
J Sci Comput (2015) 64:151–177
DOI 10.1007/s10915-014-9928-8

A Fully Lagrangian Advection Scheme

John C. Bowman · Mohammad Ali Yassaei · Anup
Basu

Received: 2 November 2013 / Revised: 8 September 2014 / Accepted: 23 September 2014 /
Published online: 7 October 2014
© Springer Science+Business Media New York 2014

Abstract A numerical method for passive scalar and self-advection dynamics, Lagrangian
rearrangement, is proposed. This fully Lagrangian advection algorithm introduces no arti-
ficial numerical dissipation or interpolation of parcel values. In the zero-viscosity limit, it
preserves all of the Casimir invariants associated with parcel rearrangement. In the two-
dimensional case presented here, these invariants are arbitrary piecewise continuous func-
tions of the vorticity and concentration fields. The initial parcel centroids are evolved in a
Lagrangian frame, using the method of characteristics. At any time this Lagrangian solu-
tion may be viewed by projecting it onto an Eulerian grid using a rearrangement map. The
resulting rearrangement of initial parcel values is accomplished with a weighted Bresenham
algorithm, which identifies quasi-optimal, distributed paths along which chains of parcels
are pushed to fill in nearby empty cells. The error introduced by this rearrangement does not
propagate to future time steps.

Keywords Incompressible viscous fluids · Lagrangian advection · Casimir invariants ·
Parcel rearrangement · Relabelling symmetry

Mathematics Subject Classification 76M25 · 76D99 · 76M27

This work was supported by the Natural Sciences and Engineering Council (NSERC) of Canada.

J. C. Bowman (B) · M. A. Yassaei
Department of Mathematical and Statistical Sciences, University of Alberta,
Edmonton, Alberta T6G 2G1, Canada
e-mail: bowman@ualberta.ca

M. A. Yassaei
e-mail: m.a.yassaei@gmail.com

A. Basu
Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
e-mail: basu@ualberta.ca

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-014-9928-8&domain=pdf

152 J Sci Comput (2015) 64:151–177

1 Introduction

The advection–diffusion equation arises inmany scientific disciplines such as electro-osmotic
flow, geophysical fluid dynamics (including meteorology, climate change, and hurricane pre-
diction), thermonuclear fusion in plasmas, and mathematical biology. A model of electro-
osmotic advection characterized by extremely small diffusion rates provided the initial moti-
vation for the development of this work [1,11]. Consider the incompressible advection–
diffusion equation

∂U
∂t

+ v·∇U = D∇2U, (1)

where the advecting velocity field v = v(x, t) satisfies the solenoidal condition ∇·v = 0,
and D is a constant diagonal diffusion matrix. The advecting velocity is either a specified
field (passive advection) or a functional of U (self-advection). We are primarily interested in
the transport of a self-advected quantity U = (ω, C) by a two-dimensional fluid that flows
in a domain with velocity v, where the quantities C = C(x, t) and ω ẑ = ω(x, t) = ∇×v

represent the concentration and vorticity fields, respectively, and ẑ is a unit vector normal to
the plane of the flow.When the velocity v is incompressible (∇·v = 0), the advection equation
is an example of a flux-conservative system ∂U/∂t = −∇·F, where F = vU − D·∇U . In
self-consistent advection, the velocity is typically determined by the incompressible Navier–
Stokes equation

∂v

∂t
+ v·∇v = − 1

ρ
∇P + ν∇2v, (2)

where v = v(x, t) is the velocity, P is the pressure, ρ is the density, and ν is the viscosity.
It is convenient to take the curl of (2) to eliminate the pressure field P, which leads to an
equation for the vorticity:

∂ω

∂t
+ v·∇ω = ν∇2ω. (3)

The concentration field evolves according to

∂C

∂t
+ v·∇C = D∇2C, (4)

where D is a scalar diffusion constant, so that D =
(

ν 0
0 D

)
in (1).

The general solution of the passive advection equation with no diffusion,

∂C

∂t
+ v·∇C = 0, (5)

is a wave moving with velocity v. This solution C(x, t) = C
(
ξ0(x, t), 0

)
can be written

in terms of the initial parcel position ξ0 = ξ0(x, t) defined by the Lagrangian position
variable ξ(t) = ξ0 + ∫ t

0 v(ξ(τ), τ) dτ such that ξ(t) = x. In the special case where the
velocity field v = v(τ) is independent of position, ξ0(x, t) = x − ∫ t

0 v(τ) dτ and C(x, t) =
C

(
x − ∫ t

0 v(τ) dτ, 0
)
.

It is well known that the forward-time centered-space Eulerian differencing scheme for
advection is unstable (e.g., see [31]). Conventional methods for avoiding this instability sac-
rifice accuracy. For example, the Lax scheme adds a diffusion term, or numerical dissipation,

123

J Sci Comput (2015) 64:151–177 153

to the partial differential equation. This method is stable if the time step is chosen to sat-
isfy the Courant condition [10]. To help counter the effect of numerical dissipation, one
can use flux-corrected transport, which adds an anti-diffusion term to the equation [36,41].
Upwind differencing is a stable discretization that accounts for the fact that the rate of change
of the flow is directionally dependent, but it adds unwanted numerical dissipation and is
only first-order accurate in the time step. The staggered leapfrog method is a centered-time
centered-space discretization based on two staggered temporal partitions. It is second-order
accurate in time, as is the two-step Lax–Wendroff scheme [24], in which the flux is calculated
and used to determine the concentration field at the next time step.

Lagrangian schemes use a grid that moves with the flow as opposed to an Eulerian fixed
grid. That is, derivatives are calculated in the Lagrangian frame of reference, where advection
is most naturally described. In this frame the variable x is also a function of t and, in the
absence of dissipation, the total derivative of C is zero:

dC(x(t), t)

dt
= dx

dt
·∇C + ∂C

∂t
= v·∇C + ∂C

∂t
= 0,

where v = dx/dt . This conservation equation expresses the fact that the scalar field C
is neither created nor destroyed, only rearranged, by the advecting field v. The two key
components of any Lagrangian scheme are: (i) a method for following the characteristics;
and (ii) amethod for viewing the solution on anEulerian grid. In fully Lagrangian schemes, the
grid is attached to and moves with the flow. In conventional implementations of Lagrangian
schemes, one typically needs to remesh after a finite number of time steps. In this work, we
propose a fully Lagrangian scheme that does not require remeshing. The characteristics of
the flow are followed using the classical fourth-order Runge–Kutta algorithm. The centroids
of a finite number of discrete parcels characterized by distinct values of ξ0 are evolved on
a spatial grid. At each time step, the new position of a given parcel is computed using its
previous position and the local flow velocity.

To view a fully Lagrangian solution to an advection problem on an Eulerian grid, one also
needs a projection scheme. Normally, area-weighted interpolation is used. However, in this
work we construct a scheme for projecting onto the rearrangement manifold that respects an
infinite hierarchy of conservation laws essential to a propermathematical model of advection.
Even when diffusion is added to this fully Lagrangian algorithm (using a semi-Lagrangian
area-weighted interpolation scheme like the one described next), our proposed algorithm
(illustrated in Fig. 5) exhibits much better energy decay characteristics (cf. Fig. 14).

In semi-Lagrangian schemes, the grid is fixed in time: although the advective derivatives
are calculated in aLagrangian frame, the other spatial derivatives are calculated on anEulerian
grid. The idea is to discretize the advective terms in a Lagrangian frame and then project
the Lagrangian solution back onto an Eulerian grid, avoiding the instability of forward-
time-centered-space Eulerian schemes and the inherent complications of fully Lagrangian
remeshing. For example, in the advection scheme for shallow water waves described by
Behrens [5], backtracked trajectories seldom land on a grid point. Interpolation is therefore
used in order to determine the values ofC between grid points. This interpolation can produce
large numerical dissipation. Moreover, it does not respect fundamental properties of the
flow, specifically the conservation of the Casimir invariants discussed in the next section.
In problems involving a mass flow, it is sometimes possible to modify a semi-Lagrangian
scheme so that it at least conserves mass (for example, see [4] and [26]).

The particle-in-cell method represents a piecewise constant approximation of the solu-
tion as a mesh of moving nodes (“particles”) advected by the flow. First, the positions of
the particles are advected in the Lagrangian frame. Their associated physical attributes

123

154 J Sci Comput (2015) 64:151–177

(in our case vorticity and concentration values) are then projected using area-weighted inter-
polation onto a finite Eulerian grid. One can then solve for the contributions to the evolution
from diffusion and any other nonadvective terms on the Eulerian grid and project the result
back onto the Lagrangian grid, again using area-weighted interpolation. The procedure is
then repeated for the next time step (for example, see [25] and [20]). Particle-in-cell meth-
ods tend to be noisy unless a very large number of particles are used. While they guarantee
mass conservation, other conservation laws, such as energy conservation, are not necessarily
guaranteed. A variation of the particle-in-cell approach, smoothed particle hydrodynamics
[17,34], adjusts the particle characteristic size and/or shape to local conditions, allowing the
resolution of the simulation to automatically adapt to inhomogeneities in the flow, without
the complications and expense of constructing a dynamically adaptive grid.

