy spectrum for high Reynolds number two-dimensional fluid turbulence
predicted by the RTFM.

This case is an example where χ0 > 1, as indicated in Fig. 11. A linear least-squares fit
yields χ0 = 1.13; this value was used in (2.6) to obtain the corrected logarithmic slope
(3.1) shown in Fig. 12. An energy inertial range of the form k−5/3 is clearly visible. In
Fig. 13 we see that the scaling of the eddy distortion rate is consistent with (2.14).

Finally, if energy is injected at an intermediate wavenumber, kf = 3.5 × 104, both an
energy and enstrophy inertial range can develop, as illustrated in Figs. 14 and 15.

3.2. Energy and enstrophy transfer

The nonlinear energy transfer function ΠE can be defined by

ΠE(k)
.
= 2

∫

∞

k

dk T (k), (3.2)

where T (k) is the triplet correlation function appearing in the energy equation

∂

∂t
E(k) + 2νkE(k) = 2T (k). (3.3)

If the nonlinear term is conservative, then
∫

∞

0

dk T (k) = 0, (3.4)

so that ΠE may be equivalently written as

ΠE(k) = −2

∫ k

0

dk T (k). (3.5)

Note that (3.4) implies

ΠE(0) = ΠE(∞) = 0. (3.6)

The flow of energy to the high wavenumbers across a surface of constant wavenumber k
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Figure 5. Logarithmic slope of the RTFM energy spectrum in Fig. 4 (solid line) and RMC
prediction (dashed line).

may then be written in terms of its nonlinear and linear contributions:

∂

∂t

∫

∞

k

dk E(k) = ΠE(k) − εE(k), (3.7)

where εE(k)
.
= 2

∫

∞

k dk νkE(k) is the total linear forcing into all wavenumbers higher
than k. A positive (negative) value for ΠE(k) represents a flow of energy to wavenumbers
higher (lower) than k.

For the two-dimensional inverse energy cascade, one would expect ΠE(k) to be negative
to the left of the injection range, as is observed in Fig. 16. Since the system is very
close to a steady state, the solid and dashed lines, which respectively depict the linear
(εE) and nonlinear (ΠE) contributions to the energy transfer, coincide. Note that (3.6)
is obeyed. At earlier times, one finds that while (3.6) is always satisfied, the linear
contribution differs substantially from the nonlinear contribution; this is an indication
that the spectrum is still evolving.

In a similar manner, one may define the enstrophy transfer ΠZ , plotted in Fig. 17.
Since it is positive in the enstrophy inertial range, this graph confirms that enstrophy is
indeed being transferred to higher wavenumbers.

4. Conclusions

This work has highlighted the importance of the logarithmic correction in the enstrophy
cascade. Now that the strict divergence in this correction has been removed, the role of
this factor should be taken more seriously by the community in comparisons of theoretical
scalings with numerical simulation data. The existence of a less significant energy inertial-
range correction was also demonstrated in this work. The arguments are applicable even
to highly nonlocal turbulence (such as is encountered in two dimensions), provided that
there is sufficient self-similarity to make Π constant within the inertial range.



10 J. C. Bowman

Figure 6. Linearity of [k3E(k)]−3 with respect to log(k/k1) for k > k1 = 76. The solid
triangles are the RTFM predictions.

Figure 7. Corrected logarithmic slope of the energy spectrum in Fig. 4.

The asymptotic nature of inertial-range scaling laws must be emphasized. The the-
oretical scalings are expected only in the limit of an infinite inertial range, i.e., when
the dissipation and forcing wavenumbers are widely separated. The wavenumbers at the
ends of a finite inertial range are influenced by the shape of the energy spectrum outside
the inertial range and will not exhibit true inertial-range behaviour. This is especially
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Figure 8. Corrected eddy distortion rate ηkχ−1/3 for the energy spectrum in Fig. 4.

Figure 9. Energy inertial range obtained with the RTFM.

true for the enstrophy cascade, where the nonlinear transfer is more nonlocal than in the
energy range.

In the evaluation of inertial-range exponents, the eye can be easily deceived by the usual
guide lines that are drawn tangent to the energy spectrum (cf. Fig. 1 and Kraichnan
1991, pp. 76–77). Fortunately, in the case of statistical closure data, it is possible
to compute the logarithmic slope of the energy spectrum by exploiting the inherent
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Figure 10. Logarithmic slope of the energy spectrum in Fig. 9.

