
On the Dual Cascade in Two-Dimensional

Turbulence

Chuong V. Tran and John C. Bowman

Department of Mathematical and Statistical Sciences, University of Alberta,

Edmonton, Alberta, Canada, T6G 2G1

Abstract

We study the dual cascade scenario for two-dimensional turbulence driven by a

spectrally localized forcing applied over a finite wavenumber range [kmin, kmax] (with

kmin > 0) such that the respective energy and enstrophy injection rates ε and

η satisfy k2
minε ≤ η ≤ k2

maxε. The classical Kraichnan–Leith–Batchelor paradigm,

based on the simultaneous conservation of energy and enstrophy and the scale-

selectivity of the molecular viscosity, requires that the domain be unbounded in

both directions. For two-dimensional turbulence either in a doubly periodic domain

or in an unbounded channel with a periodic boundary condition in the across-

channel direction, a direct enstrophy cascade is not possible. In the usual case where

the forcing wavenumber is no greater than the geometric mean of the integral and

dissipation wavenumbers, constant spectral slopes must satisfy β > 5 and α +

β ≥ 8, where −α (−β) is the asymptotic slope of the range of wavenumbers lower

(higher) than the forcing wavenumber. The influence of a large-scale dissipation

on the realizability of a dual cascade is analyzed. We discuss the consequences for

numerical simulations attempting to mimic the classical unbounded picture in a

bounded domain.
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1 Introduction

Since Kraichnan [13,14], Batchelor [2], and Leith [15] (referred to as KLB)

adapted Kolmogorov’s theory of self-similarity in three-dimensional turbulence

to two-dimensional (2D) fluids, the conventional wisdom for decades has been

that 2D turbulence simultaneously exhibits a direct cascade of enstrophy to

large wavenumbers, up to a dissipation wavenumber kν, and an inverse cascade

of energy to small wavenumbers, down to wavenumber k = 0. In the limit

of small viscosity, the inverse cascade is thought to proceed indefinitely in

time to ever-larger scales, transferring virtually all of the energy input to

wavenumber zero. The direct cascade is thought to come into balance with

viscosity, transferring virtually all of the enstrophy input to kν, where it will

then be dissipated. In the long-time limit, a quasi-steady state is reached, in

which two inertial ranges are established. According to the KLB theory, the

energy range, which is only quasi-steady, scales as k−5/3. The enstrophy range,

which is in absolute equilibrium, should scale as k−3.

The idea of a dual cascade was first suggested by Fjørtoft [10], who examined

nonlinear transfer by individual interacting wavenumber triads. A later study

by Merilees and Warn [23] provides more quantitative detail. They showed that
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roughly 70% (60%) of triads containing a given intermediate wavenumber k

predominantly exchange energy (enstrophy) with lower (higher) wavenumbers.

These analyses of nonlinear transfer, although carried out at the triad level,

provide only a necessary basis for the KLB theory. The theory requires all

triads to work collectively such that virtually all of the energy (enstrophy)

input gets transferred to the large (small) scales; this is neither suggested nor

implied by [10,23]. Nevertheless, a dual cascade from a spectrally localized

initial spectrum is consistent with [10,23] and has been well confirmed by

numerical simulations with various resolutions (e.g. Borue [4,5]; Frisch and

Sulem [12]; Lilly [17]; Smith and Yakhot [34]). In particular, the inverse energy

cascade is observed in the laboratory experiments of Dubos et al. [8] and Paret

and Tabeling [26,27]. 1 What has not been established beyond doubt is the

realization of the inertial spectral scaling k−3. In fact, there exist other theories

that propose very different spectral slopes (Moffatt [24]; Saffman [31]; Sulem

and Frisch [37]).

Numerical simulations, aiming to verify the KLB picture, face a number of

formidable tasks. First, the simulations are performed for fluids in a rectan-

gular box instead of an infinite domain. This turns out to be a serious short-

coming, as the equilibrium dynamics of a fluid in a doubly periodic domain

differs considerably from that of an unbounded fluid in the KLB picture (see

Constantin, Foias, and Manley [7]; Tran and Shepherd [39]). In particular,

the k−3 range and the direct enstrophy cascade have been shown to be unreal-

1 The inverse energy cascade and the k−5/3 range are also seen to be robust in

many numerical simulations, at least until the energy reaches the lower spectral

boundary; however, the evidence for a direct enstrophy cascade is inconclusive (see

the discussion in Paret and Tabeling [27] and references therein).
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izable in a bounded domain. The main reason seems to be that in the bounded

case, where an absolute equilibrium will be reached, there is no analogue of

a persistent upscale flow of energy that eventually evades viscous dissipation

altogether. To mimic the inverse cascade, one needs to introduce a dissipation

that removes energy at the large scales (cf. [36]). Linear Ekman drag (propor-

tional to k0 and restricted to a few low wavenumbers) and inverse viscosity

(νµk2µ, with µ < 0) have often been used for that purpose. Unfortunately,

the inverse energy cascade, subject to this large-scale dissipation, carries with

it a significant fraction of the enstrophy (in contrast to the asymptotic KLB

inverse cascade, which carries no enstrophy). Moreover, there is no guarantee

that the large-scale dissipation will absorb virtually all of the energy input.

This is crucial in the KLB picture, as any fraction of the energy input that

gets reflected would ultimately be trapped in the inertial ranges. The trapped

energy, being in a virtually inviscid region, would then considerably change

the dynamics and the slopes of the inertial ranges. Second, testing the theory

requires the achievement of high Reynolds numbers, but current computers

are only able to resolve relatively low Reynolds numbers. To overcome these

resolution limitations, researchers often resort to introducing a hyperviscosity

νµk2µ, where the degree of viscosity µ is greater than one. This numerical

device helps to compress the dissipation range, allowing simulations to be

performed at relatively low resolutions. It is hoped that the effect of this mod-

ification on the inertial-range dynamics is negligible. However, a significant

dissipation of energy at the small scales is inevitable in all numerical schemes.