Godunov [18] developed a discretization for fluid dynamics with shocks by modelling the
fluid as a large number of uniform cells joined by the Riemann solution for the dynamics at an
interface between two uniform fluid regions. For example, Fraccarollo et al. [16] developed
a finite-volume solver by using the Godunov method to estimate the flux from the solution
to the Riemann problem for open-channel flows. A higher-order extension of the Godunov
method called the piecewise parabolic method was presented by Woodward and Colella
[38]; it uses high-order spatial interpolation to represent steep discontinuities. In that work,
the addition of diffusion is essential. They also performed a comparison between numerical
methods for simulating hydrodynamic flow in two dimensions, concentrating on fluid flow
with strong shocks [37]. Another class of discretizations suitable for flows with shocks are
the discontinuous Galerkin finite-element methods, which project the solution onto a basis
of discontinuous piecewise polynomial functions.

Level-set methods [19,23,27,29,33] provide another approach to the advection problem.
They use the Hamilton–Jacobi methodology to describe propagating fronts as the zero level
set of a higher dimensional function. However, when applied to incompressible flow, level
set methods do not automatically conserve area. The related method of contour dynamics
[40] describes the evolution of vorticity contours in inviscid two-dimensional flow. Contour
surgery [12,13] provides a topological mechanism for reconnecting contour lines to smooth
out the singularities that arise when level sets become highly distorted by the flow.

Wang et al. [35] recently studied the application of advection in weather research and fore-
casting. They showed that incorporating a positive-definite flux limiter results in fewer cloud
droplets and smaller cloud albedo than existing methods. Zhuang et al. [42] use implicit
and explicit Euler approximations to solve the fractional advection–diffusion equation on
a finite domain with a nonlinear source term. They propose a fractional method of lines,
an extrapolation method, and a matrix transfer technique in the process of solving the
problem. Yong et al. [39] use the concept of random-walk particle tracking to solve the
space-fractional advection–dispersion equation. While their approach does not require spa-
tial discretization and does not suffer from numerical dispersion, their algorithm handles only
the one-dimensional case. A method for solving the advection of large-scale weak magnetic
fields in accretion disks was proposed by Rothstein and Lovelace [32]. Their research can be
applied to model jet formation; however, limited numerical experiments and verification of
their approach were presented.

In this work, a new numerical method for advection that avoids introducing artificial dis-
sipation or the need to remesh, is proposed. In particular, we construct a numerical algorithm
that conserves the global (integrated) value of an arbitrary smooth function ofC in the limit of
zero dissipation. For such systems, future values of the flow quantities are simply rearrange-
ments of the current values.We constrain the numerical discretization to enforce this property
by tracking the centroids of discrete parcels from their initial positions forward in time. At

123

J Sci Comput (2015) 64:151–177 155

any time, the solution may be viewed by projecting it onto a rearrangement manifold, the set
consisting of all rearrangements of the initial conditions. In Sect. 2 we introduce a method to
conserve the Casimirs invariants, and the algorithm for this method is discussed in Sect. 3.
The complexity of the algorithm is approximated in Sect. 5. We extend the algorithm to
handle both diffusion and self-consistent advection in Sect. 4. Finally, in Sect. 6 the method
is illustrated numerically and compared with a conventional semi-implicit scheme.

2 Lagrangian Rearrangement

In this section we propose the method of Lagrangian rearrangement for projecting a fully
Lagrangian solution of the passive advection equation, (5), onto an Eulerian grid. We first
illustrate the method in the absence of diffusion. We constrain the numerical discretization
to mimic an important analytic property of advection, namely, the conservation of the global
integral of any smooth C1 function of the scalar concentration field:

d

dt

∫
f (C) dx =

∫
f ′(C)

∂C

∂t
dx = −

∫
f ′(C)v·∇C dx

= −
∫

v·∇ f (C) dx =
∫

f (C)∇·v dx = 0, (6)

using the incompressibility of the advecting velocity field v. Note that the above equation
also holds in the self-advected case whenC is replaced byω, which depends on the advecting
velocity v, so that d

dt

∫
f (ω) dx = 0.Equation (6) expresses the conservation of uncountably

many Casimir invariants (e.g., see [28]). It also holds when f is piecewise constant, where
we interpret f ′ as a distribution.

If we take f to be unity for a specified range of C values and zero elsewhere, we see
that the area of the flow associated with that range of C values must be invariant. Since con-
nectedness is preserved by the continuous (and area-preserving) advection map, we deduce
that a connected parcel having a particular C range gets mapped to a connected parcel of
the same area. Moreover, if the C values are partitioned into n uniform ranges, the evolved
state will consist of n distinct nonoverlapping patches associated with these ranges, possibly
highly distorted. Therefore, assuming that C is initially bounded, as n goes to infinity, the
resulting infinitesimal patches become rearranged into a highly complicated but nonoverlap-
ping union of distorted parcels. Values of C that were not present in the initial configuration
cannot be created, nor can existing C values be destroyed. Motivated by this exact property
of infinitesimal parcel rearrangement, in the discrete case, we represent the solution C(x)

as a piecewise-constant function that takes on the values Ci, j in each cell indexed by (i, j).
Under this assumption, the continuum property (6) reduces to

d

dt

∑
i, j

f (Ci, j) = 0. (7)

We propose that a mathematically faithful numerical model of advection should enforce this
discrete version of the above exact infinitesimal property.

On taking f (C) to be 1 ifC = C0 for some fixed valueC0, and zero otherwise, we see that
the number of cells with value C0 would then be invariant, just as in the infinitesimal case.
That is, the new values ofC at the current time step are prescribed to be rearrangements of the
old values (and hence of the initial conditions) at the previous time step. This rearrangement
property, depicted in Fig. 1, is known in the literature as a relabelling symmetry. If C is

123

156 J Sci Comput (2015) 64:151–177

Fig. 1 Demonstration of the parcel rearrangement property of advection in the absence of diffusion. In a the
initial state consists of a 4 × 4 Eulerian grid of distinct parcels characterized by different colours. The future
state predicted by: b Lagrangian rearrangement preserves the initial colours; c conventional semi-Lagrangian
interpolation mixes the colours, introducing new values and removing others (Color figure online)

assumed to be piecewise continuous, then f (C) is certainly integrable and hence theDarboux
integrability theorem guarantees that

∑
i, j f (Ci, j) on a sequence of uniform N × N grids

converges to
∫

f (C) dx as N → ∞. Hence, the value of the latter integral, like the sum,
must be constant. We thus see that (7), if it holds for all discrete grids, is a sufficient condition
for the exact property (6) to hold.

The role of Casimir invariants in two-dimensional phenomenological descriptions of fluid
flow is unclear. While the energy and enstrophy invariants are known to cascade to the large
scales and small scales, respectively, the cascade direction, if any, of the Casimir invariants
is controversial. Polyakov’s minimal conformal field theory model [30] predicts that higher-
order Casimir invariants cascade to large scales, while Falkovich [15] and Eyink [14] argue
that they should instead cascade to small scales. Recently, Bowman studied the cascade
direction of the global integral of the fourth power of the vorticity numericallywith amodified
pseudospectral code [6]. While the numerical evidence suggested that this positive-definite
Casimir invariant cascades to small scales, the study was complicated by the fact that such
higher-order Casimir invariants do not survive wavenumber truncation.

In this work we are therefore motivated to consider an alternative method for discretizing
advection equations that builds in the conservation of Casimir invariants from the outset.
In order to make contact with the pseudospectral method, we consider a two-dimensional
doubly periodic grid of cells. This allows us to focus on the implementation of the parcel
rearrangement constraint without being distracted by the additional complications associated
with fixed or even moving boundaries.

Each Eulerian cell is initially assigned a parcel of fluid that will be advected in the
Lagrangian frame. The displacement ξ = ξ0 + ∫ τ

0 v dt of each parcel is calculated at time
τ , where v = v(ξ , t) is the local velocity of the flow and ξ0 is the initial displacement. In
this fully Lagrangian formulation, the displacement is effectively calculated directly from the
initial position, so that projection errors do not propagate to future time steps: the Lagrangian
to Eulerian projection onto the rearrangement manifold is used only for viewing the current
state of the fluid, not for actually evolving the fluid. To evaluate the time integral, it is con-
venient to express the evolution of ξ as the initial value problem dξ/dt = v(ξ , t), where
ξ(0) = ξ0, for a specified function v(ξ , t). In the advection step, the classical fourth-order
Runge–Kutta scheme is used to calculate the current Lagrangian displacement of each parcel.
No projection to the Eulerian frame is done here; the Lagrangian position of the parcel is
retained to initialize future advection steps.

