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Abstract

This study revisits bounds on the projection of the global attractor in the
energy–enstrophy plane for 2D incompressible turbulence [Dascaliuc, Foias,
and Jolly 2005, 2010]. In addition to providing more elegant proofs of
some of the required nonlinear identities, the treatment is extended from
the case of constant forcing to the more realistic case of random forcing.
Numerical simulations in particular often use a stochastic white-noise forcing
to achieve a prescribed mean energy injection rate. The analytical bounds
are demonstrated numerically for the case of white-noise forcing.
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1. Introduction1

Turbulence is sometimes characterized as the “last great unsolved problem2

of classical mechanics.” Attempts to understand and predict turbulent flow3

have been undertaken since the very beginning of the emergence of classical4

mechanics. While there have been some influential breakthroughs in the last5

century by great researchers like Taylor, Kolmogorov, Kraichnan, Batchelor,6

Leith, Ruelle, Takens, Orszag, Frisch and others, the problem of turbulence7

is complicated enough that there is not even a unified model adopted by8

all researchers in the field. The nature of turbulence is still controversial.9

Is it a deterministic or stochastic phenomenon? Even with the emergence10
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of chaos theory in the 1980s and the understanding of nonlinear dynamical11

systems using the concepts of attractors, basins, intermittency, and coherent12

structures, the problem of turbulence has not been precisely described. The13

complex nature and essence of turbulence deserves much further study. In14

this work we apply tools from functional analysis to study turbulence as15

a deterministic phenomenon governed by the Navier–Stokes equations, but16

driven by a stochastic forcing.17

2. Definitions and preliminaries18

One of the simplest contexts in which to pose the turbulence problem19

is 2D incompressible homogeneous isotropic turbulent flow in a bounded20

domain with periodic boundary conditions and no mean velocity and forcing.21

One close realization of this ideal form of turbulence in laboratories is a very22

thin layer of turbulent fluid far downstream from a flow passing over a net23

of wires.24

Looking at this ideal form of turbulence deterministically involves using
the incompressible Navier–Stokes and continuity equations expressed as a set
of integro-differential equations, with zero mean flow and forcing, along with
constant density ρ = 1:

∂u

∂t
− ν∇2u+ u·∇u+∇p = F , (1)

∇·u = 0, (2)∫
Ω

u dx = 0,

∫
Ω

F dx = 0, (3)

u(x, 0) = u0(x), (4)

with Ω = [0, L] × [0, L] and periodic boundary conditions on ∂Ω. This
problem can be considered in a specific Hilbert space (H) with the standard
L2 inner product

(u,v) =

∫
Ω

u(x)·v(x) dx, where a·b =
∑
i

aibi.

The Hilbert space is defined as25

H(Ω)
.
= cl

{
u ∈ (C2(Ω) ∩ L2(Ω))2 | ∇·u = 0,

∫
Ω

u dx = 0

}
, (5)
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with L2 norm

|u| = (u,u)1/2 =

(∫
Ω

u(x, t)·u(x, t) dx

)1/2

(here
.
= is used to emphasize a definition and cl denotes the closure with26

respect to the L2 norm). The above problem can then be expressed as27

du

dt
− ν∇2u+ u·∇u+∇p = F , u(t) ∈ H(Ω). (6)

Let A
.
= −P(∇2), f

.
= P(F ), and define the bilinear map

B(u,u)
.
= P (u·∇u+∇p) ,

where P is the Helmholtz–Leray projection operator on H(Ω):

P(v)
.
= v −∇∇−2∇·v, ∀v ∈ H(Ω).

In terms of these definitions, (6) can be written more compactly as28

du

dt
+ νAu+ B(u,u) = f . (7)

3. Stokes operator A29

The operatorA = P(−∇2) is positive-semidefinite and self-adjoint inH(Ω),
with a compact inverse whose eigenvalues are

λ = k2
0k·k, k ∈ Z× Z\{0},

where k0 = 2π/L. The eigenvalues of a positive-definite infinite-dimensional
linear operator can be arranged as

0 < λ0 < λ1 < λ2 < · · · , λ0 = k2
0

and their eigenvectors, wi, i ∈ N0, form an orthonormal basis for the Hilbert
space H, upon which we can define any power of A:

Aαwj = λαjwj, α ∈ R, j ∈ N0.
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Having the above orthonormal basis, it is possible to define a new space
V 2α ⊂ H as [19]

V 2α = D(Aα)
.
=

{
u ∈ H |

∞∑
j=0

λ2α
j (u,wj)

2 <∞
}
.

We are especially interested in the subspace V = V 2(1/2) consisting of solutions
in H having finite enstrophy:

V = D(A1/2)
.
=

{
u ∈ H |

∞∑
j=0

λj(u,wj)
2 <∞

}
.

A suitable norm for the elements of V is

||u|| =
∣∣A1/2u

∣∣ =

(∫
Ω

2∑
i=1

∂u

∂xi
· ∂u
∂xi

)1/2

=

(
∞∑
j=0

λj(u,wj)
2

)1/2

.

It is essential to exploit properties of the bilinear map B together with in-
compressibility and periodicity, along with specific properties of the Stokes
operator A. Here we only list the most important properties of the bilinear
map and the reader who is interested in their proofs is referred to Appendix A
for further details. Specifically, we will need the antisymmetry

(B(u,v),w) = −(B(u,w),v),

orthogonality in 2D,30

(B(u,u), Au) = 0, (8)

the strong form of enstrophy invariance in a 2D periodic domain,

(B(Av,v),u) = (B(u,v), Av),

and the 2D general identity in a periodic domain,

(B(Au,u),u) + (B(v, Av),u) + (B(v,v), Av) = 0.

Finally, we state an important Sobolev inequality, the 2D Ladyzhenskaya
inequality:

|u|L4(Ω) ≤ CL|u|1/2||u||1/2, (9)

where the constant CL depends only on the domain Ω.31
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4. The Navier–Stokes equations as a dynamical system32

Before considering the dynamical behaviour of the Navier–Stokes equations
using functional analysis tools, we need to define certain global flow quantities
respectively known as the energy, enstrophy, and palinstrophy:

E =
1

2
|u(t)|2, Z =

1

2

∣∣A1/2u(t)
∣∣2 =

1

2
||u(t)||2, P =

1

2
|Au(t)|2.