In this study, we establish a theoretical basis highlighting the dynamical dif-

ferences between bounded and unbounded 2D turbulence. The consequences

for numerical simulations that aim to verify the KLB theory will be addressed.
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In particular, we argue that instead of the familiar inertial-range spectral scal-

ings k−5/3 and k−3 conjectured by KLB, one would expect steeper scalings,

such as k−3 and k−5, respectively, in these ranges for bounded systems in

equilibrium. In fact, it is shown in [39] that the enstrophy range must be

steeper than k−5; the physical implication is that no direct enstrophy cascade

is possible. This result is easily generalized, using the Poincaré inequality,

to turbulence in semi-unbounded 2D fluids, i.e. fluids confined to unbounded

channels with a periodic boundary condition in the across-channel direction.

Moreover, we investigate the effectiveness of using a large-scale dissipation to

obtain a dual cascade in a bounded fluid. This information should be partic-

ularly useful for numerical simulations.

In Section 2, we summarize the KLB theory and contrast it to the dynamics

of a bounded fluid. We also show that the theory does not apply to a fluid in

an infinite channel with a periodic boundary condition in the across-channel

direction. In Section 3, we review a result in [39] related to the unrealizability

of a direct enstrophy cascade and discuss the fundamental differences between

the dynamics of bounded fluids in equilibrium and that of unbounded fluids

(or bounded fluids in transient phase) in the KLB picture. In Section 4, we

derive a new constraint on the spectral slope of the energy range for bounded

fluids in equilibrium and a condition for a persistent inverse energy cascade for

unbounded fluids. In Section 5, we point out some effects of including a large-

scale dissipation and the implications for numerical simulations attempting to

verify the KLB picture. We conclude with some remarks in the final section.

Further estimates on spectral slopes are given in the appendices.
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2 KLB picture for unbounded 2D fluids

The evolution of the ensemble-averaged energy spectrum E(k), which repre-

sents the energy density associated with the wavenumber k, is governed by

(see Frisch [11] and Kraichnan [13])

d

dt
E(k) =T (k) − 2νk2E(k) + F (k). (1)

Here T (k) and F (k) are, respectively, the ensemble-averaged energy transfer

and energy input rate and ν is the kinematic viscosity coefficient. Since waves

of the same scale do not nonlinearly interact, T (k) is linear in the modal

component corresponding to wavenumber k. Moreover, T (k) satisfies, by virtue

of energy and enstrophy conservation,

∞
∫

0

T (k) dk =

∞
∫

0

k2T (k) dk = 0. (2)

For a fluid in a doubly periodic domain, which for convenience we call a

bounded fluid, the integral in (2) and elsewhere in this section should be

replaced by a discrete sum over all wavenumbers. This constraint on T (k)

imposes certain restrictions on its distribution and is thought to give rise to

the dual cascade, believed to be a distinct feature of 2D turbulence.

We multiply (1) by k2 and integrate both the original and resulting equations

over all wavenumbers, noting from (2) that the nonlinear terms drop out, to

obtain evolution equations for the total energy density E =
∫

∞

0 E(k) dk and

enstrophy density Z =
∫

∞

0 k2E(k) dk,

d

dt
E =−2νZ + ε, (3)
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d

dt
Z =−2νP + η, (4)

in terms of the energy and enstrophy injection rates ε =
∫

∞

0 F (k) dk and η =

∫

∞

0 k2F (k) dk, respectively, and the palinstrophy density P =
∫

∞

0 k4E(k) dk.

We assume that the forcing is spectrally localized to a wavenumber interval

[kmin, kmax] in the sense that

0 ≤ k2
minε ≤ η ≤ k2

maxε. (5)

This hypothesis is employed in [39]. This is a classical (although not exclusive)

scenario for the KLB theory (cf. Kraichnan [13], p. 1421b; Pouquet et al.

[28], p. 314; and Lesieur [16], p. 291), and is furthermore a common setup in

numerical simulations of forced 2D turbulence (cf. Lilly [18]; Basdevant et al.

[1]; Shepherd [33]). This assumption seems plausible for time-independent or

white-noise forcing over [kmin, kmax], given the assemble-averaged nature of ε

and η. In particular, a monoscale forcing at a wavenumber s satisfies (5) with

kmin = kmax = s for each individual realization. Another example of such a

forcing over [kmin, kmax] is described in [39]; in each realization it yields time-

independent energy and enstrophy injection rates ε and η such that η = s2ε,

where s2 is the mean of k2 over [kmin, kmax]. A similar forcing was used by

Shepherd [33] in a study of 2D turbulence in a large-scale zonal jet on the so-

called beta-plane. In these examples, the characteristic forcing wavenumber s

is constant in time.

The dual cascade scenario can be best appreciated if one examines the evolu-

tion equation

s2 d

dt
E −

d

dt
Z =2ν(P − s2Z), (6)

7



obtained from (3) and (4). Here s is the forcing wavenumber
√

η/ε (for ε >

0), which according to hypothesis (5), must lie in the interval [kmin, kmax].

If ε = 0, then η = 0 and we take s to be any wavenumber in [kmin, kmax]. A

direct enstrophy cascade requires that the characteristic enstrophy dissipation

wavenumber
√

P/Z be much larger than the forcing wavenumber s; hence, the

right-hand side of (6) must be positive. The positiveness of P−s2Z implies the

positiveness of the left-hand side of (6) as well. If, in accord with the quasi-

steady KLB theory, the total enstrophy reaches a steady state, we deduce

that dE/dt must be positive. Equation (6) reflects the fact that the total

energy must increase without limit, due to the inverse energy cascade toward

wavenumber zero. (In a bounded domain, Tran and Shepherd [39] showed that

P = s2Z and concluded from this that no direct cascade is possible.)