123

J Sci Comput (2015) 64:151–177 157

In classical Lagrangian codes for advection by an incompressible flow, the vertices of
the initially square parcels are advected by an area-preserving map to form an irregular
Lagrangian mesh consisting of quadrilateral cells. To view the Lagrangian solution, one
normally uses area-weighted interpolation to project the contributions from the quadrilaterals
onto Eulerian cells. However, in this work we propose that the centroids of these quadrilateral
parcels should be mapped onto the rearrangement manifold. Given a fixed velocity field,
the above integration at each stage amounts to a linear transformation of the quadrilateral
region. Under this transformation, the centroid of a parcel thus maps to the centroid of the
new quadrilateral formed by the evolved vertices. For the case of passive advection without
diffusion, one does not need to know the actual quadrilateral vertices and instead advects
only their centroids.

3 The Rearrangement Algorithm

Whenever we wish to view the current Lagrangian solution, we project a copy of it onto the
rearrangement manifold (i.e., onto the Eulerian grid). For each parcel, we first determine the
cell in which its current Lagrangian position lies. The problem that immediately arises is
that a given cell may contain more than one such parcel; some sort of competition must then
be held to determine which parcel should be projected to that cell. Recall that the discrete
rearrangement condition underlying (7) requires that each parcel be mapped to a unique cell.
Each cell would then adopt, at that instant, the fluid quantities of its associated parcel.

If the grid hasn cells,wewill have exactlyn parcels. If each parcel lieswithin a distinct cell,
there will be exactly one parcel per cell and we are done. However, in general, there may be
some cells denoted as “holes” that do not have any associated parcels and some cells denoted
as “piles” that contain more than one parcel. To enforce the preservation of the Casimir
invariants during parcel rearrangement, only one parcel from a pile can be transferred to a
hole; the others must be moved elsewhere. This step is denoted as the rearrangement step. By
simply taking the extra parcels in a pile and transferring them to the nearest holes, we would
create a discontinuity in the flow, which would constitute an enormous numerical defect. To
resolve this issue, we propose the following pushing algorithm. This algorithm must not be
confused with the so-called “particle-pushing” schemes used to follow the characteristics
of the advecting flow. At this point, the advection step has been completed and we are now
dealing with the problem of rearranging the n parcels into n cells for viewing the internal
fully Lagrangian solution.

First, we must deal with the issue of treating all of the cells on an equal footing, with-
out giving some the advantage of being processed first. At each stage of the Runge–Kutta
advection step, we advect all parcels simultaneously, using the current local velocity, without
reference to the locations of any other parcel. However, in the rearrangement step we cannot
deal with all piles simultaneously—we must start from one particular cell. In the algorithm
below, we start from the piles containing the greatest number of parcels since these are the
most difficult cases to resolve. While building the list of such cells, we alternate between
putting cells in the front or the back of the list. Refinements that effectively introduce further
randomization, to avoid undue bias in our processing decisions, will be discussed in Sect. 3.2.
Our rearrangement algorithm proceeds as follows:

1. Sort the piles by the number of parcels they contain.
2. Start with the piles containing the greatest number n of parcels. Process these cells first.
3. For each such pile (the starting cell), define its first shell to be the eight cells adjacent to

it and shell n to be those cells that are adjacent to, but not contained in, shell n −1. Search

123

158 J Sci Comput (2015) 64:151–177

Fig. 2 Rearrangement step:
parcels, denoted by stars, are
pushed from the pile (green cell)
to the hole (pink cell). Dots
denote cell centers and arrows
indicate parcel pushing (Color
figure online)

∗ ∗

∗ ∗ ∗

∗

A
B

C
D E

F

these rectangular shells successively for a hole, beginning with the innermost shell and
moving outwards. If more than one hole is found on a shell, choose the one closest to the
starting cell in the sense of having minimal path weight, as described in Sect. 3.2.

4. Form the discretized path from the starting cell towards the selected hole.
5. Attach the extra parcel in the starting cell to the first cell along this path, pushing parcels

successively along this path until the selected hole is filled with a parcel belonging to the
last cell along the path. The second cell in the path will thus take the extra parcel in the
starting cell, and the next cell will take the parcel previously located in the second cell,
and so on. Continue this pushing until the selected hole has been assigned a parcel, or in
other words, an initial value. The starting cell now has n − 1 parcels in it.

6. Proceed with the next pile containing n parcels, and repeat Steps 3–5 until no more cells
containing n parcels remain.

7. Repeat Steps 2–6 until all cells contain exactly one parcel; that is, until n = 1.

Notice that after Step 5, all cells along the path will have a new parcel in them relative to
their status at the end of the advection step. The corresponding hole is filled with one parcel,
and the starting cell will have one less parcel in it than it had before. At the end of Step 7, all
cells will contain exactly one parcel, as desired. The rearrangement step is then complete,
and each cell can have a unique value assigned to it. For example, since parcels E and F in
Fig. 2 belong to a pile, the nearest hole and a discretized path to it are found for the parcel
F . It is pushed to the first cell in the path, pushing the next parcel, D, to the next cell in the
path and ultimately putting parcel A into the hole.

3.1 Parcel Weights

A straightforward application of Bresenham’s algorithm [9] to select a (discretized) path
between a pile and a hole can increase the possibility of a parcel being pushed multiple
times. Suppose that in one time step, there are clusters of piles concentrated in one area
and a group of holes in another nearby area. In pushing a parcel from a pile to a hole, each
parcel in between is pushed once. If we process another parcel from the same crowded pile
area and push toward the same hole area, the parcels in between may be pushed a second
time. Processing all the parcels in this area can cause multiple pushes for parcels in between
the pile-rich and hole-rich areas that can result in spurious streaks in the flow visualization.
We can avoid multiple pushes by choosing a random path from a pile to a hole, introducing
stochasticity into the algorithm. Moreover, a parcel may be pushed far away from its original

123

J Sci Comput (2015) 64:151–177 159

Lagrangian position, resulting in large errors. In order to choose the best path, we introduce
a path weight for discretizing the line. Let the parcel weight d represent the distance between
the Lagrangian position of a parcel and the center of the cell into which it has been pushed.
Each time the parcel is pushed, the cell containing it will change, resulting in a change in d
(with no change to the Lagrangian position of the parcel). To alter the Bresenham algorithm
to a weighted algorithm, we take d into account when calculating the path between a pile
and a hole: parcels are inserted in such a way that the one with minimum d will be first in
the list, so that it will be processed or pushed first. This ensures that parcels are not pushed
too far from their Lagrangian positions.

3.2 A Weighted Bresenham Algorithm

In the weighted version of the algorithm (Appendix 1), the next cell to be included in the
path will be the cell containing the parcel with the minimum parcel weight of all parcels in
certain eligible neighbouring cells. In each case, to minimize excursions from the Lagrangian
(advected) positions, we choose the cell that contains the parcel withminimal distance d from
its Lagrangian position. In the rare case when parcels in the selected cells share the same
minimal value of d , we will pick the cell that the original Bresenham algorithm would have
picked. Depending on the choice of the next cell, we increment the x and/or y coordinate by
one, and include the new cell in the path. The problem is thus reduced to a new problem, using
the cell just selected as the new starting point. On reaching the hole, the algorithm terminates
(see Theorem 1 in “Appendix 2”). Other quadrants are dealt with in the same manner, but
the signs of some of the parameters are changed to decrement (rather than increment) the x
and/or y coordinates by one.

A question arises in the case where more than one hole is found in the same rectangular
shell around the pile: which hole should be selected as the destination?We resolve such cases
by invoking the weighted Bresenham algorithm on all possible choices of holes within the
shell, without actually pushing any parcels.We define the path weight of a particular path to be
the sum of all d values of the parcels to be pushed along that particular path. The Bresenham
path that returns the minimum path weight and its corresponding hole will be chosen as the
desired path and final destination, respectively. The theorem in “Appendix 2” establishes an
upper bound, �1.82x�, on the number of steps required by ourweighted Bresenham algorithm
to draw a line between two grid points on a unit square lattice that are x units apart. This is

not much greater than the
⌈√

2 x
⌉
steps required to draw a diagonal Bresenham line on a

unit lattice.