Just as energy is proportional to the mean-squared velocity, enstrophy is33

proportional to the mean-squared vorticity and therefore provides a measure34

of the rotational energy in a flow. It is easily shown that the rate at which35

energy is dissipated is proportional to the enstrophy. Likewise, the enstrophy36

is dissipated at a rate proportional to the palinstrophy.37

Taking the inner product of u (respectively Au) with (7), we find

1

2

d

dt
|u(t)|2 + ν||u(t)||2 = (f ,u(t)), (10)

1

2

d

dt
||u(t)||2 + ν|Au(t)|2 = (f , Au(t)). (11)

Applying the Cauchy–Schwarz and Poincaré inequalities, we obtain

(f ,u(t)) ≤ |f ||u(t)|, k2
0|u(t)|2 ≤ ||u(t)||2,

which leads to
−ν||u||2 ≤ −νk2

0|u|2.
Thus, (10) can be written as38

d

dt
|u(t)|2 ≤ −2νk2

0|u(t)|2 + 2|f | |u(t)|. (12)

Simplifying the above inequality yields39

d

dt
|u(t)| ≤ −νk2

0|u(t)|+ |f |, (13)

which is a first-order differential inequality. If f is constant in time, we can40

apply a Gronwall inequality to (13) for t ≥ 0:41

|u(t)| ≤ e−νk
2
0t|u(0)|+

(
1− e−νk20t

νk2
0

)
|f |. (14)
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Now, taking α
.
= e−νk

2
0t and β

.
= |f |/(νk2

0), (14) can be expressed as

|u(t)| ≤ α|u(0)|+ (1− α)β,

which is a segment connecting |u(0)| and β. On squaring both sides and
exploiting convexity, we obtain

|u(t)|2 ≤ α|u(0)|2 + (1− α)β2.

We thus arrive at the following result:42

|u(t)|2 ≤ e−νk
2
0t|u(0)|2 + (1− e−νk20t)

( |f |
νk2

0

)2

. (15)

On introducing the Grashof number G
.
= |f |/(ν2k2

0), we simplify (15) to43

|u(t)|2 ≤ e−νk
2
0t|u(0)|2 + (1− e−νk20t)ν2G2. (16)

Applying the same argument to (11), using (8), results in a similar estimate:44

45

||u(t)||2 ≤ e−νk
2
0t||u(0)||2 + (1− e−νk20t)ν2k2

0G
2. (17)

From (17), it can be observed that the closed ball B of radius νk0G in the
space V is a bounded absorbing set [8], and so weakly compact.1 If we take S
to be the solution operator for (7) defined by

S(t)u0 = u(t), u0 = u(0) ∈ V,

where u(t) is the unique solution [11] of (7), then by the definition of the
absorbing set for the solution of a dynamical system, for any bounded set B′ ⊂ V ,
there exists a time t0 such that

t0 = t0(B′) and S(t)B′ ⊂ B, ∀t ≥ t0.

The global attractor A is then defined by46

A =
⋂
t≥0

S(t)B, (18)

1Every closed and bounded convex set in a Hilbert space is compact in the weak
topology.

6



so A is the largest bounded, invariant set such that S(t)A = A for all
t ≥ 0. Taking into account in two dimensions the existence of a global
attractor [16, 12] and a closed bounded absorbing set in V ⊂ H, an immediate
observation from (16) and (17) shows that being on the attractor requires
the following two conditions:

|u| ≤ νG, (19a)

||u|| ≤ νk0G. (19b)

The above observation leads to a suitable normalization for the energy and47

enstrophy that we use later on for finding bounds in the Z–E plane.48

Remark. The above results assure us that on the attractor both the energy49

and enstrophy are bounded.50

5. Relation between Z and E51

Now that we have some useful estimates for enstrophy and energy, we52

can go further and find useful relations between Z and E. First, it is helpful53

to introduce a new quantity and a related theorem from Dascaliuc et al. [8],54

based on estimates detailed in Appendix A.5.55

Definition. For all u ∈ A\{0}, let

χ(u) =
||u||2
|u| =

2Z√
2E

.

Theorem 1. The quotient χ attains its absolute maximum on A\{0}. Moreover,
if 0 ∈ A, then

χ(u) ≤ ν2/3k2
0G

2/3Γ
1/3
1 |u|1/3, u ∈ A\{0},

where Γ1 = 2(Λ
1/2
2 Γ

1/2
0 + 2c2

LG
2Γ0), Γ0 = c2

LG
2 + 2Λ

1/2
1 , and Λj =

∣∣Aj/2f ∣∣2
k2j

0 |f |2
.56

Proof. See Dascaliuc et al. [8, Theorem 5.1]. �57

Remark. Let u(t) be a solution such that u(t) 6= 0 on some interval (t1, t2].58

Then the function χ(t)
.
= χ(u(t)) = ||u(t)||2/|u(t)| satisfies59

dχ

dt
=

d||u||2
dt
|u| − ||u||2d|u|

dt
|u|2

=
2
[
(f , Au)− ν|Au|2

]
|u| −||u||

2[(f ,u)− ν||u||2]

|u|3
.

(20)
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Using the definition

λ = λ(t) =
χ(t)

|u(t)| =
||u(t)||2
|u(t)|2

,

we can rewrite (20) as60

|u|dχ
dt

= −2ν|(A− λ)u|2 + 2(f , (A− λ)u) + λ(f ,u)− νλ2|u|2. (21)

By introducing

f⊥ = f − (f ,u)u

|u|2
,

it is observed that

(f , (A− λ)u)−
(
f⊥, (A− λ)u

)
=

(
(f ,u)

|u|2 u, (A− λ)u

)
=

(f ,u)

|u|2 [(u,Au)− (u, λu)]

=
(f ,u)

|u|2
(
||u||2 − λ|u|2

)
= 0.

Thus (21) can be rewritten as

|u|dχ
dt

= −2ν|(A− λ)u|2 + 2(f⊥, (A− λ)u) + λ(f ,u)− νλ2|u|2

= −2ν

∣∣∣∣(A− λ)u− f
⊥

2ν

∣∣∣∣2 +

∣∣f⊥∣∣2
2ν

+ λ(f ,u)− νλ2|u|2. (22)

On defining

v = (A− λ)u− f
⊥

2ν
, σ =

(f ,u)

|f ||u| ,

we can represent (22) as

|u|dχ
dt

= −2ν|v|2 +
|f |2
2ν

(1− σ2)− νχ2 + χσ|f |,
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so that

|u| d
dt

( |f |
ν
− χ

)
= 2ν|v|2 + νχ2 − |f |

2

2ν
(1− σ2)− χσ|f |

= 2ν|v|2 + ν

( |f |
ν
− χ

)2

− |f |
2

ν
+ 2χ|f | − |f |

2

2ν
(1− σ2)− χσ|f |

= 2ν|v|2 + ν

( |f |
ν
− χ

)2

− (2− σ)|f |
( |f |
ν
− χ

)
+ (2− σ)

|f |2
ν
− (3− σ2)

|f |2
2ν

= 2ν|v|2 + ν

( |f |
ν
− χ

)2

− (2− σ)|f |
( |f |
ν
− χ

)
+ (1− σ)2 |f |2

2ν
.

Again, introducing

φ = 2ν|v|2 + ν

( |f |
ν
− χ

)2

+ (1− σ)2 |f |2
2ν
≥ 0,

ψ = (2− σ)|f | ≥ |f | (23)

results in
d

dt

( |f |
ν
− χ

)
=

φ

|u| −
ψ

|u|

( |f |
ν
− χ

)
,

whose solution can be easily obtained for t0 ≤ t, t, t0 ∈ (t1, t2]:61

|f |
ν
−χ =

( |f |
ν
− χ(t0)

)
exp

(
−
∫ t

t0

ψ

|u| dt
)

+

∫ t

t0

φ

|u| exp

(
−
∫ t

τ

ψ

|u| dt
)
dτ .