Equation (6) satisfies P/Z � s2 not only for the KLB scaling k−5/3 and k−3

but also for a rich variety of spectra. This condition only requires an energy

spectrum shallower than k−5 for a sufficiently wide range of wavenumbers

k > s, provided that the energy spectrum for k � s is shallower than k−3. (In

Section 4, it is shown that the quantity P − s2Z can be positive even if the

energy spectrum for k > s is steeper than k−5. This allows for the possibil-

ity of an inverse energy cascade in the absence of a direct enstrophy cascade.)

However, the KLB theory insists on the specific scalings k−5/3 and k−3 (with a

logarithmic correction proposed by Kraichnan [13,14] and further investigated

by Bowman [6]), respectively, for the energy and enstrophy inertial ranges.

The k−5/3 scaling is analogous to the Kolmogorov spectrum for 3D turbu-

lence; the k−3 scaling implies that successive octaves in the enstrophy range

contain equal amounts of enstrophy, so that the enstrophy grows logarithmi-

cally with dissipation wavenumber kν. There exists a number of predictions for
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the numerical value of the enstrophy inertial range slope −β in the literature.

Saffman [31] proposes β = 4, while Moffat [24] favours a slightly smaller value:

β = 11/3. Sulem and Frisch [37] instead propose the upper bound β ≤ 11/3.

In the long-time limit, the KLB inverse energy cascade (or any inverse energy

cascade with a spectral scaling shallower than k−3 near k = 0) carries no

enstrophy with it. Therefore, the enstrophy necessarily approaches an absolute

equilibrium in a quasi-steady state. As a consequence, (6) reduces to

s2 d

dt
E = 2ν(P − s2Z). (7)

This equation indicates a simple and interesting fact about the KLB theory

for unbounded 2D turbulence: in a quasi-steady state (for which dZ/dt = 0),

the strength of an inverse energy cascade (the rate of the energy growth), if

realizable, is primarily determined by the rate 2νP of enstrophy dissipation.

Besides the simultaneous conservation of energy and enstrophy, other essential

features of 2D turbulence that underly the KLB theory are the scale-selectivity

of the molecular viscosity and the unboundedness of the domain (in both

directions). Together, they give rise to an infinite reservoir of energy in the

vicinity of k = 0 that allows for the possibility of the KLB inverse energy

cascade (which contains no enstrophy if the spectrum near k = 0 is shallower

than k−3). The theory breaks down when either the scale-selectivity of the

dissipation or the unboundedness of the domain is absent. We demonstrate

the former case and the semi-bounded case below. The case of a fluid in a

doubly periodic domain is studied in [39] and will be reviewed in the next

section.

Consider (1) with the viscous dissipation term νk2 replaced by a constant
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σ > 0; this scale-neutral frictional dissipation is often called Ekman drag in

geophysical contexts. Equations (3) and (4) become

d

dt
E =−2σE + ε, (8)

d

dt
Z =−2σZ + η, (9)

which, for bounded injection rates ε and η, implies that both the energy and

enstrophy are bounded. This simple fact precludes the KLB type of inverse

energy cascade. (As argued below, an inverse energy cascade dissipated by the

friction at the large scales is not possible either.) Moreover, upon applying

(5), we find

d

dt
(k2

minE − Z)≤−2σ(k2
minE − Z), (10)

d

dt
(k2

maxE − Z)≥−2σ(k2
maxE − Z). (11)

Hence, in the limit t → ∞ the following holds

k2
minE − Z ≤ 0 ≤ k2

maxE − Z, (12)

or equivalently,

k2
min ≤

Z

E
≤ k2

max. (13)

Equation (13) implies that the redistribution of energy and enstrophy obeys

exactly the same constraint as that imposed on the energy and enstrophy injec-

tion rates. Now, the boundedness of energy (enstrophy) prohibits an infinitely

wide range of wavenumbers k < kmin (k > kmax) in which the energy spectrum

can scale as k−1 (k−3), as this would imply a logarithmic divergence of the

energy (enstrophy) as k → 0 (k → ∞). In fact, an energy spectrum k−1 (k−3)

or steeper (shallower) on the large (small) scales is inconsistent with (13).
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Spectra consistent with (13) require that the energy and enstrophy be pri-

marily dissipated near the region of forcing; hence no inverse (direct) energy

(enstrophy) cascade is possible.

Besides the boundedness of the energy density in the present case, the spectral

distribution of energy and enstrophy obeying (13) is profoundly different from

that of the classical picture. The energy range is seen to be much shallower

than k−5/3 for a friction that acts uniformly on all scales. What seems curious

is that the slopes of the enstrophy range in both cases do not differ by much. In

fact, one could argue that a k−3 enstrophy-range spectrum with a logarithmic

correction is consistent with the constraint (13), provided that the spectrum in

the energy range scales as k−1 (with a similar correction). Nevertheless, we see

that the scale-selectivity of the molecular viscosity plays an important role in

the dual cascade picture. Perhaps, instead of studying the 2D Navier–Stokes

dual cascade, one could replace the molecular dissipation νk2 in (1) by another

scale-selective dissipation νµk2µ (with µ > 0) and examine the realizability of

a dual cascade in this hypothetical unbounded system.