4 Extension to Self-consistent Advection and Diffusion

To solve the general advection–diffusion equation,

∂U
∂t

+ v·∇U = D∇2U, (8)

we need to add the diffusion term, as well as a method for handling self-advection,
to our algorithm. A significant source of error in the rearrangement algorithm used to
project the solution to the Eulerian grid for viewing comes from the somewhat arbitrary
algorithm used to push parcels from piles to holes. If the rearrangement algorithm were
used to solve the diffusion or self-advection terms, errors would accumulate since the
pushed values would be reused in calculating diffusion and self-advection. For the self

123

160 J Sci Comput (2015) 64:151–177

Fig. 3 Projection from a
Lagrangian to Eulerian grid

U 1

U 2

U 3

j

advection of vorticity described by ∂ω/∂t + v·∇ω = ν∇2ω, the advection term v·∇ω

would use the pushed values of ω to calculate v, so that errors associated with pushing
parcels would propagate to future time steps. More importantly, the use of the rearranged
vorticity field in calculating the diffusion term ν∇2ω would introduce large gradients in
the flow, resulting in excessive diffusion. To prevent this propagation of error, we calculate
the diffusion term as ν∇2ω, where ω is the vorticity field on an Eulerian grid obtained by
an area-weighted interpolation of the Lagrangian vorticity field (it is difficult to calculate a
Laplacian directly on a nonuniform Lagrangian grid). This decision does not degrade the
desired conservation properties (Casimir invariants) of the advective term. We calculate the
advecting velocity v = ẑ×∇∇−2ω from ω using a Poisson solver. The advecting veloc-
ity itself does not need to be a rearrangement of the initial conditions in order to conserve
the Casimir invariants. The diffusion of the concentration field C is handled in the same
manner.

We now discuss the scheme for transferring information (interpolating) between the
Lagrangian and Eulerian grids. The transfer is done by area-weighted bilinear interpolation.
Ideally, one should account for parcel distortion by the flow and project the area bounded
by the evolved vertices of the parcel (which form a quadrilateral) to the Eulerian grid. How-
ever, as the evolved parcel shape is not essential to the demonstration of how Lagrangian
rearrangement can be integrated with diffusion and self-advection, for simplicity we treat
each parcel as a square centered on its current Lagrangian position (the parcel centroid), in
analogy with the fixed particle shape used in particle-in-cell methods. To project information
from a Lagrangian frame to an Eulerian lattice, consider the (ω, C) values of the i th parcel,
which we denote by U i (see Fig. 3). This square will overlap some cells in the grid. Let Ai j

denote the area of the square centered on parcel i that overlaps with cell j . On accounting for
the contributions from all parcels whose bounding squares overlap the cell j , the interpolated
value U j is calculated as U j = ∑

i Ai jU i/
∑

i Ai j . If no parcels contribute to a cell, we
search outward in successive rectangular shells around the empty cell for cells that have a
contribution from some parcel. The first shell that is found to contain such cells is used to
assign a value, namely the area-weighted average value over these nonempty cells, to the
empty cell.

To transform information from the Eulerian to the Lagrangian frame, again consider a
parcel and its bounding square (see Fig. 4). This square will overlap at most four cells in
the grid. For each of the overlapping cells, compute the Lagrangian value for the parcel as∑

j A jU j , where U j is the Eulerian value for the j th cell and A j is the overlapping area
with the parcel’s bounding square.

123

J Sci Comput (2015) 64:151–177 161

Fig. 4 Projection from an
Eulerian to Lagrangian grid

12

34

U

The above two procedures are typically used in tandem. For example, to calculate ∇2ω

we need to interpolate the Lagrangian values onto the Eulerian grid, where it is convenient
to calculate the Laplacian, and then transfer this contribution to the evolution back to the
Lagrangian frame. TheLaplacianwas evaluated using the standard compact five-point stencil.

4.1 Diffusion

In this section we consider the numerical treatment of the diffusion term in (8). The advection
term is dealtwith using theLagrangian algorithmdiscussed in Sect. 2, and diffusion is handled
by a Crank–Nicholson scheme (e.g., see [2]) in an Eulerian frame:

U(t + τ) − U(t)

τ
= D

∇2U(t + τ) + ∇2U(t)

2
.

To incorporate diffusion into our algorithm, it is helpful to split (8) into two pieces, one
accounting for advection and the other for diffusion, usingoperator splitting (e.g., see [2]). Let
Ũ be the Eulerian projection of the Lagrangian solution to the advection equation ∂Ũ/∂t =
−v·∇Ũ using the area-weighted interpolation (Fig. 3). Then, to solve for U , including the
effects of diffusion, we use the temporal finite-difference formula

U − Ũ
τ

= D∇2
(
U + Ũ

2

)
. (9)

In this formulation, the most up-to-date (i.e., already advected) value, Ũ , is used as the
starting value to calculate the diffused value U . This implicit equation can be rewritten as
L (−τ)U = L (τ)Ũ, where L = 1 + 1

2 Dτ∇2. In order to calculate U numerically, one
needs to invert the Helmholtz operator L . We accomplish this inversion with an efficient
multigrid solver [8,21], using a single V-cycle iteration and the area-weighted interpolated
Eulerian value Ũ as the initial guess. The multigrid method is an efficient method for solving
elliptic equations like the Poisson and Helmholtz equations.

To determine the contribution of diffusion on the Lagrangian solution, we project the
difference U − Ũ = [L−1(−τ)L(τ) − 1]Ũ , onto the Lagrangian frame using area-weighted
bilinear interpolation (Fig. 4). These Lagrangian contributions are then added onto the parcel
values. Note that we do not simply project the diffused solution U itself onto the Lagrangian
frame, as this would contaminate the Lagrangian solution, violating the preservation of the
Casimir invariants in the limit of zero diffusion.

123

162 J Sci Comput (2015) 64:151–177

initial condition U Lagrangian state U()

Runga–Kutta stage

Lagrangian prediction U(+ τ) +

diffused parcels

rearranged UR

interpolated UL−1(−τ)L(τ)UL−1(−τ)L(τ)UR

Lagrangian rearranged
solution

−

semi-Lagrangian
solution

= ∇ −2

v = ẑ×∇

initialize

Lagrange → Euler
Rearrangement

Lagrange → Euler
Interpolation

diffuse: multigrid
Crank–Nicholson

diffuse: multigrid
Crank–Nicholson

output

Euler → Lagrange

output

+ τ →

self-advection

multigrid

Fig. 5 Semi-Lagrangian and Lagrangian rearrangement schemes

4.2 Self-advection

Until now, we have considered only the case of passive advection, where the velocity of
the advecting flow is prescribed. In this section, we discuss self-consistent advection (self-
advection), where the velocity of the underlying flow is a functional of U itself. To calculate
the velocity v, it is convenient to adopt the vorticity formulation: using the projected value
ω of the vorticity onto the Eulerian grid determined by area-weighted interpolation, one can
compute the stream function ψ from ω = ∇2ψ. The inversion of the Laplacian, discretized
using the standard compact five-point stencil, is done with 5 iterations (except for the very
first step, when we used 40 iterations, due to the lack of a good initial guess) of a V-cycle
multigrid solver, using the value of the stream function from the previous time step as the
initial guess. Once a good approximation toψ is determined, it is straightforward to calculate
the advecting velocity v = ẑ×∇ψ. This velocity is used to evolve both the vorticity and the
concentration fields, self-consistently, in the Lagrangian frame.

The entire self-consistent Eulerian–Lagrangian advection–diffusion algorithm is dis-
played in Fig. 5 and Algorithm 1, in comparison with a conventional semi-Lagrangian
scheme. In the red loop, we calculate the new Lagrangian parcel positions ξ(t) = ξ0 +∫ t
0 v(ξ(τ), τ) dτ , increment the time step, and then repeat the procedure. In the pale blue
boxes, to account for the effects of the diffusion term, we interpolate U from the Lagrangian
to the Eulerian frame using area-weighted interpolation, followed by operator splitting and
the Crank–Nicholson method in the Eulerian frame to solve for U from (9). The diffused
solution U = L −1(−τ)L (τ)Ũ is the conventional semi-Lagrangian solution (orange out-
put). We then project the difference U − Ũ in each Eulerian cell back onto the Lagrangian
frame, using area-weighted interpolation to accrue the contributions from diffusion onto the

123

J Sci Comput (2015) 64:151–177 163

parcels overlapping each cell. In the green boxes, we use the area-weighted interpolated
value Ũ to calculate the stream function ψ = ∇−2ω and thereby the self-advected velocity
v = ẑ×∇ψ . Our Lagrangian rearrangement algorithm is only used to project the values onto
an Eulerian frame when we want to view the solution (yellow branch). Notice that the error
in rearrangement does not propagate to future time steps since we do not feed it back to the
solution in the advection loop.

