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ABSTRACT

Traditional explicit numerical discretizations of conservative systems generically predict artificial
secular drifts of nonlinear invariants. These algorithms are based on polynomial functions of the
time step. We discuss a general approach for developing explicit algorithms that conserve such
invariants exactly. We illustrate the method by applying it to the truncated two-dimensional Euler
equations.

INTRODUCTION

It is often desirable on physical grounds that numerical discretizations of initial value problems
respect certain nonlinear conservation properties. This is the case in inviscid fluid simulations,
where relaxation to a statistical mechanical equilibrium parameterized by quadratically nonlinear
invariants is expected. In this paper we illustrate a general method [8] for deriving explicit con-
servative integration algorithms for truncations K of the Fourier-transformed Euler equations for
a two-dimensional fluid,

duk

dt
= Sk(u), (1)

where u = {uk : k ∈ K}. For simplicity we will restrict our discussion to the case where the uk’s
are real; the general case follows immediately upon splitting complex amplitudes into real and
imaginary parts. The source functions Sk satisfy the properties

∑

k

uk Sk = 0 and
∑

k

k2 uk Sk = 0, (2)

which lead to the the conservation of two nonlinear invariants, the total energy and enstrophy,
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1

2
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k

u2

k, and Z =
1

2

∑

k

k2u2

k, (3)

respectively.

Unfortunately, when (1) is integrated numerically using standard explicit methods (or even with
symplectic integrators; see [2]), neither E nor Z are exactly conserved. This behaviour is elucidated
upon applying Euler’s method with a time step τ :

uk(t + τ) = uk(t) + τ Sk. (4)



The energy at the new time is seen to be

E(t + τ) =
1
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1
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[
u2

k + 2 τ Sk uk + τ 2 S2

k

]
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2
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k, (5)

upon using (2). The total energy is thus always increasing. A similar calculation for the enstrophy
gives

Z(t + τ) = Z(t) +
1

2
τ 2

∑

k

k2 S2

k, (6)

which likewise is always increasing. For extremely long runs these results imply that a very small
time step will be required to bound the accumulated error by a given value.

One technique for enforcing the preservation of a constant of motion is to use the invariant to
reduce the number of equations that must be solved. If the constants are in involution, then an
entire degree of freedom (one coordinate and one momenta) can be removed from the dynamics for
each such constant. This is seldom practical since the relationship between the constants of motion
and a given dynamical variable may well be noninvertible (see the discussion in Gear [3]). The net
result is that the reduced equations tend to be more complicated than the original system (hence
the “force” terms are more expensive to compute); in a system with a large number of degrees of
freedom, little advantage is gained. Furthermore, if the constants of motion are not in involution,
the system obtained by eliminating these invariants will be noncanonical [6, 5], resulting in even
greater complexity.

Borrowing from the ideas of backward error analysis [7], we instead construct a new system of
equations that, under the conventional (nonconservative) integrator, yields a conservative nu-
merical approximation to the original equations. Consider the alternative problem described by
equations of the form

duk

dt
= Sk(u) + fk. (7)

Our objective is to find an fk that guarantees exact energy and enstrophy conservation and that
vanishes in the small time-step limit. The form of fk will depend on the integration algorithm. For
pedagogical reasons, we begin by illustrating the method by deriving fk for Euler’s method. We
then proceed to construct a more practical second-order conservative predictor–corrector scheme.

CONSERVATIVE EULER ALGORITHM

Application of Euler’s method to the modified system (7) yields

uk(t + τ) = uk(t) + τ( Sk + fk). (8)

The energy at the new time,

E(t + τ) =
1

2

∑

k

[uk(t) + τ (Sk + fk)]2 = E(t) +
1

2

∑

k

[
2 τ fk uk + τ 2(Sk + fk)2

]
, (9)

will be conserved provided ∑

k

[
2fk uk + τ(Sk + fk)2

]
= 0. (10)

There is considerable freedom in satisfying (10). To ensure that our discrete solution approaches
the exact solution of the original differential equation in the limit τ −→ 0, it is necessary that fk



vanish in this limit. That is, in the limit of an infinitesimal time step, we must recover the original
integration algorithm (to first order in τ). Moreover, one would prefer that fk not introduce
additional couplings into the differential equations. In light of this observation, let us try to
satisfy (10) with the more restrictive condition that each term in the sum must independently
vanish:

2 fk uk + τ (Sk + fk)2 = 0. (11)

There is an additional motivation for this ansatz , namely that for fk satisfying (11), the enstrophy
will also be conserved. These equations are easily solved, yielding

τ fk = −(uk + τ Sk) + σk

√
u2

k + 2 τ Sk uk, (12)

where σk = σk(t, τ) is so far an unknown sign. Evaluation of (12) at τ = 0 implies that σk(t, 0) =
sgn(uk(t)). Upon substituting (12) into the Euler integrator, (8), we obtain

uk(t + τ) = σk

√
u2

k + 2 τ Sk uk. (13)

It is now clear that σk(t, τ) must in fact be the sign of uk(t + τ).