(24)

6. Bounds in the Z–E plane62

In this section we present bounds on the attractor in the Z–E plane using63

some functional inequalities and the dynamical behaviour of the Navier–64

Stokes equations presented in the previous section. One useful and important65

bound is obtained from the Poincaré inequality:66

k2
0|u|2 ≤ ||u||2 ⇒ k2

0E ≤ Z. (25)

As we have observed, the above inequality will impose a lower bound on the67

attractor in the Z–E plane. A less trivial upper bound relies on the following68

key theorem from Dascaliuc et al. [8].69
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Theorem 2. For all u ∈ A,70

||u||2 ≤ |f |
ν
|u|. (26)

In the case ||u0||2 =
|f |
ν
|u0| for u0 ∈ A\{0}, it follows that u0 is a stationary71

solution and there exists n0 ∈ N such that f = Rn0f and u0 =
f

νλn0

.72

Moreover, in this case 0 /∈ A and for all u ∈ A\{u0}73

||u||2 ≤ λn0|u|2, ||u||2 ≤ |f |
ν
|u| = Gνλ0|u|. (27)

Proof. Here we will just present the proof of (26), which is needed in the74

following section; for the remaining parts of the theorem, the reader is referred75

to Dascaliuc et al. [8, Theorem 5.2]. Let u0 ∈ A. If u0 = 0, then it is clear76

that (26) holds. Now if u0 6= 0, let u(t) be the solution for u(0) = u0. There77

are two cases to consider:78

• Case 1
Suppose that we have inft∈(−∞,0] |u(t)| = u′ > 0. This together with the
boundedness of enstrophy (19b) implies that χ is bounded. Also, from
(19a) and (23) we obtain

lim
t0→−∞

exp

(
−
∫ t

τ

ψ

|u| dt
)
≤ lim

t0→−∞
exp

(
−|f |
νG

(t− t0)

)
= 0.

Now if we take t = 0 and t0 → −∞, then (24) results in |f |/ν−χ(0) ≥79

0. Then (24) will immediately yield |f |/ν − χ(t) ≥ 0, and thus (26)80

holds.81

• Case 2
Suppose that inft∈(−∞,0] |u(t)| = 0. Then there exists a t0 < 0 such that

|u(t0)|1/3 ≤ |f |
ν5/3k2

0G
2/3Γ

1/3
1

,

where Γ1 is defined in Theorem 1. Since 0 ∈ A (A is weakly compact),
we can apply Theorem 1 to find

|f |
ν
− χ(t0) ≥ 0, ∀t ≥ t0.
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Thus, by the last part of the proof given for case 1, (26) follows and
hence for all u ∈ A, we have

||u||2 ≤ |f |
ν
|u|.

�82

Then, if we define v(t) =
u(t)

νG
, we see that (26) simplifies to

||v||2 ≤ k2
0|v|. (28)

For constant forcing the projection of the global attractor is thus located83

inside the bounded region shown in Figure 1. A low-resolution attempt84

to numerically illustrate these bounds can be found for banded forcing in85

Ref. [6]. Another low-resolution study in Ref. [10] examined forcing at a86

single eigenmode of the Stokes operator (which we point out cannot generate87

a turbulent spectrum from zero initial conditions).88

2Z
k2
0ν

2G2

2E
ν2G2

A in
here

10

1

Figure 1: Bounds in the Z–E plane
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7. Energy and Enstrophy Relations on the Global Attractor of the89

2D Navier–Stokes Equations: Random Forcing90

In this section we are going to extend our analysis to random forcing,91

which provides a more realistic way of injecting energy into a turbulent92

system than constant forcing. One of the important types of random93

forcing, called white-noise forcing, can be readily implemented numerically,94

an advantage that we will exploit in Section 10.95

Generalizing the previous analysis to account for random forcing requires
a new norm that combines the L2 norm from the previous section with an
ensemble average:

|f |ω̃
.
=

(∫
Ω

〈
|f |2L2

〉
dx

)1/2

,

where ω̃ indicates that this norm applies to a real-valued random variable.96

For a random variable α, with probability density function P , we define the97

ensemble average 〈α〉 =
∫∞
−∞ α(dP/dζ) dζ. As we want to define our problem98

in a Hilbert space, to exploit the properties of the Stokes operator A, the99

above norm must come from an inner product on that Hilbert space. So100

although the above definition defines a norm, the essential point in extending101

our analysis is defining a suitable inner product on the Hilbert space H of102

random-valued functions.103

7.1. Extended inner-product for random-valued functions in H104

As an extension of the inner product we applied in the previous section,
let us define

(u,v)ω̃
.
=

∫
Ω

〈u·v〉 dx =

∫
Ω

(∫ ∞
−∞
u·v dP

dζ
dζ

)
dx.

Adopting the above extended inner product, the definitions of energy, enstro-105

phy, and palinstrophy are unchanged, consistent with our previous analysis.106

From here on, for simplicity we will denote |·|ω̃ by |·| and (u,v)ω̃ by (u,v).107

8. The Navier–Stokes equations with random forcing as a dynam-108

ical system109

The energy evolves according to

1

2

d

dt
|u|2 + ν(Au,u) + (B(u,u),u) = (f ,u).
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Since (B(u,u),u) = 0, we obtain

1

2

d

dt
|u|2 + ν

∣∣A1/2u
∣∣2 = ε,

where ε = (f ,u) is the energy injection rate. Equivalently,

1

2

d

dt
|u|2 + ν||u||2 = ε.

The Poincaré inequality then yields

1

2

d

dt
|u|2 ≤ ε− νk2

0|u|2
Gronwall inequality⇒

|u(t)|2 ≤ e−2νk20t|u(0)|2 +

(
1− e−2νk20t

νk2
0

)
ε.

So for every u ∈ A, where A is a random (pullback) attractor [5], we would110

expect to have111

|u(t)|2 ≤ ε

νk2
0

. (29)

Similarly, from the enstrophy equation

1

2

d

dt

∣∣A1/2u
∣∣2 + ν(A1/2u, A3/2u) + (B(u,u), Au) = (A1/2f , A1/2u),

we obtain
1

2

d

dt
||u||2 + ν|Au|2 = η,

where η = (f , Au) is the enstrophy injection rate. Again with the help of
the Poincaré inequality we find

1

2

d

dt
||u||2 ≤ η − νk2

0||u||2
Gronwall inequality⇒

||u(t)||2 ≤ e−2νk20t||u(0)||2 +

(
1− e−2νk20t

νk2
0

)
η,

from which we deduce that ||u(t)||2 ≤ η/(νk2
0) for every u ∈ A.112
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9. An upper bound in the Z–E plane for a random forcing113

Let u(t) be a solution such that u(t) 6= 0 on some interval (t1, t2]. Then
the function χ(t) = ||u(t)||2/|u(t)| satisfies (20), with the norms now based
on our extended inner product. Using the definition

λ = λ(t) =
χ(t)

|u| =
||u||2
|u|2

,

we see that (20) can be written as114

|u|dχ
dt

= −2ν|Au|2 + 2(f , Au)− λ(f ,u) + νλ||u||2︸ ︷︷ ︸
νλ2|u|2

. (30)

On introducing v = (A− λ)u− f

2ν
, then

−2ν|v|2 = −2ν|Au|2 + 2(f , Au)− 2λ(f ,u) + 4νλ||u||2 − 2νλ2|u|2 − |f |
2

2ν

= |u|dχ
dt
− λ(f ,u) + νχ2 − |f |

2

2ν
= |u|dχ

dt
− ε

|u|χ+ νχ2 − |f |
2

2ν
.