for k =1 to n do
Initialize parcels in Lagrangian buffer with local Eulerian position and U values;
Advect each parcel in the Lagrangian buffer via a Runge–Kutta stage;
Compute area-weighted interpolated Ũ from the Lagrangian buffer;
Computed updated advecting velocity ẑ×∇∇−2ω;
Compute diffusion contribution [L−1(−τ)L(τ) − 1]Ũ ;
Apply area-weighted diffusion contribution to each parcel in Lagrangian buffer;
Copy the advected Lagrangian solution to the rearrangement buffer;
Count the parcels in each cell of the rearrangement buffer;
Push excess parcels from each pile to a nearby hole in the rearrangement buffer;
Diffuse and output the rearranged Lagrangian solution: L−1(−τ)L(τ)U R ;

end

Algorithm 1: Lagrangian rearrangement

5 Complexity

A computer code in the C++ programming language was used to implement our Lagrangian
rearrangement algorithm. For simplicity we consider a two-dimensional uniform lattice with
n = 22m grid points and doubly periodic boundary conditions, where m is a non-negative
integer. The cost of running the code with respect to time, the complexity, is easily esti-
mated as a function of n. Let us now establish that the computation time for the Lagrangian
rearrangement algorithm scales linearly with n. The only places that must be focused on
are the search for the nearest hole and the pushing of the parcels, procedures that must be
repeated for many of the n cells. In computing the complexity of these parts of the algorithm,
we concentrate on the average complexity, which computes the cost of an event while taking
into account the probability of that event occurring (see [3]). First, assume that the entire grid
is of unit size, so that the area of each cell is 1/n. If a parcel is randomly assigned to a cell,
the probability of a cell containing that parcel is 1/n, and the probability that it does not is
1 − 1/n. Using the binomial distribution, the probability of a cell containing k parcels is

P(k)
.=

(
n

k

) (
1

n

)k (
1 − 1

n

)n−k

.

Therefore, the probability of having a hole is P(0) = (1 − 1/n)n , which approaches 1/e for
n sufficiently large; the probability of not having a hole thus approaches 1 − 1/e. For most
numerical simulations the domain chosen is very large (in our test simulations n is typically
set to 218).

For computing the cost of the search, one must calculate the probability of not finding a
hole. In general, the goal is to start with a pile and search outward for the nearest hole in a
shell-like domain. In Fig. 6, the cell labelled A is the pile, which is the center of the search,
and the green ring is the first shell searched. Let k = 1, 2 · · · denote the shell number being

123

164 J Sci Comput (2015) 64:151–177

Fig. 6 Search order and shell
index

A

k

k − 1

searched, as shown in Fig. 6. The number of cells searched so far, up to but not including
shell k, will then be 4k(k−1), and the number of cells in the kth shell is 8k. The algorithmwill
reach shell index k if it does not find any holes up to index k − 1. Therefore, the probability
of not having a hole in the first k − 1 shells is (1 − 1/e)4k(k−1) , which is equivalent to the
probability of searching k − 1 shells. Here, it is assumed that 4k(k − 1) is much smaller
than n, so that the probability of not having a hole is independent of the number of parcels.
Also, we assume that the probabilities of cells being or not being holes are independent of
one another.

The final approximated average searching cost As(n) will be the sum, over the entire
domain, of the above probability multiplied by the number of cells in shell k, so the searching
cost is given by

As(n) =
√

n/2∑
k=1

8k

(
1 − 1

e

)4k(k−1)

,

which tends to a small constant (approximately 8.4) as n becomes large, meaning that the
average cost of a single search grows insignificantly as the domain size gets bigger. This
sum was evaluated numerically using the symbolic algebra program Maple. To calculate
the cost of identifying the path, recall that if more that one hole is detected in a shell, the
Bresenham algorithm is carried out for all such holes in that shell. Therefore, we must also
consider the probability of finding more than one hole in the kth shell. We show in Theorem 1
(Appendix 2) that at most �1.82x� steps are needed to find a path between a pile and a hole
separated by a distance x . As in the above calculation of the searching cost, the probability
of having to perform the Bresenham algorithm to find a path from a parcel to a cell in the
kth shell is the same as the probability of not having a hole in the first k − 1 shells, which
is (1 − 1/e)4k(k−1). Moreover, the diagonal distance from the center of a search to a cell
in the kth shell is at most k

√
2. Thus, the average weighted Bresenham cost Ab(n) is 1.82

multiplied by the approximate probable distance from a pile to a hole times the expected
number of holes in the first shell k that contains a hole (given by the conditional probability
in “Appendix 3”):

Ab(n) ≈ 1.82

√
n/2∑

k=1

k
√
2

(
1 − 1

e

)4k(k−1)

8k

(
1

e

)
1

1 − (
1 − 1

e

)8k
.

123

J Sci Comput (2015) 64:151–177 165

Using Maple, we found Ab(n) tends to a small constant (approximately 8.6) as the domain
gets larger. A path is now identified, and we must push the parcels in this path. The actual
pushing cost Ap(n) is

Ap(n) = 1.82

√
n/2∑

k=1

k
√
2

(
1 − 1

e

)4k(k−1)

.

Again, using Maple we found Ap(n) converges to a small constant (approximately 2.7) as
the domain gets larger. In conclusion, the total complexity of the entire Lagrangian algorithm
remains O(n).

6 Results

An important feature of Lagrangian rearrangement is the conservation of Casimirs. In the
absence of diffusion, any piecewise continuous function of the vorticity is conserved. For
example, the concentration fieldmust attain the same set of values at all time steps. To test this
attribute thoroughly we have initially set the concentration at the n grid points to n distinct
values. At each time step the code verifies, in the absence of diffusion, that exactly one cell
contains each assigned value at all times; that is, the predicted configuration is simply a
rearrangement of the initial condition, as illustrated for 16 grid points in Fig. 1b.

To demonstrate the parcel rearrangement property visually at higher resolutions, consider
an initial concentration field that consists only of the values zero and one, whichwe display as
black and white pixels, respectively. We self-consistently evolve a field consisting of a white
horizontal band y ∈ [0.25, 0.75] on a black background in the unit square [0, 1] × [0, 1],
with semi-Lagrangian interpolation and Lagrangian rearrangement, using zero diffusion.
The initial vorticity field is ω = −4π sin(2πx) cos(2πy), which corresponds to the velocity
components vx = sin(2πx) cos(2πy) and vy = − cos(2πx) sin(2πy). We used a 512×512
grid, so that the grid scale is h = 1.95 × 10−3. The time step τ was chosen to be 10 times
the Courant condition, or 1.95× 10−2 units. We checked that the Lagrangian displacements
computed by our fourth-order Runge–Kutta integration were sufficiently accurate at this
large time step. The fact that one can run the algorithm at 10 times the Courant condition
is an important advantage of Lagrangian schemes. A snapshot of the same advected stage
predicted by the two methods is shown in Fig. 7. The left frame (a) shows the concentration
field for the semi-Lagrangian method; the frame on the right (b) illustrates the predictions of
Lagrangian rearrangement.With the selected palette, it is observed that the interpolation in the
semi-Lagrangian method leads to coloured pixels, despite the absence of physical diffusion.
This indicates that the method introduces spurious numerical diffusion, whereas Lagrangian
rearrangement produces only black and white pixels, because there is no numerical
diffusion.

Lagrangian rearrangement can also be applied to the full advection–diffusion equation.
Using the same initial vorticity field as in the previous example, we consider a self-advected
flowwith diffusion constant D = 2×10−6. We compare the pushing method for viewing the
Lagrangian data with area-weighted interpolated (semi-Lagrangian) projection. We initial-
ized the runswith identical doubly periodic initial concentration fields (0 at the top and bottom
varying gradually to 1 in themiddle). Figures 8, 9 and 10 demonstrate the advection and diffu-
sion of this field by semi-Lagrangian interpolation and Lagrangian rearrangement. Although
the two methods produce similar results, the solution in the interpolated results is seen to be
smoother, due to the interpolation of concentration values by the semi-Lagrangianmethod. In

123

166 J Sci Comput (2015) 64:151–177

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C

(b)

Fig. 7 Predictions after 750 time steps for advection in the absence of diffusion of a concentration field
consisting of values 0 and 1 only for a semi-Lagrangian interpolation; b Lagrangian rearrangement

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

C

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

C

Fig. 8 Predictions after 100 time steps for the advection–diffusion of a smooth concentration field for
a semi-Lagrangian interpolation; b Lagrangian rearrangement

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

(b)

Fig. 9 Predictions after 500 time steps for the advection–diffusion of a smooth concentration field for
a semi-Lagrangian interpolation; b Lagrangian rearrangement

contrast, the slight roughness at the pixel level exhibited in the Lagrangian rearranged results
is a consequence both of lack of anomalous numerical diffusion and the inherent arbitrariness
of our parcel-pushing algorithm.