Finally, it is interesting to note that the KLB picture is not realizable for

a 2D Navier–Stokes fluid confined to an unbounded channel with a periodic

boundary condition in the across-channel direction (0 ≤ y ≤ L) and vanishing

velocity (and derivatives thereof) at x = ±∞. This system is also furnished

with the zero-mean flow condition

L
∫

0

u(x, y, t) dy =0, (14)

where u(x, y, t) is the fluid velocity. To see why the dynamics of this system

are incompatible with the KLB picture, consider the Poincaré inequality for
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this domain: there exists a constant λ > 0 such that

λ

∞
∫

0

kµE(k) dk≤

∞
∫

0

k2+µE(k) dk, (15)

where µ ≥ 0. The optimal value of the constant λ depends on L. Now, the

energy equation (3) and enstrophy equation (4) can be bounded via (15) as

follows

d

dt
E ≤−2νλE + ε, (16)

d

dt
Z ≤−2νλZ + η. (17)

These inequalities render the boundedness of both energy and enstrophy. The

boundedness of the energy rules out the persistent inverse cascade needed for

the positiveness of P − s2Z; rather, an absolute equilibrium is more plausible

for this system. This result is quite physically reasonable: if one visualizes the

inverse cascade as a result of the coalescence of same-sign vortices to form

ever-larger ones, the system will tend toward equilibrium as the radii of the

vortices approach the channel width L. This dynamical behaviour is observed

by Rutgers [30] in an experiment of turbulence in a long channel, where, as

equilibrium is approached, the vortices grow until the channel width is reached.

Now, if an equilibrium is achieved, (6) necessarily reduces to

P − s2Z = 0. (18)

This equation, which also applies to the case of bounded fluids in equilibrium

considered in the next section, implies that the dissipation of enstrophy mainly

occurs in the forcing region and admits much steeper spectra than the KLB

spectrum.
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Remark 1. Some theoretical studies of the 2D Navier–Stokes equations in

unbounded domains make an a priori assumption that the Poincaré inequality

holds (e.g. Rosa [29]; see also Temam [38], p. 307). Such studies automatically

exclude the possibility of the KLB dynamics.

3 Dynamics of bounded fluids in equilibrium

In bounded systems, the energy is also in absolute equilibrium for arbitrary

(but positive) viscosity coefficient ν, so that (18) holds in equilibrium. This

implies that P/Z = s2, ruling out the existence of an enstrophy inertial range,

as argued in [39]. Moreover, the energy spectrum for k > kmax is steeper

than k−5. This constraint clearly indicates a dramatic departure from the

KLB theory. It is consistent with numerous numerical results, in which large-

scale vortices, known as coherent structures, are observed (see for example

Borue [5]; McWilliams [21,22]; Santangelo, Benzi, and Legras [32]; Smith and

Yakhot [34,35]); these are often blamed for causing spectra steeper than those

predicted by KLB. Although the mechanism behind these structures is not

fully understood, we argue that it is the steepness of the spectrum (steeper

than k−5) that allows coherent structures to form, rather than the other way

around. There is no need to invoke coherent structures to explain steep spec-

tra: the steepness arises merely as a consequence of global conservation laws,

molecular viscosity, and a spectrally localized forcing. As a matter of fact,

a small-scale spectrum steeper than k−5 implies that the large scales carry

virtually all of the system’s enstrophy. Hence, dynamics exhibiting strong

large-scale structures on a much weaker turbulent background of noise are

consistent with [39]. It should be noted that the small-scale spectrum only
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needs to be steeper than k−3 for most of the enstrophy to reside in the large

scales. Hence, large-scale structures may also be observed in simulations where

a slope between −3 and −5 in the enstrophy range can be achieved, using a

large-scale dissipation (see next section). Also, if the spectrum on the large

scales is shallower than k−3, one may expect vortices comparable in size to

the forcing scale to form, because most of the system’s enstrophy is then dis-

tributed in that spectral region. This has previously been noted by Paret and

Tabeling [27].

In Section 4, we show that (18), which may be rewritten as

∑

k<s

(s2
− k2)k2E(k) =

∑

k>s

(k2
− s2)k2E(k), (19)

implies the spectral exponents satisfy β > 5 and α + β ≥ 8, where −α (−β)

is the asymptotic slope of the range of wavenumbers lower (higher) than the

forcing wavenumber (in the usual case where the forcing wavenumber is no

greater than the geometric mean of the integral and dissipation wavenumbers).

For example, if the small-scale spectrum is approximately k−5, then the large-

scale spectrum should scale as k−3 (or steeper). This would be consistent with

the observed k−3 spectrum for the large-scale dynamics of the atmosphere

(Lilly and Peterson [19]). Now, a large-scale k−3 spectrum means that the

enstrophy scales as k−1; each octave in this range contains approximately the

same amount of enstrophy. Therefore, the dissipation of energy is uniformly

distributed among successive octaves in the energy range, so that no inverse

energy cascade is possible. Nevertheless, a spectrum steeper than k−3 on the

large scales is allowed by (19). This is more likely to occur if the small-scale

spectrum is only marginally steeper than k−5 (see Section 4). Unlike the KLB

inverse cascade, which carries virtually all of the injected energy to ever-larger
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scales, this inverse cascade, if realizable, would only carry a fraction of the

energy input to the largest scales.

The dynamics of a bounded fluid in equilibrium is characteristically different

from the quasi-steady KLB picture. There is an infinite energy reservoir at

k = 0 in unbounded systems that is forever available to collect the energy

transfer; this feature is absent in bounded fluids (and in unbounded fluids

satisfying the Poincaré inequality). Hence, the departure should not come as

a surprise. What seems ironic is that the enstrophy is only weakly dissipated

in bounded fluids at high Reynolds numbers but strongly dissipated in the

unbounded KLB case: in the bounded case the result P/Z = s2 [39] implies

that the enstrophy dissipation rate 2νP/Z becomes 2νs2, while in the KLB

theory it is approximately νk2
ν/ ln(kν/s), which is much greater than 2νs2 since

kν � s.