On introducing a real constant α to be determined later, we may write

|u| d
dt

(α− χ) = 2ν|v|2 + ν(α− χ)2 − να2 +

(
2να− ε

|u|

)
χ− |f |

2

2ν
.

The above result can be rewritten in the following form

|u| d
dt

(α− χ) = 2ν|v|2 + ν(α− χ)2 − β(α− χ) + να2 − ε

|u|α−
|f |2
2ν

,

where β
.
= 2να− ε

|u| . Thus, if α is such that

β = 2να− ε

|u| > 0 and να2 − εα

|u| −
|f |2
2ν

> 0, (31)

we can introduce

φ
.
= 2ν|v|2 + ν(α− χ)2 + να2 − ε

|u|α−
|f |2
2ν

> 0
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to express the above first-order differential equation as115

|u| d
dt

(α− χ) + β(α− χ) = φ. (32)

The solution to this equation is

α− χ(t) = (α− χ(t0)) exp

(
−
∫ t

t0

β

|u| dt
)

+

∫ t

t0

φ

|u| exp

(
−
∫ t

τ

β

|u| dt
)
dτ .

Taking t0 → −∞ and t = 0 results in α− χ(0) ≥ 0. Now taking t0 = 0, and116

t→∞, one finds that α− χ(t) ≥ 0 for all t ∈ (−∞,∞). That is,117

||u||2 ≤ α|u|. (33)

To obtain the above result we need to check conditions (31). Working on
these inequalities, one can show

να2 − εα

|u| −
|f |2
2ν

= 0⇒ α+,− =

ε

|u| ±
√

ε2

|u|2
+ 2|f |2

2ν
⇒

α− < 0,

α+ ≥
ε

ν|u| .

Thus

να2 − εα

|u| −
|f |2
2ν

> 0 ⇐⇒ α ≥ ε

ν|u| or α ≤ α− < 0.

For α ≥ ε

ν|u| , we see that β = 2να − ε

|u| > 0. Moreover, from (29), we see118

that
ε

ν|u| ≥ k0

√
ε

ν
. So if we take α = k0

√
ε

ν
, then (33) gives us an upper119

bound for enstrophy in the Z–E plane:120

||u||2 ≤ k0

√
ε

ν
|u|. (34)

We have thus proved the following theorem.121

Theorem 3. For all u ∈ A driven by a random forcing injecting energy at
a rate ε,

||u||2 ≤ k0

√
ε

ν
|u|.
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We note that (29) and the Cauchy–Schwarz inequality lead to the
following lower bound for |f |:

k0

√
νε ≤ ε

|u| =
(f ,u)

|u| ≤
|f ||u|
|u| = |f |. (35)

It is convenient to use this lower bound for |f | to define a lower bound
for a modified Grashof number G∗ = |f |ᵀω/(ν2k2

0), which we adopt as the
normalization G̃ for random forcing:

G̃ =
1

k0

√
ε

ν3
.

Then, if we define v(t) =
u(t)

νG̃
, we see that (34) simplifies to

||v||2 ≤ k2
0|v|. (36)

We observe that this normalized bound has the same form as the upper122

bound (28) found by Dascaliuc et al. [7, Theorem 4.1] for constant forcing,123

thus elucidating the relation between these two types of forcing.124

10. Numerical Simulations125

In this section we report on the results of pseudospectral simulations126

of 2D incompressible homogeneous isotropic turbulence with white-noise127

forcing and periodic boundary conditions, performed with a state-of-the-128

art direct numerical simulation (DNS) code, publicly available at https:129

//github.com/dealias/dns. We recall that one of the main assumptions130

behind almost all theoretical analysis of incompressible homogeneous iso-131

tropic turbulence is that the Reynolds number Re is very large. Direct132

numerical simulation of high-Reynolds turbulence is computationally very133

expensive (unless either the simulation domain is small or a heuristic subgrid134

scale model is employed). This requires an extremely refined grid and an135

enormous number of time steps, both of which are obstacles towards nu-136

merically simulating turbulence. The reader must therefore bear in mind137

that simulations based on the DNS method are just rough approximations138

of high-Reynolds number flows, full realizations of which will likely remain139

infeasible until at least the mid-21st century.140
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10.1. An overview of the 2D DNS code141

The 2D DNS code, written in C++, is comprised of a kernel called TRIAD142

built around an advanced adaptive integrator for discretized initial value143

problems. This package provides several different numerical integration144

schemes that can be selected by the user at run time. The DNS module145

provides TRIAD with an advanced pseudospectral solver that uses the146

FFTW++ library [4] for calculating implicitly dealiased convolutions, exploiting147

Hermitian symmetry [3, 18]. Advanced computer memory management, such148

as implicit padding, memory alignment, and dynamic moment averaging149

allow DNS to attain its extreme performance. It uses the formulation proposed150

by Basdevant [1] (discussed in Appendix C) to reduce the number of151

FFTs required for 2D (3D) incompressible turbulence to four (eight). The152

reader who is interested in learning more about the DNS code is referred153

to https://github.com/dealias/dns/tree/master/2d. Simplified 2D and154

3D versions called PROTODNS have also been developed for educational155

purposes: https://github.com/dealias/dns/tree/master/protodns.156

10.2. Numerical implementation157

Before presenting the simulations, it is vital to talk briefly about some158

numerical considerations. The 2D variant of the Kolmogorov theory proposed159

by Kraichnan [15], Leith [17], and Batchelor [2] involves both a direct cascade160

of enstrophy and an inverse cascade of energy. This means that energy is161

transferred to low wavenumbers (large scales), where it eventually piles up.162

In nature, 2D turbulence is believed to occur under special circumstances in163

high altitude layers of the atmosphere. In this case, the energy cascading164

to the large scales is taken out by some external physical mechanism like165

atmospheric gravity waves. Many researchers model such processes by adding166

an artificial damping to the Navier–Stokes equations. Although there are167

different approaches toward applying such a hypoviscosity, such as a large-168

scale friction, such methods change the governing equations: one does not169

actually solve the pure Navier–Stokes equations when these energy extracting170

mechanisms are implemented.171

Although the DNS code has the capability of solving the pure Navier–172

Stokes equations, it can optionally apply a large-scale linear friction term173

proportional to the velocity, with a coefficient νL, in analogy with the174

molecular viscosity term, with a coefficient νH . We have numerically175

investigated the effect of this hypoviscosity on the global attractor, an176

investigation that has not previously been performed and that opens up177
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new avenues in the debate about the possible effects of such artificial energy178

damping methods. In the following numerical results, the choice νL = 0179

indicates the solution of the pure Navier–Stokes equations (truncated at a180

high wavenumber, corresponding to the given resolution).181

We evolve the two-dimensional forced-dissipative equation for the scalar182

vorticity ω = ẑ·∇×u:183

∂ω

∂t
+ (ẑ×∇∇−2ω·∇)ω = νH∇2ω + f, (37)