123

J Sci Comput (2015) 64:151–177 167

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C

(b)

Fig. 10 Predictions after 1,000 time steps for the advection–diffusion of a smooth concentration field for
a semi-Lagrangian interpolation; b Lagrangian rearrangement

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C

(b)

Fig. 11 Lagrangian rearrangement prediction for the Zalesak slotted disk: a after 600 times steps; b after one
complete rotation (628 time steps). Only a portion of the 128 × 128 domain is shown

We also applied Lagrangian rearrangement to Zalesak’s classic test for passive advection
of a slotted disk [27,41]. Superimposing a 128 × 128 grid on the unit square, we advect a
slotted disk centered at (0.5, 0.75), having a radius of 15 cells and a slot width of 5 cells, with
a passive velocity field (π − 2πy, 2πx − π), using a time step of 1/628. The Lagrangian-
rearranged solution after 600 time steps is shown in Fig. 11a. Although our rearrangement
algorithm produces some artifacts in the output, the slotted disk retains its basic shape and
is qualitatively similar to the flux-corrected transport (new limiter) solution in Fig. 13 of
[41]. Most importantly, this error does not propagate to future time steps: after one complete
rotation, the rearranged Lagrangian solution in Fig. 11b returns to a state indistinguishable
from the initial condition.

The most important advantage of Lagrangian rearrangement over semi-Lagrangian meth-
ods is its conservation ofCasimir invariants. In the absence of diffusion, the numerical approx-
imation of the concentration energy 1

2

∫
C2 dx and the enstrophy Z = 1

2

∫
ω2 dx should be

conserved. In Figs. 12 and 13 it is observed that Lagrangian rearrangement indeed respects
the invariance of these two important quantities. On the other hand, in the semi-Lagrangian
method both of these quantities decay as a result of unwanted numerical diffusion. Moreover,
in the presence of diffusion one can consider the energy equation obtained by multiplying
both sides of (8) by U and integrating over the domain. On integrating by parts and invoking

123

168 J Sci Comput (2015) 64:151–177

0.15

0.16

0.17

C
on

ce
nt
ra
ti
on

en
er
gy

0 10 20
t

1
2

C2
I dx

1
2

C2
R dx

Fig. 12 Evolution of the concentration field energy predicted by the semi-Lagrangian (I) and rearrange-
ment (R) methods when ν = D = 0

18

19

20

E
ns
tr
op

hy

0 10 20
t

1
2

ω2
I dx

1
2

ω2
R dx

Fig. 13 Evolution of the enstrophy predicted by the semi-Lagrangian (I) and rearrangement (R) methods
when ν = D = 0

the incompressibility condition and doubly periodic boundary conditions, one finds that the
concentration energy fields should decay as

1

2

∂

∂t

∫
C2 dx = −D

∫
|∇C |2 dx. (10)

It is convenient to introduce the normalized energy decay rates

∂

∂t

∫
C2 dx∫

C2 dx
and

−2D
∫

|∇C |2 dx∫
C2 dx

. (11)

123

J Sci Comput (2015) 64:151–177 169

−0.010
−0.009
−0.008
−0.007
−0.006
−0.005
−0.004
−0.003
−0.002
−0.001
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010

C
on

ce
nt
ra
ti
on

en
er
gy

gr
ow

th
ra
te

02010
t

d

dt
C2

I dx

C2
I dx

−2ν |∇CI |2 dx

C2
I dx

d

dt
C2

R dx

C2
R dx

−2ν |∇CR|2 dx

C2
R dx

Fig. 14 Energy decay rates for the concentration field predicted by the semi-Lagrangian (I) and rearrange-
ment (R) methods in the presence of diffusion

−0.012

−0.011

−0.010

−0.009

−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0.000

0.001

E
ns
tr
op

hy
gr
ow

th
ra
te

02010
t

d

dt
ω2
I dx

ω2
I dx

−2ν |∇ωI |2 dx

ω2
I dx

d

dt
ω2
R dx

ω2
R dx

−2ν |∇ωR|2 dx

ω2
R dx

Fig. 15 Enstrophy decay rates predicted by the Lagrangian semi-Lagrangian (I) and rearrangement (R)
methods in the presence of diffusion

Analogous quantities for the enstrophy decay rate, obtained by replacing C by the scalar
vorticity ω, are also of interest.

According to (10), the energy decay rates for each field, as calculated by the two corre-
sponding expressions, should agree. The values in (11) for both semi-Lagrangian interpo-
lation and Lagrangian rearrangement are plotted in Fig. 14 (and in Fig. 15 for the ω field).
As seen in the graphs, the decay rates predicted by the semi-Lagrangian method (denoted
by the subscript I) do not agree, whereas the rates for the rearranged Lagrangian solution

123

170 J Sci Comput (2015) 64:151–177

(denoted by the subscript R) agree much better, to within the expected spatial discretization
error. The anomalous and erratic numerical diffusion exhibited by the semi-Lagrangian solu-
tion is evident both in the departure of the blue and green curves and in the suppression of
the energy content of ∇CI relative to the other predictions. This shows that the term v·∇U
is not modelled by the semi-Lagrangian method to respect the correct energy decay rate for
a real fluid.

7 Conclusion

We propose a new fully Lagrangian method for solving advection equations. This method
preserves Casimir invariants, just as inviscid fluids do. We argue in the nondiffusive case
that the discretized values of the concentration field, when viewed on an Eulerian grid,
should only be rearranged, not changed, to enforce a discretized version of the Casimir
invariance property of the nonlinear advection term. That is, the pixels that are ultimately
used to visualize the flow should be treated as infinitesimal parcels: at all times, the generated
concentration field should be some rearrangement of its initial state. The velocity field is
used to advect the values of the concentration and vorticity field in the Lagrangian frame.
In projecting the Lagrangian solution to an Eulerian frame, some of the cells (holes) will
have no corresponding Lagrangian value, and some of the cells (piles) will have more than
one value. In order to find the best projection from Lagrangian to Eulerian coordinates, we
determine a path from a pile to the nearest hole and push the chain of parcels (values) towards
the hole. This path is calculated using a weighted version of the Bresenham algorithm for
drawing digitized lines. This modified version reduces the error in pushing parcels away
from their calculated Lagrangian position: the weight used is the distance between the parcel
and its position is determined by Lagrangian advection. The weighted version attempts to
choose a path containing parcels with minimal weight. To prevent the error in parcel pushing
from propagating to the next time step, we do not reuse this information in future time
steps. Lagrangian rearrangement thus merely provides an energy-respecting (and Casimir-
respecting) filter for viewing the current Lagrangian solution in an Eulerian frame. To deal
with self-advection, we interpolate the advected Lagrangian vorticity field onto the Eulerian
grid, avoiding any pushing error frombeing transmitted to the velocity field.We then calculate
the new velocity from the projected vorticity by inverting a Laplacian with a multigrid
solver.

In summary, the method of Lagrangian rearrangement can be used to view Lagrangian
solutions of passive and self-consistent advection, avoiding the introduction of any artifi-
cial numerical diffusion. More importantly, for scientific applications, we have shown how
operator splitting can be used to account for the effects of physical diffusion in a manner
that yields better concentration energy decay characteristics than straightforward Lagrangian
interpolation.

In future work, it would be interesting to explore the idea of advecting parcel vertices
rather than their centroids. Even if an area-preserving correction was implemented, however,
one will likely encounter difficulties with degenerate parcels that have been highly elon-
gated by the advecting flow. It would also be interesting to explore some kind of entropic
(or total variation diminishing) process to minimize the oscillations inherent in our some-
what arbitrary parcel pushing process. Ideally, after each time step, one would like to iden-
tify a point on the rearrangement manifold that is closest (say in the L2 norm) to the pre-
dicted Lagrangian output. In practice the full minimization problem is very costly to solve
in real time. The weighted Bresenham scheme we have proposed is a practical and effi-

123

J Sci Comput (2015) 64:151–177 171

cient first approximation towards this goal, motivated by the tendency of fluids to seek the
path of least resistance. We hope that the demonstration of Lagrangian rearrangement will
inspire others to develop efficient quasi-minimization techniques that lead to improved parcel
rearrangement.

Appendix 1: Weighted Bresenham Algorithm

In our weighted version of the Bresenham algorithm, the choice of the next point in the
path depends on the weight of the eligible neighbouring cells. Figure 16 shows eight cases
depending on the location of the destination point. One seeks a neighbouring cell in the
general direction of the path with the lowest weight. If the slope is zero, the cells to the
north-east, east, and south-east of the current cell are searched. The north-east and east cells
are searched if the slope is between zero and one, the north, north-east, and east cells are
searched if the slope is one, and the north and north-east cells are searched if the slope is
greater than one. If the slope is infinity, the cells to the north-west, north, and north-east
of the current cell are searched. Should the weight of two or more cells be the same, the
original Bresenham algorithm will be the tie-breaker. The following is Asymptote code (a
vector graphics language for technical drawing [7,22]), along with eight sample output paths,
for our weighted Bresenham algorithm (optimized so that all cases are mapped to the first
quadrant).