There appears to be no simple generalization from the dynamics of a bounded

fluid in absolute equilibrium to that of its unbounded classical counterpart and

vice versa. The familiar reconciliation found in the literature is that the k−5/3

range is modified or disrupted at the large scales when the inverse cascade

reaches the lowest available wavenumber. If the KLB picture applies to non-

equilibrium dynamics in a bounded system, v.z. before the inverse cascade

gets reflected by the spectral boundary, 2 then a dramatic adjustment of the

2 In a finite system, an inverse energy cascade carries a non-negligible amount of

enstrophy. If an inverse energy cascade carrying virtually all of the energy input

rate ε, reaches a wavenumber k∗, it would transfer enstrophy at the rate k2
∗
ε to

wavenumber k∗. Hence, the ratio of the enstrophy accompanying the inverse energy

cascade to the enstrophy input is approximately given by k2
∗
/s2, independent of the

viscosity ν.
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spectrum has to occur as an equilibrium is approached (see Smith and Yakhot

[35] for a discussion of the so-called finite-size effects). We have not yet inves-

tigated in detail how this adjustment takes place; however, it seems plausible

that as the inverse cascade hits the spectral boundary and gradually loses its

strength (dE/dt → 0), a substantial amount of the energy gets bounced back

to the forcing scale. As there is little dissipation at the large scales, growth of

the energy spectrum in the energy range is inevitable. This growth proceeds

until the large-scale energy spectrum is sufficiently excited so that the enstro-

phy dissipation occurs mainly in the vicinity of the forcing scale, whereupon

a forced-dissipative equilibrium is reached. As dE/dt → 0, the enstrophy cas-

cade (if initially present) ceases since the quantity P − s2Z on the right-hand

side of (6) decreases to zero. As a consequence, a gradual steepening of the

enstrophy-range spectrum takes place (whatever the spectral slope of the en-

strophy range during the transient phase). In Section 4 and Appendix A, we

establish that the sum of the steady-state spectral exponents in the energy

and enstrophy ranges must asymptotically approach −8.

Remark 2. It should be emphasized that the possibility of a direct enstrophy

cascade in a bounded fluid during the non-equilibrium phase cannot be ruled

out (not to say, however, that it actually occurs). For the case of a monoscale

time-independent forcing, it is shown in Tran and Shepherd [39] that a direct

enstrophy cascade is not realizable on average, whether the average be taken

on a chaotic trajectory, limit cycle, or on the entire global attractor. This result

leaves only the possibility of a direct enstrophy cascade in a neighborhood of

the resulting monoscale stationary solution, on its unstable manifold. In this

region one simultaneously has P − s2Z > 0 and s2E − Z > 0 (see Tran and

Shepherd [39] and also Tran, Shepherd, and Cho [40]); the former inequality
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prevents one from ruling out a direct enstrophy cascade. More quantitative

determination of the quantity P −s2Z (which is viscosity-dependent, see [40])

in this region will help assess the existence of the enstrophy cascade (and how

this would depend on the viscosity) as a monoscale basic flow loses its stability.

It is interesting to note that a k−3 spectrum (or slightly steeper), subject to

experimental error, is observed in the laboratory experiments of Paret, Jullien,

and Tabeling [25], and Rutgers [30]. In these experiments, mechanical friction

at the bottom and top boundaries (in particular with the air, as noted in [30])

of the fluid could be sufficiently strong to outplay viscosity, so that Ekman drag

alone is essentially responsible for dissipation. This might explain the observed

spectra, according to the discussion in the previous section. Moreover, the

analysis of [39] suggests that a combination of strong Ekman drag and weak

viscosity allows for such a shallow spectrum to be realizable. Thus, there is no

contradiction between the observed spectra and the predicted k−5 spectrum

for a Navier–Stokes fluid in equilibrium.

4 Constraints on constant spectral slopes

We now derive constraints on the spectral slopes for bounded fluids in equilib-

rium and for a dual cascade in unbounded fluids, particularly for a persistent

inverse energy cascade. We assume that the quasi-steady (steady) spectrum

for the unbounded (bounded) case can be approximated by

E(k) =







ak−α if k0 ≤ k < s,

bk−β if s ≤ k ≤ kν,
(20)
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where a, b, α, β are constants, k0 is the lowest wavenumber in the energy

range (k0 → 0 as t → ∞ for the unbounded case), and kν is the highest

wavenumber in the enstrophy range, beyond which the spectrum is supposed

to be steeper than k−β. In Appendix A, we show that the arguments below can

even be extended to the more realistic case, where the inertial-range slopes

depend on wavenumber.

The quantity P − s2Z can then be estimated as

∞
∫

k0

(k2
− s2)k2E(k) dk≥ a

s
∫

k0

(k2
− s2)k2−α dk + b

kν
∫

s

(k2
− s2)k2−β dk

= as5−α

1
∫

k0/s

(κ2
− 1)κ2−α dκ + bs5−β

1
∫

s/kν

(1 − κ2)κβ−6 dκ

= as5−α





−

1
∫

k0/s

(1 − κ2)κ2−α dκ +

1
∫

s/kν

(1 − κ2)κβ−6 dκ





 ,

(21)

where the inequality results from dropping the spectral contribution beyond kν

(which is considerable if β ≤ 5), the second line is obtained by the respective

changes of variables κ = k/s and κ = s/k in the two integrals on the right-

hand-side of the first line, and the third line is obtained using the continuity

relation as−α = bs−β.