where ẑ is the unit normal to the flow plane. Upon Fourier transforming184

and adding an optional large-scale hypoviscosity (friction) term −H(kL −185

k)νLωk, where H is the Heaviside unit step function and kL is a large-scale186

hypoviscosity threshold, we obtain an equation of the form187

∂ωk

∂t
= Sk − νHk2ωk − νLH(kL − k)ωk + fk, (38)

where Sk =
∑

q ẑ·k×q ωk−qωq/q
2 represents the advective convolution. The188

enstrophy spectrum Z(k) = k2E(k) is then seen to satisfy a balance equation189

of the form190

∂

∂t
Z(k) + 2[νHk

2 + νLH(kL − k)]Z(k) = 2T (k) +G(k), (39)

where T (k) and G(k) represent angular sums of Re 〈Skωk〉 and Re 〈fkωk〉,
respectively. Following Kraichnan [14], it is convenient to define the nonlinear
enstrophy transfer Π(k) = 2

∫∞
k
T (p) dp, which measures the cumulative

nonlinear transfer of enstrophy into [k,∞). On integrating (39) from k to
∞, we find

d

dt

∫ ∞
k

Z(p) dp = Π(k)− η(k),

where η(k)
.
= 2

∫∞
k

[νHp
2 + νLH(kL − k)]Z(p) dp −

∫∞
k
G(p) dp is the total

enstrophy transfer, via dissipation and forcing, out of wavenumbers higher
than k. A positive (negative) value for Π(k) represents a flow of enstro-
phy to wavenumbers higher (lower) than k. When νH = f = 0, enstrophy
conservation implies that

0 =
d

dt

∫ ∞
0

Z(p) dp = 2

∫ ∞
0

T (p) dp,
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so that191

Π(k) = 2

∫ ∞
k

T (p) dp = −2

∫ k

0

T (p) dp. (40)

We note that Π(0) = Π(∞) = 0. Moreover, in a statistically steady state192

Π(k) = η(k); this provides an excellent numerical diagnostic for validating a193

steady state.194

We evolve the simulations starting from the anisotropic Hermitian initial
condition

ω0(kx, ky) =

√
k2
x + k2

y + i(kx + ky)√
α + β(k2

x + k2
y)

,

which corresponds to an initial energy spectrum E(k) = πk/(α + βk2) and
total energy E =

∫
E(k) dk = 1

2

∑
k ω

2
k/k

2. The turbulence is driven by a
white-noise forcing limited to an annulus of mean radius kf and width δf
in Fourier space. The energy injection rate ε is measured by averaging the
spectral contributions from the random forcing:

ε =
∑
k

〈fk, ωk〉
k2

.

As is usual in numerical simulations of turbulence, we assume that the195

ergodic theorem is sufficiently applicable so that ensemble averages may be196

approximated by temporal averages. For convenience, we take L = 2π, so197

that k0 = 1.198

10.3. Numerical results199

In Figures 2 and 3 the vorticity fields are shown for two numerical200

simulations of (37) with identical values of η, kf , δf , α, β, and νH , but201

different values of νL. Figure 2 demonstrates the effect of applying an202

artificial energy damping mechanism at large scales, with νL = 0.15 and203

kL = 3.5, whereas Figure 3 depicts the vorticity field for the pure Navier–204

Stokes equations considered in the theoretical analysis of this work, where205

νL = 0. Figures 4 and 5 illustrate the Z–E evolution for these simulations,206

respectively. Each dot, colored using a rainbow palette (violet to red) to207

represent relative time, corresponds to 1000 variable time steps of mean208

duration 0.003 and 0.0005, respectively. Comparing these results highlights209

the dramatic impact that the hypoviscosity term −H(kL − k)νLω in (38)210

has on the turbulent dynamics. Instead of approaching the projected global211
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attractor that we have found for (7), the solutions are absorbed into the212

region characterized by the two pink lines in Figure 4 that denote the slopes213

kf + δf/2 and kf − δf/2, respectively. In contrast, once the hypoviscous214

term is removed, we observe in Fig. 5 excellent agreement of the numerical215

simulation and the predicted projection of the global attractor on the Z–E216

plane. The grey line represents (25) and the brown line represents (36).217

Figures 6 and 7 demonstrate the energy spectrums corresponding to these218

simulations. As is seen in Figure 6, the application of an energy damping219

mechanism at large scales tends to flatten the large-scale energy spectrum,220

while in Figure 7, the absence of this mechanism is reflected as a steeper slope221

for the energy spectrum at large scales. Figures 8 and 9 represent the energy222

and enstrophy transfers for the corresponding simulations. The coincidence223

of these graphs (which is expected theoretically) is an indication of being in224

a quasisteady state, where both the enstrophy injection and dissipation rates225

are nearly in balance.226
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ω

Figure 2: Vorticity field at t = 1650 for
white-noise forcing computed with 511 ×
511 dealiased modes using η = 1, kf = 4,
δf = 1, kL = 3.5, νH = 0.0005, νL = 0.15,
α = 104, and β = 104.

−25 0 25
ω

Figure 3: Vorticity field at t = 1650 for
white-noise forcing computed with 511 ×
511 dealiased modes using η = 1, kf = 4,
δf = 1, νH = 0.0005, νL = 0, α = 104, and
β = 104.
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Figure 4: Enstrophy vs. energy evolution
for the simulation shown in Fig. 2.
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Figure 5: Enstrophy vs. energy evolution
for the simulation shown in Fig. 3.
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Figure 6: The steady-state energy
spectrum for the simulation shown in
Fig. 2.
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Figure 7: The quasisteady-state energy
spectrum for the simulation shown in
Fig. 3.
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Figure 8: The enstrophy transfer for the
simulation shown in Fig. 2.
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Figure 9: The enstrophy transfer for the
simulation shown in Fig. 3.
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Figure 10: Enstrophy vs. energy evolution
(t > 146) for white-noise forcing computed
with 255×255 dealiased modes using η = 1,
kf = 4, δf = 1, νH = 0.0005, νL = 0,
α = 1, and β = 1.
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Figure 11: Enstrophy vs. energy evolution
for white-noise forcing computed with
255× 255 dealiased modes using η = 1012,
kf = 4, δf = 1, νH = 5, νL = 0, α = 1,
and β = 1.
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Figure 12: The quasisteady-state energy
spectrum for the simulation shown in
Fig. 10.
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Figure 13: The quasisteady-state energy
spectrum for the simulation shown in
Fig. 11.