Fig. 16 Paths of local minimal
weight from the center circle to
eight edge circles, as determined
by the weighted Bresenham
algorithm and the indicated
numerical parcel weights

3
1
0
1
1
9
1
2
2
8
4
7
9
8
6
0
7
1
6
6
1
4
9
4
7
0
7
4
2
5
0

6
6
1
7
7
0
9
0
3
7
5
1
7
3
7
7
1
8
4
8
0
8
7
5
6
8
3
1
0
8
1

7
5
3
4
3
4
4
4
7
1
9
9
8
3
7
6
5
6
0
3
6
9
1
1
5
9
5
6
0
3
8

7
9
1
2
2
5
6
6
3
7
6
3
6
9
0
3
4
6
4
8
3
3
9
5
9
8
0
6
9
3
4

7
3
6
9
5
2
5
2
6
3
8
9
0
7
9
4
2
6
8
0
9
2
0
4
1
9
4
7
8
8
2

5
1
9
5
6
2
1
9
8
5
7
7
6
5
7
0
8
3
8
9
2
0
9
7
2
8
1
0
7
9
3

3
1
2
8
8
4
9
7
3
4
4
0
0
0
8
1
8
2
0
7
5
1
6
2
3
5
3
3
2
3
7

5
4
9
3
2
4
3
9
7
8
4
8
9
4
7
0
2
9
0
0
4
1
6
6
5
1
0
9
4
3
6

0
7
6
4
0
0
7
0
8
5
4
6
5
9
3
5
2
2
6
2
7
8
9
3
3
1
4
2
5
7
9

5
5
5
9
6
5
7
6
3
3
1
0
8
1
4
4
3
6
0
6
4
8
5
8
2
6
2
5
1
9
4

7
5
9
7
1
5
5
8
9
8
0
0
7
1
4
2
4
1
2
0
5
1
6
3
4
2
5
9
4
5
4

2
1
3
9
3
9
5
1
9
3
1
9
1
3
3
3
8
4
6
9
9
8
5
3
2
7
9
2
1
4
6

3
6
0
3
9
9
8
1
8
2
3
8
4
6
1
7
4
6
4
3
6
2
8
9
5
6
9
7
7
4
3

1
0
3
5
9
2
4
1
1
6
4
0
0
1
2
8
5
8
2
9
5
4
8
5
0
4
4
7
2
8
0

4
8
3
9
8
6
3
0
8
0
4
9
1
5
1
9
1
0
1
1
5
6
9
1
7
4
5
4
6
4
4

1
3
8
1
2
5
5
2
4
5
7
3
6
3
4
6
4
4
8
6
0
5
5
1
2
0
6
6
7
1
1

8
4
0
9
6
5
4
8
9
0
5
3
7
8
7
3
3
2
2
0
2
7
6
3
0
6
0
6
3
1
8

2
6
8
1
2
3
6
1
3
7
7
6
4
6
4
8
0
6
0
0
8
8
6
2
8
2
2
5
6
4
3

8
0
1
0
2
5
7
4
9
4
2
5
9
8
9
7
9
5
8
9
4
7
5
6
6
8
9
1
5
3
5

3
3
7
3
6
2
0
1
1
5
3
7
4
1
7
2
1
3
1
0
7
8
6
3
5
5
3
6
0
6
2

3
9
9
7
6
2
8
7
4
3
0
2
8
2
9
0
3
2
1
4
9
0
0
3
5
5
6
2
6
3
4

123

172 J Sci Comput (2015) 64:151–177

123

J Sci Comput (2015) 64:151–177 173

Appendix 2: Termination of Weighted Bresenham Algorithm

Theorem 1 (Termination of weighted Bresenham) The weighted Bresenham algorithm pro-
duces a finite path between any two points on a regular lattice. For a unit square lattice, at
most �1.82x� steps are needed to connect two points that are a distance x apart.

Proof Let A and B be given on the grid. We want to find the desired path between them. For
simplicity, we assume that B is inside or on the boundary of the first octant with respect to A.
Without loss of generality, consider a unit square lattice. As described before, depending on
the position of B, we have either two or three choices for the next cell to be included in the
path. If one of these choices is the grid point B, we are done; the algorithm terminates after
choosing B. Otherwise, in choosing one of the immediate neighbours of the current cell, we
will take a step of size 1 or

√
2. We must show that there exists a fixed number δ > 0 such

that the distance to the point B in each step is always reduced by at least δ. The algorithm
will then terminate in a finite number of steps.

Case (i): Assume B lies on the same horizontal line as A, so that the slope of the line from
A to B is zero, (m = 0). In this case (Fig. 17), the next point in the path is one of the points C ,
D, or F . If we choose D, then since DB = AB − 1, a step of 1 is taken toward B. Suppose
instead that we choose C . On letting x = AB ≥ 2 and δ = x − C B = 1 + DB − C B < 1
(since DB < C B), and noting that δ = AD + DB − C B = C D + DB − C B > 0, we find
that

(x − δ)2 = C B
2 = DB

2 + 1 = (AB − 1)2 + 1 = AB
2 − 2AB + 2 = x2 − 2x + 2,

so that−2xδ+δ2 = −2x+2.We then deduce from x ≥ 2 that 2−δ2 = 2x(1−δ) ≥ 4(1−δ).

Thus δ2 − 4δ + 2 ≤ 0 ⇒ δ ∈
[
2 − √

2, 1
)

. The same argument of course also holds for

the choice F . The distance reduction in this case is thus at least 2 − √
2.

Case (ii): Assume that the slope of the line from A to B is 1. In this case (Fig. 18), the
next point in the path will be one of the points C , D, or F . Here AB = DB − √

2. If we
choose D, we take a step of size

√
2 toward B. Suppose instead that we choose C . We see

that C H = AH = 1/
√
2. On letting x = AB, we obtain

(x − δ)2 = C B
2 = H B

2 + C H
2 =

(
x − 1√

2

)2

+ 1

2
= x2 − √

2x + 1.

Thus −2xδ + δ2 = −√
2x + 1. We know that x ≥ 2

√
2 since B is not one of the choices,

so δ2 − 1 = x(2δ − √
2) ≥ 2

√
2(2δ − √

2) = 4
√
2δ − 4. Now δ2 − 4

√
2δ + 3 ≤ 0 ⇒

Fig. 17 Case(i): m = 0

1

1

1
A B

C

D

F

123

174 J Sci Comput (2015) 64:151–177

Fig. 18 Case(ii): m = 1

1

1

1A

B

C D

F

H

Fig. 19 Case(iii): 0 < m < 1

√
2

1A

B

C2

C1

H2
H1

δ ≥ 2
√
2 − √

5. The same argument of course also holds for the choice F . The distance
reduction in this case is thus at least 2

√
2 − √

5.
Case (iii): Assume B lies inside the first octant (0 < m < 1). In this case, Fig. 19, the

next point in the path is one of the two points C1 or C2. Let x = AB. Notice that x ≥ √
5

since B is not one of the points C1 or C2. Let C be the point (C1 or C2) that is selected, drop
the perpendicular C H to AB. Let y = C B and z = AC and note that z = 1 if C = C1 and
z = √

2 if C = C2. Since 0 < � C AH < π/4, we know that AH/z > 1/
√
2. On letting

δ = x − C B, we find that

(x − δ)2 = C B
2 = H B

2 + C H
2 = (AB − AH)2 + AC

2 − AH
2

= x2 − 2x AH + z2 < x2 − 2x
z√
2

+ z2.

Thus −2xδ + δ2 < −√
2xz + z2, so that z2 − δ2 > x(

√
2z − 2δ) ≥ √

5(
√
2z − 2δ). Hence,

δ2 − 2
√
5δ + √

10z − z2 < 0. For z = 1 this implies that δ >
√
5 −

√
6 − √

10 and for

z = √
2 this implies that δ >

√
5 −

√
7 − 2

√
5.

In all cases, the distance between the point B and the new included point is thus always
less than AB by an amount

δ = min

{
1,

√
2, 2 − √

2, 2
√
2 − √

5,
√
5 −

√
6 − √

10,
√
5 −

√
7 − 2

√
5

}

= √
5 −

√
6 − √

10 > 0.551.