In the bounded case the left-hand side of (21) vanishes. Therefore,

1
∫

k0/s

(1 − κ2)κ2−α dκ≥

1
∫

s/kν

(1 − κ2)κβ−6 dκ. (22)

For a strong forcing at a relatively low wavenumber s, it is reasonable to

assume that k0/s ≥ s/kν. This requires 2−α ≤ β − 6, as the integrals in (22)

decrease if the corresponding powers of κ (β − 6 and 2− α) increase. That is,

18



α + β ≥ 8.

On the other hand, the convergence of the right-hand integral in (22), as

s/kν → 0, requires also that β > 5. This result was derived in [39], on the

basis that the dissipation of enstrophy mainly occurs in the vicinity of the

forcing scale. Now if β = 5 + δ, where it may be plausible that 0 < δ � 1 for

high Reynolds numbers, then α ≥ 3−δ. It thus seems possible to obtain α ≈ 3.

In the limits k0/s → 0 and s/kν → 0, as is usual for high-Reynolds-number

turbulence, the inequality α + β ≥ 8 approaches an equality.

Remark 3. We caution that replacing the molecular viscosity νk2 by a general

viscosity νµk2µ (µ ≥ 0) in the previous argument leads to the result α + β ≥

4 + 4µ. The significant dependence on µ of this constraint suggests that the

introduction of a hyperviscosity could seriously alter the expected steady-state

spectral slopes.

We now derive a condition for a persistent inverse energy cascade in the un-

bounded case. We assume α < 3, in accord with the realization of an inverse

cascade toward wavenumber k = 0 that carries no enstrophy with it. In the

limits k0/s → 0 and s/kν → 0, the condition P − s2Z > 0 is guaranteed if

2 − α > β − 6 and α < 3, or equivalently, α + β < 8 and α < 3. These con-

straints admit a variety of spectra for a quasi-steady state in which an inverse

energy cascade to wavenumber zero, carrying with it virtually no enstrophy,

and a direct enstrophy cascade to the dissipation wavenumber kν, carrying

with it virtually no energy, are allowed. Note that the inverse cascade scenario

cannot be ruled out even if β > 5, i.e, in the absence of a direct enstrophy

cascade, when the inequality α+β < 8 holds. For the KLB energy-range spec-

trum k−5/3, it is interesting to note that this condition requires only β < 19/3.
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We therefore suggest that an inverse energy cascade in the absence of a direct

enstrophy cascade can be realizable for a wide range of (modest) Reynolds

numbers.

Remark 4. If the molecular viscosity νk2 is replaced by a hyperviscosity

νµk2µ for µ > 1 in an unbounded fluid, the condition for a persistent inverse

energy cascade P − s2Z > 0 is replaced by
∫

∞

0 (k2 − s2)k2µE(k) dk > 0. This

leads to α + β < 4 + 4µ. Of course, the condition α < 3 is required for a

zero-enstrophy-carrying inverse energy cascade.

5 Large-scale dissipation

In this section, we examine how a large-scale dissipation could be used to ob-

tain a dual cascade, and in particular, a direct enstrophy cascade. Consider (1)

in the bounded case, with a general dissipation:

d

dt
E(k) =T (k) − D(k)E(k) + F (k), (23)

where D(k) is a non-negative function of k. Systems for which D(k) vanishes

in the intermediate wavenumber range, including the forcing region, and for

which the boundedness of energy is not guaranteed (Eyink [9]) have previously

been studied in the literature.

For a general D(k), (6) becomes

s2 d

dt
E −

d

dt
Z =

∑

k

(k2
− s2)D(k)E(k), (24)

which, in equilibrium, reduces to the balance equation
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∑

k

(k2
− s2)D(k)E(k)= 0. (25)

A slightly different form of this equation is derived in [39]. Equation (25) im-

plies that the energy-range spectrum is related to the enstrophy-range spec-

trum in an intimate manner. For a given D(k), an increase of the energy in one

range requires an increase of the energy in the other. Thus, a steeper (shal-

lower) energy-range spectrum corresponds to a shallower (steeper) enstrophy-

range spectrum, for fixed E(s). Another obvious consequence of (25) is that a

nontrivial equilibrium is not possible if D(k) vanishes for all k < s.

We are interested in an expression for D(k) that retains the usual molecular

viscosity and includes a large-scale dissipation. Thus, we consider D(k) =

D`(k) + 2νk2, where D`(k) is a non-negative function of k. This dissipation

includes the physically relevant case in which D`(k) is a positive constant

representing friction from the planetary boundary layer in the geophysical

context. Equation (25) then becomes

2ν(P − s2Z)=
∑

k

(s2
− k2)D`(k)E(k). (26)

The left-hand side of (26) is the familiar term due to viscosity, which would

vanish in the absence of the large-scale dissipation. It can now become positive

since the right-hand side can be made positive in a variety of ways. Two

popular forms of D`(k) used in numerical simulations are the inverse viscosity

D`(k) = 2νµk2µ, for µ < 0, and mechanical friction restricted to the largest

scales (say k < k`): D`(k) ∝ H(k` − k), where H(k` − k) is the Heaviside step

function (see Maltrud and Vallis [20], for example). To facilitate the formation

of an enstrophy cascade, one might try to maximize the right-hand side of (26).

However, since we have no a priori control over E(k) for different D`(k), it is

not known how to maximize the product D`(k)E(k) for k < s. Nevertheless,
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restricting D`(k) to k < s by setting D`(k) = 0 for k ≥ s is reasonable since

any non-zero contribution to the right-hand side of (26) beyond s is negative.