232

0.0

0.5

1.0

C
u
m
u
la
ti
v
e
en
st
ro
p
y
tr
a
n
sf
er

100 101 102

k

Π
η

Figure 14: The enstrophy transfer for the
simulation shown in Fig. 10.
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Figure 15: The enstrophy transfer for the
simulation shown in Fig. 11.
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To test the sensitivity of these results with respect to resolution and234
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initial conditions, we repeated the simulation shown in Figure 2 with a larger235

initial condition and a lower 255× 255 resolution. The corresponding energy236

spectrum and cumulative enstrophy transfer graphs are shown in Figures 12237

and 14. The projection of the solution onto the Z–E plane is shown in238

Figure 10, where for illustration purposes, the evolution of the first 120 000239

timesteps is omitted. Finally, Figure 11 illustrates the projection of the240

global attractor for η = 1012 and νH = 5, with a 255 × 255 resolution.241

Here we need to address one issue regarding the very large values of the242

parameters in this simulation. This issue pertains to the finite floating-243

point representation used on digital computers, which can result in a loss244

of precision. Due to the sensitivity of turbulence to the initial conditions,245

this issue could well cause significant discrepancies between numerical and246

analytical results. Nevertheless, Figure 11 demonstrates the robustness of247

the numerical simulation and the global attractor. Figures 13 and 15 depict248

the energy spectrum and transfer graphs for this simulation.249

In the preceding results, we have observed excellent agreement between250

the theoretical predictions and high accuracy numerical simulations based on251

the pseudospectral method. One observes the attraction of the solutions to252

the global attractor, whose projection lies in the region characterized by the253

upper and lower bounds. We also established the robustness of the numerical254

simulation with respect to changes in the resolution and initial conditions.255

In other simulations not shown here, we verified the consistency of these256

numerical results with respect to changes in kf and δf .257

11. Discussion258

The most important achievement of this work is the extension of the259

bounds in the Z–E plane obtained by Dascaliuc, Foias, and Jolly [2005,260

2010] for 2D incompressible homogeneous isotropic turbulence, under the261

assumption of constant forcing, to the more realistic case of random forcing.262

This valuable result has a few consequences, some of which should be followed263

up in future work. For example:264

1. The analytical bounds for random forcing provide a means to evaluate265

various heuristic turbulent subgrid models by characterizing the266

behaviour of the global attractor under these models.267

2. With these tools, it should now be possible to study the relation268

between a specific white-noise forcing and a constant forcing by269
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examining their effects on the global attractor, which may lead to270

an explicit relation for the energy and enstrophy injection rates for271

constant forcing.272

3. In pseudospectral simulations of high Reynolds number turbulence,273

refining the grid down to the Kolmogorov dissipation scale is almost274

impossible due to limited memory, computation time, and machine275

precision. For engineering applications, it is essential to somehow tackle276

these deficiencies. A common approach is to introduce a heuristic277

subgrid model, where one strives to model the damping effect of278

neglected small scales on larger scales. This avoids the need for a highly279

refined grid, significantly speeding up the simulation. Although these280

models are the best one can currently do as far as obtaining a crude281

realization of turbulence using current technology and computational282

resources, they are not based on a firm mathematical foundation. It is283

possible that analytic bounds like those discussed in this work could be284

used to rank subgrid models according to their mathematical reliability.285

4. Analytic bounds on the projected 2D global random attractor should286

assist in studying artificial energy damping mechanisms designed to287

remove the energy that cascades upscale before it piles up and reflects288

off the largest scale, back towards smaller scales.289

The final point about artificial large-scale damping mechanisms is an290

important open problem for simulations of 2D turbulence. This work raises291

serious questions about the impact of these damping mechanisms on the292

turbulent dynamics. Perhaps an awareness of the constraints on the global293

random attractor can guide future research in devising less invasive energy294

damping models.295

Appendix A. Bilinear map identities296

A bilinear map B : V × V → V over a vector space V is a function that
is linear in each argument separately. That is, for all u, v, w ∈ V , and
scalars λ:

B(u+ v,w) = B(u,w) + B(v,w) and B(λu,v) = λB(u,v),

B(u,v +w) = B(u,v) + B(u,w) and B(u, λv) = λB(u,v).

The bilinear map B allows us to represent the Navier–Stokes equations (1)297

in the compact form (7).298
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Although the analysis in this work is limited to [0, 2π]2, some of the299

identities can be extended to Ω3 = [0, 2π]3, so in general let us consider a300

velocity vector field u : Ω3 × R −→ R3 with ∇·u = 0.301

Appendix A.1. Antisymmetry302

The bilinear map admits the identity303

(B(u,v),w) = −(B(u,w),v), ∀ u,v,w ∈ H(Ω3). (A.1)

Having the incompressibility condition for u,v, and w, we can write

(B(u,v),w) =

∫
Ω

B(u,v)·w dx =

∫
Ω

(u·∇v)·w dx︸ ︷︷ ︸
I

+

∫
Ω

∇p·w dx︸ ︷︷ ︸
J

, (A.2)

so we have

I =

∫
Ω

∇·(uv·ω) dx−
∫

Ω

(∇·u)v·ω dx−
∫

Ω

(u·∇w)·v dx

=

∫
∂Ω

(uv·w) n̂ dS −
∫

Ω

(u·∇w)·v dx = −
∫

Ω

(u·∇w)·v dx,

and similarly

J =

∫
Ω

∇·(pw) dx−
∫

Ω

p∇·w dx =

∫
∂Ω

(pw)·n̂ dS − 0 = 0,

where the integrals on the boundary ∂Ω vanish because of periodicity. So,
(A.2) can be written as

(B(u,v),w) = I + J = −
∫

Ω

(u·∇w)·v dx−
∫

Ω

∇p·v dx (A.3)

= −
∫

Ω

B(u,w)·v dx = −(B(u,w),v). (A.4)

Appendix A.2. Orthogonality in two-dimensional incompressible flows304

Two-dimensional incompressible flows also satisfy the orthogonality
identity

(B(u,u), Au) = 0, where A = −∇2.

The proof is based on standard vector calculus identities. Since ∇×∇p = 0
and, for two-dimensional flows, ω·∇u = 0, the curl of the nonlinearity S

.
=
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B(u,u) = u·∇u+∇p may be rewritten as ∇×S =∇×(u·∇u) = u·∇ω.
Thus

(B(u,u), Au) =

∫
Ω

−S·∇2u dx =

∫
Ω

S·(∇×ω) dx

=

∫
Ω

∇·(ω×S) dx+

∫
Ω

ω·(∇×S) dx

=

∫
∂Ω

(ω×S)·n̂ ds+

∫
Ω

ω·(u·∇ω) dx

= 0 +

∫
Ω

u·∇
(
ω2

2

)
dx =

∫
∂Ω

(
ω2

2
u

)
·n̂ ds−

∫
Ω

(
ω2

2

)
∇·u dx = 0,

where the integrals on the boundary ∂Ω vanish because of periodicity.305

Appendix A.3. Strong form of enstrophy invariance306

Another useful identity for the bilinear map in two-dimensional incom-307

pressible flows is called the strong form of enstrophy invariance:308

(B(Av,v),u) = (B(u,v), Av). (A.5)

The proof given here is more elegant than that given by Dascaliuc et al. [7],309

as it elucidates the underlying fluid dynamics and vector calculus identities.310

We first prove the identity311

(B(u, Av),v) = (B(Av,u),v). (A.6)

We can write

(B(u, Av),v)− (B(Av,u),v) = ([B(u, Av)− B(Av, Au)],v)