That is, at most
⌈
1.82AB

⌉
steps will be required to reach the point B. ��

123

J Sci Comput (2015) 64:151–177 175

Appendix 3: Multiple-Hole Expected Value

The expected number of holes in a shell k (with 8k cells) containing a hole is

〈 j〉 =
∑8k

j=1 j
(8k

j

) (
1 − 1

e

)8k− j (1
e

) j

∑8k
j=1

(8k
j

) (
1 − 1

e

)8k− j (1
e

) j
=

∑8k
j=1 j

(8k
j

)
r j

∑8k
j=1

(8k
j

)
r j

,

where r = 1/(e − 1). Since the probability of not having a hole in 8k cells is (1 − 1/e)8k ,
we get

8k∑
j=1

(
8k

j

)(
1 − 1

e

)8k− j (
1

e

) j

= 1 −
(
1 − 1

e

)8k

,

which on multiplying both sides by (r + 1)8k = (1 − 1/e)−8k , can be written as

8k∑
j=1

(
8k

j

)
r j = (r + 1)8k − 1.

On differentiating both sides with respect to r and then multiplying by r , it follows that

8k∑
j=1

(
8k

j

)
jr j = 8kr(r + 1)8k−1.

The expected number of holes thus evaluates to

〈 j〉 = 8kr(r + 1)8k−1

(r + 1)8k − 1
=

8k

(
1 − 1

r + 1

)

1 − (r + 1)−8k
=

8k

(
1

e

)

1 −
(
1 − 1

e

)8k
.

This of course is just the probability 1/e of finding a hole times the number of holes,
conditioned on the probability that the shell contains at least one hole.

References

1. Alam, J., Bowman, J.: Energy-conserving simulation of incompressible electro-osmotic and pressure-
driven flow. Theoret. Comput. Fluid Dyn. 16, 1–18 (2002)

2. Ames, W.: Numerical Methods for Partial Differential Equations. Academic Press, San Diego (1977)
3. Basse, S., Gelder, A.V.: Computer Algorithms. Introduction to Design and Analysis. Addison-Wesley,

Ontario (2000)
4. Behrens, Mentrup: A conservative scheme for 2D and 3D adaptive semi-Lagrangian advection. In: Shi,

Z.C., Chen, Z., Tang, T., Yu, D. (eds.) Recent Advances in Adaptive Computation, vol. 383, pp. 219–234.
American Mathematical Society, Providence (2005)

5. Behrens, J.: A parallel adaptive finite-element semi-Lagrangian advection sheme for the shallow water
equations. In: Modeling and Computation in Environmental Sciences. Proceedings of the First GAMM-
Seminar at ICAStuttgart,Notes onNumerical FluidMechanics, vol. 59, pp. 49–60.Vieweg,Braunschweig
(1997)

6. Bowman, J.C.: Casimir cascades in two-dimensional turbulence. J. Fluid Mech. 729, 364–376 (2013)

7. Bowman, J.C., Hammerlindl, A.: Asymptote: a vector graphics language. TUGboat Commun.TEXUsers
Group 29(2), 288–294 (2008)

8. Bramble, J.H.: Multigrid Methods. Longman Scientific and Technical, London (1993)
9. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25–30 (1965)

123

176 J Sci Comput (2015) 64:151–177

10. Courant, R., Friedrichs, K., Lewy, H.: On the partial differential equations of mathematical physics. IBM
J. Res. Dev. 11, 215–234 (1967)

11. Crabtree, H.J., Cheong, E.C., Tilroe, D.A., Backhouse, C.J.:Microchip injection and separation anomalies
due to pressure effects. Anal. Chem. 73(17), 4079–4086 (2001)

12. Dritschel, D.G.: Contour surgery: a topological reconnection scheme for extended integrations using
contour dynamics. J. Comput. Phys. 77(1), 240–266 (1988)

13. Dritschel,D.G.,Ambaum,M.H.:Acontour-advective semi-lagrangian numerical algorithm for simulating
fine-scale conservative dynamical fields. Q. J. R. Meteorol. Soc. 123(540), 1097–1130 (1997)

14. Eyink, G.L.: Exact results on stationary turbulence in 2D: consequences of vorticity. Phys. D. 91, 97–142
(1996)

15. Falkovich, G., Hanany, A.: Is 2D turbulence a conformal turbulence? Phys. Rev. Lett. 71, 3454–3457
(1993). doi:10.1103/PhysRevLett.71.3454

16. Fraccarollo, L., Capart, H., Zech, Y.: A Godunov method for the computation of erosional shallow water
transients. Int. J. Numer. Methods Fluids 41, 951–976 (2003)

17. Gingold, R.A.,Monaghan, J.J.: Smoothed particle hydrodynamics-theory and application to non-spherical
stars. Month. Not. R. Astron. Soc. 181, 375–389 (1977)

18. Godunov, S.: A finite difference method for the numerical computation of discontinuous solutions of the
equations of fluid dynamics. Sbornik. Math. 47, 271–290 (1959)

19. Gremaud, P.A., Kuster, C.M., Li, Z.: A study of numerical methods for the level set approach. Appl.
Numer. Math. 57(5), 837–846 (2007)

20. Grigoryev, Y., Vshivkov, V., Fedoruk, M.: Numerical “Particle-in-Cell” Methods: Theory and Applica-
tions. Brill Academic Publishers, Utrecht (2002)

21. Hackbusch, W.: Multi-Grid Methods and Applications. Series in Computational Mathematics. Springer,
New York (1985)

22. Hammerlindl, A., Bowman, J.C., Prince, R.T.: Asymptote: a descriptive vector graphics language (2004).
http://asymptote.sourceforge.net

23. Kees, C.E., Akkerman, I., Farthing, M.W., Bazilevs, Y.: A conservative level set method suitable for
variable-order approximations and unstructured meshes. J. Comput. Phys. 230(12), 4536–4558 (2011)

24. Lax, P., Wendroff, B.: System of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)
25. Leboeuf, J., Tajima, T., Dawson, J.: Magnetohydrodynamics particle code for fluid simulation of plasmas.

J. Comput. Phys. 31, 379–408 (1979)
26. Leslie, L.M., Purser, R.J.: Three-dimensional mass-conserving semi-Lagrangian scheme employing for-

ward trajectories. Mon. Weather Rev. 123(8), 25 (1995)
27. Marchandise, E., Remacle, J.F., Chevaugeon, N.: A quadrature-free discontinuous galerkin method for

the level set equation. J. Comput. Phys. 212(1), 338–357 (2006)
28. Morrison, P.J.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521 (1998)
29. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on

Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
30. Polyakov, A.: The theory of turbulence in two dimensions. Nucl. Phys. B 396, 367–385 (1993). doi:10.

1016/0550-3213(93)90656-A
31. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific

Computing, 2nd edn. Cambridge Univ. Press, Cambridge (1992)
32. Rothstein, D.M., Lovelace, R.V.: Advection of magnetic fields in accretion disks: not so difficult after all.

Astrophys. J. 677(2), 1221 (2008)
33. Sheu, T.W., Yu, C.: Numerical simulation of free surface by an area-preserving level setmethod. Commun.

Comput. Phys. 11(4), 1347 (2012)
34. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible sph. In: ACMTransactions onGraphics

(TOG), vol. 28, p. 40. ACM (2009)
35. Wang, H., Skamarock, W.C., Feingold, G.: Evaluation of scalar advection schemes in the advanced

research WRF model using large-eddy simulations of aerosol–cloud interactions. Month. Weather Rev.
137(8) (2009)

36. Wang, Y., Hutter, K.: Comparisons of numerical methods with respect to convectively-dominated prob-
lems. Int. J. Numer. Methods Fluids 37, 721–745 (2001)

37. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks.
J. Comput. Phys. 54, 115–173 (1984)

38. Woodward, P., Colella, P.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J.
Comput. Phys. 54, 174–201 (1984)

39. Yong, Z., Benson, D.A., Meerschaert, M.M., Scheffler, H.P.: On using random walks to solve the space-
fractional advection–dispersion equations. J. Stat. Phys. 123(1), 89–110 (2006)

123

http://dx.doi.org/10.1103/PhysRevLett.71.3454
http://asymptote.sourceforge.net
http://dx.doi.org/10.1016/0550-3213(93)90656-A
http://dx.doi.org/10.1016/0550-3213(93)90656-A

J Sci Comput (2015) 64:151–177 177

40. Zabusky, N.J., Hughes, M., Roberts, K.: Contour dynamics for the euler equations in two dimensions. J.
Comput. Phys. 30(1), 96–106 (1979)

41. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys.
31(3), 335–362 (1979)

42. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–
diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

123

	A Fully Lagrangian Advection Scheme
	Abstract
	1 Introduction
	2 Lagrangian Rearrangement
	3 The Rearrangement Algorithm
	3.1 Parcel Weights
	3.2 A Weighted Bresenham Algorithm

	4 Extension to Self-consistent Advection and Diffusion
	4.1 Diffusion
	4.2 Self-advection

	5 Complexity
	6 Results
	7 Conclusion
	Appendix 1: Weighted Bresenham Algorithm
	Appendix 2: Termination of Weighted Bresenham Algorithm
	Appendix 3: Multiple-Hole Expected Value
	References