Figure 11. Linearity of [k5/3E(k)]−3 with respect to k2

0/k2 for k > k0 = 24.8. The solid
triangles are the RTFM predictions.

smoothness of the solutions. One can then gain insight into how widely separated the
scales of injection and dissipation must be for a proper inertial range to develop. The
numerical results presented in this work suggest that many decades of wavenumber are
required. For example, the inertial range that developed in a wavenumber domain of
nearly eight decades was only about four decades wide. Even with this much resolution,
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Figure 12. Corrected logarithmic slope of the energy spectrum in Fig. 9.

Figure 13. Corrected eddy distortion rate ηkχ−1/3 for the energy spectrum in Fig. 9.

the theoretical scalings of the eddy turnover times with wavenumber were just barely
resolved (cf. Figs. 8 and 13).

Given the nonlocality of two-dimensional turbulence, it is not surprising that there has
been so much difficulty demonstrating universal behaviour in past conventional simula-
tions of this phenomenon. Perhaps the recent work of Borue (1993) may mark the turning
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Figure 14. Energy and enstrophy inertial ranges obtained with the RTFM.

Figure 15. Logarithmic slope of the energy spectrum in Fig. 14.

point in this controversy. However, the closure calculations presented here make it clear
that very high computer resolution will be required to settle the matter conclusively.

The author is indebted to P. J. Morrison for suggesting the possibility of additional
features in the energy inertial range. The author would also like to acknowledge dis-
cussions with J. A. Krommes and T. G. Shepherd and financial support from a Natural
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Figure 16. Energy transfer function ΠE for the energy spectrum in Fig. 14.

Figure 17. Energy transfer function ΠZ for the energy spectrum in Fig. 14.

Sciences and Engineering Council of Canada Postdoctoral Fellowship and United States
DoE contract No. DE–FG05–80ET–53088.
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In Mécanique de la Turbulence No. 108, pp. 113–121. Paris C.N.R.S.

Falkovich, G. & Lebedev, V. 1994 Universal direct cascade in two-dimensional turbulence.
Phys. Rev. E 50, 3883–3899.

Fjørtoft, R. 1953 On the changes in the spectral distribution of kinetic energy for two dimen-
sional, nondivergent flow. Tellus 5, 225–230.

Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G. 1974 Decay of two-
dimensional homogenous turbulence. J. Fluid Mech. 66, 417–444.

Herring, J. R. 1985 Comparison of direct numerical simulation of two-dimensional turbulence
with two-point closure: the effects of intermittency. J. Fluid Mech. 153, 229–242.

Kolmogorov, A. 1941 The local structure of the turbulence in incompressible viscous fluid for
very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–306. Reprinted in proc. r.
soc. lond. a434, 9–13,1991.

Kraichnan, R. H. 1958 Irreversible statistical mechanics of incompressible hydromagnetic
turbulence. Phys. Rev. 109, 1407–1422.

Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds numbers.
J. Fluid Mech. 5, 497–543.

Kraichnan, R. H. 1961 Dynamics of nonlinear stochastic systems. J. Math. Phys. 2, 124–148.
Kraichnan, R. H. 1964 Decay of isotropic turbulence in the direct-interaction approximation.

Phys. Fluids 7, 1030–1047.
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–

1423.
Kraichnan, R. H. 1971 Inertial-range transfer in two- and three-dimensional turbulence. J.

Fluid Mech. 47, 525–535.
Kraichnan, R. H. 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid

Mech. 47, 513–524.
Kraichnan, R. H. 1991 Turbulent cascade and intermittency growth. Proc. R. Soc. Lond.

Ser. A 434, 65–78.
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Clarendon Press, Oxford.
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J.

Fluid Mech. 146, 21–43.
Orszag, S. A. 1977 Lectures on the statistical theory of turbulence. In Fluid Dynamics, edited

by Balian, R. & Peube, J.-L. pp. 235–373. Gordon and Breach, London (summer school
lectures given at Grenoble University, 1973).

Santangelo, P., Benzi, R. & Legras, B. 1989 The generation of vortices in high-resolution,
two-dimensional decaying turbulence and the influence of initial conditions on the breaking
of self-similarity. Phys. Fluids A 1, 1027–1034.