=

∫
Ω

[u·∇(Av)− Av·∇u+∇(p− p′)]·v dx

=

∫
Ω

(m·∇n− n·∇m)·v︸ ︷︷ ︸
I

dx+

∫
Ω

∇p1·v︸ ︷︷ ︸
J

dx,

where m = u, n = Av, and p1 = p− p′. Using the vector calculus identity

∇×(n×m) = n(∇·m)−m(∇·n) + (m·∇)n− (n·∇)m,
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I can be written as

(m·∇n− n·∇m)·u = [∇×(n×m)− (∇·m)n+ (∇·n)m]·v
= [∇×(u×Av)− (∇·Av)u+ (∇·u)Av]·v
= (∇×(u×Av))·v + 0 + 0 = (∇×(u×Av))·v,

and J becomes∫
Ω

∇p1·u dx
∇·u = 0

=

∫
Ω

∇·(p1u) dx =

∫
∂Ω

p1u·n̂ ds = 0,

where the last integral vanishes because of periodic boundary conditions. So
we would have

((B(u, Av)− B(Av,u)),v) =

∫
Ω

v·∇×(u×Av︸ ︷︷ ︸
S

) dx

=

∫
Ω

∇·(S×v) dx+

∫
Ω

S·∇×v dx

=

∫
∂Ω

(S×v)·n̂ ds+

∫
Ω

ω·S dx = 0 +

∫
Ω

ω·(u×Av) dx

= −
∫

Ω

u·(ω×Au) dx = −
∫

Ω

u·(ω×(∇×ω)) dx.

Using the fact that ω×(∇×ω) =
1

2
∇ω2 − ω·∇ω, and since in the two-

dimensional case ω·∇ω = 0, we obtain

((B(u, Av)− B(Av,u)),v) = −
∫

Ω

u·(ω×(∇×ω)) dx = −
∫

Ω

u·
(

1

2
∇ω2

)
dx

= −
∫

Ω

u·
(

1

2
∇ω2

)
dx = −

∫
Ω

u·
(

1

2
∇ω2

)
dx

= −
∫

Ω

∇·
(
uω2

2

)
dx = −

∫
∂Ω

(
uω2

2

)
·n̂ ds = 0,

and so (A.6) follows. Having this identity, we can write

(B(Av,v),u)
(A.1)
= −(B(Av,u),v)

(A.6)
= −(B(u, Av),v)

(A.1)
= (B(u,v), Av),

which proves (A.5).312
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Appendix A.4. General identity in two-dimensional incompressible flow313

Using the above identities it is possible to show that314

(B(v,v), Au)︸ ︷︷ ︸
I

+ (B(v,u), Av)︸ ︷︷ ︸
II

+ (B(u,v), Av)︸ ︷︷ ︸
III

= 0. (A.7)

As in the previous section there is another proof given by Foias et al. [9], and
although their proof is much more concise, it is completely based on the func-
tional analysis properties of the bilinear map. In contrast, the following proof
is based on vector calculus identities, which are more insightful, especially
for physically oriented readers. We begin with the term I:

(B(v,v), Au) =

∫
Ω

(v·∇v +∇p)·(−∇2u) dx =

∫
Ω

(v·∇v)·(−∇2u) dx.

Let ω =∇×u, so that −∇2u =∇×ω, and consequently we obtain

(B(v,v), Au) =

∫
Ω

(v·∇v)·∇×ω dx

=

∫
Ω

∇·(ω×(v·∇v)) dx+

∫
Ω

ω·∇×(v·∇v) dx

=

∫
∂Ω

ω×(v·∇v)·n̂ ds+

∫
Ω

ω·∇×(v·∇v) dx

= 0 +

∫
Ω

ω·∇×(v·∇v)︸ ︷︷ ︸
S

dx =

∫
Ω

S·(∇×u) dx

=

∫
Ω

∇·(u×S) dx+

∫
Ω

u·∇×S dx

=

∫
∂Ω

(u×S)·n̂ ds+

∫
Ω

u·∇×S dx

= 0 +

∫
Ω

u·∇×S dx =

∫
Ω

u·∇×S dx.

On the other hand we have

S =∇×(v·∇v) =∇×
(
∇v

2

2

)
−∇×(v×(∇×v)) = −∇×(v×(∇×v︸ ︷︷ ︸

w

)).

But

S = −∇×(v×w) = −[v(∇·w)−w(∇·v)+(w·∇)v−(v·∇)w] = (v·∇)w.
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On considering the fact that (w·∇)v = 0, we can write

S = (v·∇)w =∇(v·w)−w·∇v − v×(∇×w)−w×(∇×v)

= 0− 0− v×(∇×w)− 0

= −v×(∇×w) = −v×(∇×(∇×v)) = −v×(∇(∇·v)−∇2v)

= v×∇2v.

Thus

∇×S =∇×(v×∇2v)

= v(∇·∇2v)−∇2v(∇·v) + ((∇2v)·∇)v − (v·∇)∇2v

= 0− 0 + (∇2v·∇)v − (v·∇)∇2v = (∇2v·∇)v − (v·∇)∇2v.

So in the end we obtain

(B(v,v), Au) =

∫
Ω

(∇×S)·u dx =

∫
Ω

(∇2v·∇v)·u dx−
∫

Ω

(v·∇∇2v)·u dx.

On noting that we can add or subtract terms of the form
∫

Ω
u·∇p dx = 0,

we can write

(B(v,v), Au) =

∫
Ω

((∇2v·∇)v)·u dx−
∫

Ω

((v·∇)∇2v)·u dx

= −(B(Av,v),u) + (B(v, Av),u).

Up to this point we have found a valuable representation of the term I in315

(A.7):316

(B(v,v), Au) = (B(v, Av),u)︸ ︷︷ ︸
J

− (B(Av,v),u)︸ ︷︷ ︸
K

. (A.8)

Applying identities (A.1) and (A.5) respectively to the terms J and K, we
obtain

(B(v,v), Au) = −(B(v,u), Av)− (B(u,v), Av),

which is exactly (A.7).317

Appendix A.5. Estimates for the bilinear term involving powers of the Stokes318

operator319

A term that has great impact on our analysis of the Navier–Stokes equations
is (B(v,v), A2v). Having a good estimate for this term is vital in our work,
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but unfortunately no simpler representation is known for this term, only a
useful upper bound. Using the equivalent form of the general 2D identity,
(A.8), one obtains(

B(v,v), A2v
)

= (B(v,v), AAv)
u
.
= Av
= (B(v,v), Au) (A.9)

(A.8)
= (B(v, Av),u)− (B(Av,v),u) (A.10)

= (B(v, Av), Av)− (B(Av,v), Av) (A.11)

= −(B(Av,v), Av) = (B(Av, Av),v). (A.12)

The above result is the best exact estimate that we could obtain using the
general identity (A.7) and the other identities proven so far. As this term
appears in our functional estimates, it is necessary to come up with an
upper bound. In order to obtain this estimate we will eventually require
the Ladyzhenskaya inequality that we introduced before:(

B(u,u), A2u
)

= (B(Au, Au),u)
v
.
= Au
= (B(v,v),u).