If a positive value for the right-hand side of (26) can be achieved, the quantity

P−s2Z will be large for sufficiently small ν. This may help break the constraint

that the enstrophy range slope must be steeper than k−5 and allow for a direct

enstrophy cascade. An inverse cascade should be realizable, as we expect most

of the energy dissipation to occur at the large scales. Thus, a dual cascade is

possible. However, this cannot be achieved without a cost, as D`(k), which

dissipates energy at the rate
∑

k D`(k)E(k), also dissipates enstrophy on the

large scales at the rate
∑

k D`(k)k2E(k). But

k2
0

∑

k

D`(k)E(k)≤
∑

k

D`(k)k2E(k), (27)

where k0 is the lowest wavenumber, corresponding to the system size. Hence,

if
∑

k D`(k)E(k) is comparable to the energy injection rate (which is ideally

sought after in the spirit of the KLB theory), then the ratio of the enstrophy

dissipation rate at the large scales to the enstrophy injection rate is greater

than k2
0/k

2
max. This fraction of the enstrophy dissipation at the large scales may

be small, but not negligible. By allowing the enstrophy to be transferred to

the large scales, a non-negligible amount of enstrophy may be trapped in the

forcing region. If this is the case, then the spectrum in the forcing region has

to adjust dramatically (since ν is small and the large-scale dissipation is as-

sumed to be weak around the forcing scale) to balance the trapped enstrophy.

In Appendix B, we emphasize the difficulty of obtaining an enstrophy-range

spectrum shallower than k−5 with a large-scale dissipation that is well sepa-

rated from the forcing region.

Numerical simulations of 2D turbulence can resolve up to a certain wavenum-
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ber, say kT . Therefore, there is always a finite amount of energy dissipation at

the small scales. This is analogous to the dissipation of enstrophy at the large

scales previously considered, due to the finite size of the domain. If Dh(k)

represents the small-scale dissipation coefficient, the enstrophy and energy

dissipations on the small scales are respectively given by
∑

k Dh(k)k2E(k) and

∑

k Dh(k)E(k). These quantities satisfy

∑

k

Dh(k)k2E(k)≤ k2
T

∑

k

Dh(k)E(k). (28)

Hence, if the dissipation of enstrophy by Dh(k) is comparable to the enstrophy

injection rate (which is ideally sought after in the spirit of the KLB theory),

then the ratio of the energy dissipation rate at the small scales to the energy

injection rate is greater than k2
min/k

2
T . This is true for any Dh(k) ≥ 0, including

a hyperviscosity of arbitrary degree.

Intuitively, if a large-scale dissipation is extended to s, one would expect it to

absorb the reflected energy and keep the spectrum in the forcing region from

growing as ν → 0. For a strong forcing and strong large-scale dissipation D`(k)

(confined to k ≤ s), it may be hypothesized that the value of the right-hand

side of (26) is unaffected as ν → 0, given all else fixed. If this is the case, the

quantity P − s2Z grows as ν−1 and the ratio P/Z is given by

P

Z
= s2 +

1

2νZ

∑

k

(s2
− k2)D`(k)E(k). (29)

This makes P/Z → ∞ as ν → 0, a favorable limit for a direct enstrophy

cascade, with a spectrum shallower than k−5. However, the resulting cascade

would not have the physical significance of the KLB theory since the direct

enstrophy cascade (regardless of the spectral slope) might only be marginal,

with a significant fraction of the enstrophy dissipated in the energy range
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(k ≤ s) due to the strong large-scale dissipation, contrary to the classical

theory.

6 CONCLUSION

In this paper we have analysed the classical dual cascade theory of 2D tur-

bulence in unbounded fluids formulated by Kraichnan [13,14], Leith [15], and

Batchelor [2]. The main feature of the theory—the dual cascade—is contrasted

to the behaviour of 2D turbulence in a region that satisfies the Poincaré in-

equality, such as a doubly periodic domain. It is shown that the dual cascade

picture, if realizable, would strictly be an unbounded-system phenomenon.

This important point is not adequately stressed and has often led to confu-

sion in the literature. The familiar qualitative argument that the k−5/3 range

is modified or disrupted at the large scales when the inverse energy cascade

reaches the largest available scale in a bounded system (assuming the applica-

bility of the dual-cascade dynamics to the transient phase) is inadequate. Two-

dimensional turbulence either in a doubly periodic domain or in an unbounded

channel with a periodic boundary condition on the across-channel dimension

does not behave in the manner predicted by KLB. In particular, the spectral

slopes in such systems are found to satisfy β > 5 and α + β ≥ 8, where −α

(−β) is the slope of the range of wavenumbers lower (higher) than the forcing

wavenumber. This result is well supported by numerical simulations, which

consistently find enstrophy-range spectra steeper than the KLB prediction

and dynamically dominant large-scale structures (McWilliams [21,22]; San-

tangelo, Benzi, and Legras [32]). It may even explain the observed large-scale

k−3 spectrum in the atmosphere (Lilly and Peterson[19], Boer and Shepherd
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[3]).

We have shown that a dual cascade in unbounded fluids is possible if β satisfies

3 < β < 5; this includes both the classical β = 3 scaling as an extreme limit,

and also the theories of Saffman [31], Moffat [24], and Sulem and Frisch [37],

which propose β = 4, β = 11/3, and β ≤ 11/3, respectively. Moreover, in

the absence of a direct enstrophy cascade (β > 5), an inverse energy cascade,

corresponding to flows with low Reynolds numbers (which should be relatively

easy to simulate) cannot be ruled out.

The fundamental difference between bounded and unbounded fluids is that

there is an infinite energy reservoir in the unbounded case, which allows a per-

sistent inverse energy cascade to ever-larger scales to form, so that the energy

eventually evades viscous dissipation altogether. Provided that the spectrum

near k = 0 is shallower than k−3, the inverse cascade asymptotically carries

no enstrophy. This luxury is a consequence of both the unboundedness of the

domain (in both directions) and the scale-selectivity of the molecular viscosity.