If uk(t) 6= 0, then for sufficiently small τ the sign can be expressed explicitly as σk = sgn(uk(t)).
In the τ −→ 0 limit, fk then vanishes, or equivalently, (13) reduces to Euler’s method:

uk(t + τ) = sgn(uk(t))
√

u2

k + 2 τ Sk uk ≈ uk + τ Sk. (14)

In this case the new algorithm predicts values of uk(t + τ) that are quite close to those given by
Euler’s method—this is exactly what one would expect. The energy and enstrophy errors arising
from (4) are the result of small (but nontrivial) errors in uk(t+τ) that can be corrected by making
only a slight modification to the algorithm.

However, if uk(t) = 0, it is seen from (12) that fk = −Sk. Consequently, (13) has a spurious
fixed point at uk(t) = 0. Moreover, given a fixed time step τ , (14) will break down when |uk| <

2τ |Sk|. A related problem with (13) is that the argument of the radical can become negative. The
condition uk (uk + 2 τSk) < 0 implies that Euler’s method predicts a sign change of uk between t

and t + 2 τ ; hence uk is in this case also in the vicinity of zero. While a modification to (13) that
circumvents these problems is given in Ref. [8], the second-order algorithm discussed next does
not share these difficulties and is in any case of greater practical value.

CONSERVATIVE PREDICTOR–CORRECTOR ALGORITHM

For most applications, it is preferable to use a scheme that is of higher order and has better
stability properties than Euler’s method. Let us apply a simple second-order predictor–corrector
(PC) scheme to (1):

ũk = uk + τ Sk, (15a)

uk(t + τ) = uk +
τ

2

(
Sk + S̃k

)
, (15b)

where S̃k = Sk(ũ) and ũ = {ũk : k ∈ K}. Using a second-order method overcomes the fixed-point
problem that we encountered with Euler’s method.



The energy will evolve according to

E(t + τ) =
1

2

∑

k

[
u2

k + τ uk

(
Sk + S̃k

)
+

τ 2

4

(
Sk + S̃k

)
2

]
= E(t) +

τ 2

8
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k
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2

. (16)

A similar calculation gives

Z(t + τ) = Z(t) +
τ 2

8

∑

k

k2
(
Sk − S̃k

)
2

. (17)

Again, the numerical method yields an ever increasing energy and enstrophy.

To obtain a conservative version of this algorithm, we apply the predictor–corrector method to the
modified equation of motion, (7), yielding

ũk = uk + τ (Sk + fk) , (18a)

uk(t + τ) = uk +
τ

2

(
Sk + fk + S̃k + f̃k

)
. (18b)

Only a small correction to (15) is required to enforce the desired conservation properties. It turns
out that these properties can be achieved by modifying only the corrector part of the integra-
tor; since the predictor is merely an intermediate approximation, there is no need for it to be
conservative. We can thus replace (18) with the simpler prescription

ũk = uk + τ Sk, (19a)

uk(t + τ) = uk +
τ

2

(
Sk + S̃k + gk

)
. (19b)

As before, we determine gk by demanding conservation of energy and enstrophy. The energy and
enstrophy at t + τ will be simultaneously conserved if gk uk − τ Sk S̃k + τ

4
(Sk + S̃k + gk)2 = 0.

Some straightforward algebra gives

τ

2
gk = −

[
uk +

τ

2

(
Sk + S̃k

)]
+ σk

√
u2

k + τ
(
uk Sk + ũk S̃k

)
, (20)

where we choose σk = ±1 such that as τ −→ 0, gk vanishes. We consider the limit of small τ in
two cases. If uk is nonzero, then for small enough τ , both uk and ũk have the same sign and we
can expand the radical to give

τ

2
gk = −uk − τ

2

(
Sk + S̃k

)
+ σk sgn(uk)

[
uk +

τ

2

(
Sk + S̃k

)]
+ O(τ 2), (21)

leading us to choose σk = sgn(uk). Otherwise, if uk = 0, then ũk = τ Sk and S̃k = Sk + O(τ), so
that

τ

2
gk = −τ Sk + σk

√
τ 2 S2

k + O(τ 2) = −τ Sk + τ σk sgn(Sk) Sk + O(τ 2). (22)

In this case we take σk = sgn(Sk) = sgn(ũk). In the previous case, we noted, for small τ , that uk

and ũk have the same sign. Therefore, the choice σk = sgn(ũk) will always provide the correct
limiting behaviour.