As we have shown earlier, the ∇p term will vanish due to incompressibility,
so (

B(u,u), A2u
)

= (B(v,v),u)

=

∫
Ω

(v·∇v)·u dx =

∫
Ω

[
1

2
∇v2 − v×(∇×v)

]
·u dx

=

∫
Ω

(
1

2
∇v2

)
·u dx−

∫
Ω

[v×(∇×v)]·u dx

= 0−
∫

Ω

(v×ω)·u dx =

∫
Ω

(ω×v)·u dx.
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Using the triple product identities, we can write(
B(u,u), A2u

)
=

∫
Ω

u·ω×v dx =

∫
Ω

ω·v×u dx

Cauchy-Schwarz

≤
(∫

Ω

|v×u|2 dx
)1/2(∫

Ω

|ω|2 dx
)1/2

≤
(∫

Ω

v2u2 dx

)1/2(∫
Ω

ω2dx

)1/2

=

(∫
Ω

A2u4 dx

)1/2(∫
Ω

ω2dx

)1/2

=

(∫
Ω

(A1/2u)4 dx

)1/2(∫
Ω

ω2dx

)1/2

.

On the other hand we have∫
Ω

ω2dx =

∫
Ω

|∇×v|2dx =

∫
Ω

A2|∇×u|2dx

=

∫
Ω

A2∇·(u×ω) dx+

∫
Ω

A2(u·(−∇2u)) dx

= 0 +

∫
Ω

A2(u·Au)dx =

∫
Ω

A2(A1/2u·A1/2u)dx

=

∫
Ω

A3u2dx =
∣∣A3/2u

∣∣2.
Thus we will obtain

(
B(u,u), A2u

)
≤
(∫

Ω

(A1/2u)4 dx

)1/2∣∣A3/2u
∣∣

Ladyzhenskaya

≤ cL||u|| |Au|
∣∣A3/2u

∣∣.
Appendix B. Energy injection due to white-noise forcing320

In this appendix we consider the Navier–Stokes equations driven by a321

white-noise force in preparation for the numerical simulation results that use322

this type of random forcing. The Novikov theorem plays an essential role in323

prescribing the amplitude of the white-noise forcing:324
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Theorem 4 (Novikov 1964). Let v = (v1, v2, · · · , vn) be a vector-valued
centered Gaussian random variable and let f be a differentiable function of
n variables, then assuming all averages exists,

〈vif(v1, v2, · · · , vn)〉 = Γij

〈
∂f

∂vj

〉
,

where Γij = 〈vivj〉.325

Proof. See Frisch [13]. �326

We begin with the momentum equation

∂u

∂t
+ νAu+ B(u,u) = f ,

recalling that f is a general random force. A particular random force of
interest to us is an isotropic Gaussian white-noise solenoidal force with the
following Fourier transform fk:

fk(t) = Fk

(
1− kk

k2

)
·ξk(t), k·fk = 0,

where Fk is a real number and ξk(t) is a unit central real Gaussian random
2D vector that satisfies 〈ξk(t)ξk′(t′)〉 = δkk′1δ(t− t′). This implies

〈fk(t)·fk′(t′)〉 = FkFk′

(
δij −

kikj
k2

)
〈ξkj(t)ξk′j′(t

′)〉
(
δj′i −

k′j′k
′
i

k′2

)
= F 2

kδk,k′δ(t− t′)
(

1− kk
k2

)
:

(
1− kk

k2

)
= F 2

kδk,k′δ(t− t′).

Integration of the energy equation leads to

uk(t) = uk′(t′) +

∫ t

t′
Ak[u(τ)]dτ +

∫ t

t′
fk(τ)dτ ,

where Ak is an unknown functional of the velocity field such that
δAk[u(τ)]

δfk′(t′)
is bounded. The nonlinear Green’s function is then

δuk(t)

δfk′(t′)
=

∫ t

t′

δAk[u(τ)]

δfk′(t′)
dτ+

∫ t

t′
δkk′1δ(τ − t′)dτ =

∫ t

t′

δAk[u(τ)]

δfk′(t′)
dτ+δkk′1H(t−t′),
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where H is the Heaviside unit step function. The Novikov theorem then
allows the energy injection rate ε for white-noise forcing to be prescribed:

ε = (f(x, t),u(x, t)) =

∫
Ω

〈f(x, t)·u(x, t)〉 dx = Re
∑
k

〈fk(t)·uk(t)〉

= Re
∑
k,k′

∫ 〈
fk(t)fk′(t′)

〉
:

〈
δuk(t)

δfk′(t′)

〉
dt′

=
∑
k

F 2
k

(
1− kk

k2

)
:

(
1− kk

k2

)
H(0) =

1

2

∑
k

F 2
k

since H(0) =
1

2
. Likewise, the enstrophy injection rate is η =

1

2

∑
k

k2F 2
k .327

Appendix C. Basdevant formulation328

Appendix C.1. 3D case329

The incompressibility condition (2) can be used to rewrite the momentum330

equation (1) in terms of the symmetric tensor Dij = uiuj:331

∂ui
∂t

+
∂Dij

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂x2

j

+ Fi. (C.1)

A naive implementation of the pseudospectral method for this equation332

requires three backward FFTs to compute the velocity components from333

their spectral representations and six forward FFTs of the independent com-334

ponents of Dij, for a total of nine FFTs per integration stage. However335

Basdevant [1] showed that this number can be reduced to eight, by subtracting336

the divergence of the symmetric matrix Sij = δij trD/3 from both sides of337

(C.1):338

∂ui
∂t

+
∂(Dij − Sij)

∂xj
= −∂(pδij + Sij)

∂xj
+ ν

∂2ui
∂x2

j

+ Fi. (C.2)

Since the symmetric matrix Dij−Sij is traceless, it has just five independent339

components. Together with the three backward FFTs required for the velocity340

components ui, we see that only eight FFTs are required per integration341

stage. The effective pressure pδij + Sij is solved as usual from the inverse342

Laplacian of the force minus the nonlinearity.343
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Appendix C.2. 2D case344

On taking the curl of (1), the vorticity ω is seen to evolve according to

∂ω

∂t
+ (u·∇)ω = (ω·∇)u+ ν∇2ω +∇×F ,

where in two dimensions the vortex stretching term (ω·∇)u vanishes and ω345

is normal to the plane of motion.346

For C2 velocity fields, the curl of the nonlinear term can be written in
terms of ᵀDij

.
= Dij − Sij:

∂

∂x1

∂

∂xj
ᵀD2j −

∂

∂x2

∂

∂xj
ᵀD1j =

(
∂2

∂x2
1

− ∂2

∂x2
2

)
D12 +

∂

∂x1

∂

∂x2

(D22 −D11),

on recalling that S is diagonal and S11 = S22. The scalar vorticity ω then
evolves according to

∂ω

∂t
+

(
∂2

∂x2
1

− ∂2

∂x2
2

)
(u1u2) +

∂2

∂x1∂x2

(
u2

2 − u2
1

)
= ν∇2ω +

∂F2

∂x1

− ∂F1

∂x2

.

Two backward FFTs are required to compute u1 and u2 in physical space,347

from which the quantities u1u2 and u2
2 − u2

1 can be calculated and then348

transformed to Fourier space with two additional forward FFTs. The advective349

term in 2D can thus be calculated with just four FFTs.350
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