In addition to the simultaneous conservation of energy and enstrophy, these

properties constitute the basic building blocks of the KLB theory. Another

important hypothesis is the existence of a quasi-steady state. As long as an

inverse cascade is realizable and a quasi-steady state can be established in

an unbounded system, the cascade dynamics are fundamentally distinct from

what occurs in a bounded fluid in equilibrium. There appears to be no sound

basis for extending the results from one case to the other. Of course, in an

unbounded fluid it is quite possible for an inverse energy cascade to exist with-

out a corresponding direct enstrophy cascade; in this case, there might then

be certain similarities between the dynamics of the bounded and unbounded

systems.
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The dissipation operator plays an important role in the spectral distribution of

energy. This is especially apparent in the balance equation (25) for a fluid in a

doubly periodic domain: the product of the energy spectrum and the spectral

dissipation function in the energy and enstrophy ranges are intimately related.

This information is important for numerical 2D turbulence simulations, where

various dissipation mechanisms are employed: it should help researchers rule

out certain spectral distributions and anticipate possible outcomes for a given

dissipation mechanism. Finally, we showed that a large-scale dissipation could

give rise to a direct enstrophy cascade since the quantity P − s2Z could grow

as 1/ν, until P/Z � s2.

A Constraints on general spectral slopes

Strictly speaking, the spectrum (20) is too simplistic; actual spectral slopes will

tend to vary monotonically with wavenumber (particularly in the enstrophy

range, as one approaches the onset of the dissipation range). The arguments

of Section 4 can be readily extended to more general spectra. Normalizing all

wavenumbers so that s = 1, we express the energy spectrum as

E(k) = a























k−α(k) if k0 ≤ k < 1,

k−β(k) if 1 ≤ k < k1,

k−γ(k) if k1 ≤ k ≤ kT ,

(A.1)

with β(k1) = γ(k1), where k0 is the lower spectral cutoff wavenumber (de-

termined by the domain size), k1 is the highest wavenumber in the enstro-

phy range, and kT is the highest retained (truncation) wavenumber. Equa-

tion (18), or equivalently (25), then appears as
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1
∫

k0

(1 − k2)k2−α(k)dk =

k1
∫

1

(k2
− 1)k2−β(k)dk +

kT
∫

k1

(k2
− 1)k2−γ(k) dk. (A.2)

The change of variable κ = 1/k in the integrals on the right-hand side yields

1
∫

k0

(1 − κ2)κ2−α(κ)dκ=

1
∫

1/k1

(1 − κ2)κβ(1/κ)−6dκ + εν , (A.3)

where εν =
∫ 1/k1

1/kT
(1 − κ2)κγ(1/κ)−6 dk ≥ 0. For bounded turbulence, we restrict

our attention to the usual case where k1 ≥ 1/k0. Since
∫ 1
1/k1

(1 − κ2)κθdκ is

a strictly decreasing function of θ, we find that the maximum slopes α =

sup
k

α(k) and β = sup
k

β(k) satisfy

1
∫

1/k1

(1 − κ2)κ2−α dκ≥

1
∫

1/k1

(1 − κ2)κ2−α(κ) dκ ≥

1
∫

k0

(1 − κ2)κ2−α(κ) dκ

≥

1
∫

1/k1

(1 − κ2)κβ(1/κ)−6 dκ ≥

1
∫

1/k1

(1 − κ2)κβ−6 dκ.

Hence 2 − α ≤ β − 6; that is, α + β ≥ 8.

One can also obtain estimates for the minimum slopes α = inf
k

α(k) and β =

inf
k

β(k), assuming γ(k) ≥ β:

1
∫

k0

(1 − κ2)κ2−α dκ ≤

1
∫

k0

(1 − κ2)κ2−α(κ) dκ =

1
∫

1/k1

(1 − κ2)κβ(1/κ)−6 dκ + εν

≤

1
∫

1/kT

(1 − κ2)κβ−6 dκ. (A.4)

In the asymptotic limit as k0 → 0 and kT → ∞, we deduce α + β ≤ 8.

It is instructive to specialize these results to the case of constant slopes, where

α = α = α and β = β = β (e.g. if k1 � kν). For a bounded fluid satisfying
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k1 ≥ 1/k0, we then see that limk0→0 α + β = 8.

B Spectral slopes for a system with an inverse viscosity

It was suggested in Section 4 that a large-scale dissipation, well separated from

the forcing scale, may not give rise to the desired direct enstrophy cascade and

the corresponding k−3 spectrum. To demonstrate this point, we consider the

special form D(k) = 2ν ′k−2 + 2νk2, with ν ′s−2 = νs2, so that at the forcing

scale, the inverse viscosity and the usual molecular viscosity have the same

strength. Equation (25) becomes

∑

k

(k2
− s2)(ν ′k−2 + νk2)E(k)= 0. (B.1)

Assuming the spectral scaling (20) and following the steps leading to (22), we

obtain

1
∫

k0/s

(1 − κ2)(κ−2 + κ2)κ−α dκ≥

1
∫

s/kν

(1 − κ2)(κ2 + κ−2)κβ−4 dκ. (B.2)

In the case k0/s ≥ s/kν it follows that α+β ≥ 4. In the limit s/kν → 0, we still

require β > 5. For the KLB enstrophy-range spectrum to be realizable it is

necessary that α ≥ 1; moreover, s/kν cannot be much smaller than k0/s. The

former condition does not seem to be plausible in the presence of an inverse

viscosity, while the latter condition requires an unphysically narrow enstrophy

range for a forcing at relatively small wavenumbers.
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