Using the expression (22) for gk in our modified predictor–corrector algorithm, (19), we obtain the
following conservative integrator:

ũk = uk + τ Sk, (23a)



uk(t + τ) = σ̃k

√
u2

k + τ
(
uk Sk + ũk S̃k

)
, (23b)

where σ̃k = sgn(ũk). Unlike (13), this algorithm, which we call “conservative predictor–corrector,”
(C–PC), does not suffer from fixed points: as τ −→ 0, it reduces to the conventional predictor–
corrector, (15), even in the case uk = 0. Thus, C–PC may be seen as finite-time step generalization
of PC. Both methods agree with the exact solution to second order in the time step. It is still
possible that the argument of the radical can become negative; however, this merely indicates that
the step size is too large. We now show that a finite number of time-step reductions can be used to
integrate the system (1) through a region where the argument of the radical in (23b) is negative,
provided that Sk has continuous (and hence bounded) first derivatives on the closed interval of
integration.

Suppose that at some time t there exists a mode k (not necessarily unique) such that

u2

k + τ
(
uk Sk + ũk S̃k

)
< 0. (24)

Since the left-hand side of this expression is a continuous function of τ , for each such mode k

there exists a τ1 ≥ 0 such that u2

k + τ1

(
uk Sk + ũk S̃k

)
= 0. If more than one mode satisfies this

condition, we choose the one with the smallest τ1. One can replace the original time step with τ1

so that, at time t1 = t + τ1, (23b) becomes uk(t1) = 0. From here, one may resume the integration
with the original time step:

ũk(t1 + τ) = τSk(t1), (25a)

uk(t1 + τ) = sgn(ũk)
(
τ 2Sk(t1) S̃k(t1)

)
1/2

= sgn(ũk)τ


S2

k(t1) + τSk(t1)
∑

j

Sj(t1)
∂Sk

∂uj

∣∣∣∣∣
tξ




1/2

,

(25b)
for some tξ ∈ (t1, t1 +τ), by the Mean Value Theorem. If Sk and its derivatives are bounded on the
interval of integration, for sufficiently small τ the argument of the radical will be non-negative and
a single reduction of the time step will suffice. In practice, it is not necessary to reduce τ exactly
to τ1. Instead, successive reductions by a constant factor will eventually make the argument of the
radical non-negative so that the system can be further integrated. Under the stated conditions, it
is consequently never necessary to reduce the time step all the way to zero (a circumstance that
has never been encountered in our implementations of C–PC).

In Fig. (1) we contrast the evolution of a system of three real modes under PC and C–PC, choosing
k2 = 3, p2 = 9, q2 = 6, Sk = upuq, Sp = uquk, and Sq = −2ukup [4]. This problem is
integrable; the exact solution is a simple closed curve. The solid line is the orbit computed with
the conservative integrator, while the dots represent the solution obtained from the conventional
predictor–corrector. We see that the conservative integrator correctly reproduces the topological
structure of the trajectory; in contrast, the conventional method exhibits a drift corresponding to
a 4% gain in the total energy.

DISCUSSION

A simple interpretation of (13) and (23) sheds light both on their form and on the existence of the
two branches, labeled by σk. Most traditional numerical methods conserve the linear invariants
of a system. Consequently, one might be led to consider the possibility of transforming uk to
new variables, in terms of which the invariants are linear. For the Euler equations, this can be
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Figure 1: Integration of a three-mode truncation of the Euler equations using a conventional
second-order predictor–corrector (dotted line) and the conservative predictor–corrector (solid line).
Both methods took approximately 4000 time steps of size 0.05. Initially uk =

√
1.5, up = 0, and

uq =
√

1.5.



accomplished by making the transformation φk = u2

k. Upon applying the Euler method in the
φk space and transforming back by taking the square root, one immediately obtains (13). This
indicates that our restriction of the general constraint (10) to the condition (11) merely ensures
that the modal energies evolve in a manner consistent with the Euler discretization of the energy
equations. The C–PC algorithm can be viewed in the same light, except that the predictor is
taken to have the simpler, nonconservative form. Further applications of this idea to the Lotka–
Volterra predator–prey model and to the Kepler problem are given in Ref. [8] and to high-resolution
turbulence computations in Ref. [1].
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