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We study quasisteady inverse cascades in unbounded and bounded two-dimensional turbulence
driven by time-independent injection and dissipated by molecular viscosity. It is shown that an
inverse cascade that carries only a fraction r of the energy input to the largest scales requires
the enstrophy-range energy spectrum to be steeper than k−5 (ruling out a direct cascade) unless
1 − r ≪ 1. A direct cascade requires the presence of an inverse cascade that carries virtually all
energy to the largest scales (1 − r ≪ 1). These facts underlie the robustness of the Kolmogorov–

Kraichnan k−5/3 inverse cascade, which is readily observable in numerical simulations without an
accompanying direct enstrophy cascade. We numerically demonstrate an instance where the k−5/3

inverse-cascading range is realizable with 79% of the energy injection dissipated within the energy
range and virtually all of the enstrophy dissipated in the vicinity of the forcing region. As equilibrium
is approached, the respective logarithmic slopes −α and −β of the ranges of wavenumbers lower
and higher than the forcing wavenumber satisfy α + β ≈ 8. These results are consistent with recent
theoretical predictions.

PACS numbers: 47.27.Gs, 47.27.Eq

I. INTRODUCTION

It is commonly believed that the simultaneous conser-
vation of energy and enstrophy by the advective term of
the forced two-dimensional (2D) Navier–Stokes equations
gives rise to a dual turbulent cascade in the limit of infi-
nite Reynolds number: energy cascades to low wavenum-
bers (inverse cascade) and enstrophy cascades to high
wavenumbers (direct cascade). Kraichnan [1, 2] predicts
that the inverse cascade carries virtually all of the energy
input to ever-lower wavenumbers, evading viscous dissi-
pation altogether, and the direct cascade carries virtu-
ally all of the enstrophy input to a high wavenumber kν ,
where it is dissipated. This dual cascade hypothesis con-
jectures that the energy spectrum should scale as k−5/3 in
the energy-cascading range and as k−3 in the enstrophy-
cascading range, where k is the wavenumber.

The classical view that two-dimensional unbounded
turbulence consists of intricately intertwined inverse and
direct cascades is widely believed to be valid in the limit
of infinite Reynolds number. However, there has been
much numerical evidence presented in which an inverse
cascade is observed in the absence of a direct enstro-
phy cascade [3–6]. This has been attributed to the low
Reynolds numbers resolvable by current computers. Re-
cently, Tran and Bowman [7] nevertheless argued on the-
oretical grounds that an inverse cascade in the absence
of an accompanying direct enstrophy cascade is indeed
possible for a wide range of Reynolds numbers.

Let us say that an inverse cascade that carries a frac-
tion r of the energy input to the largest scales is strong

if 1 − r ≪ 1; otherwise, the inverse cascade is weak. We
will show that a weak inverse cascade can never be ac-
companied by a direct cascade and the small-scale spec-
trum is required to be steeper than k−5. A direct cas-

cade (if realizable) would require a strong inverse cascade,
one that carries virtually all energy to the largest scales.
These results provide a theoretical explanation for the
robustness of the Kolmogorov–Kraichnan k−5/3 inverse
cascade, which is readily observable both in numerical
simulations (before the energy reaches the lower spec-
tral boundary), and in laboratory experiments, in con-
trast to the elusive k−3 enstrophy cascade [8–10]. Even
in the limit of a strong inverse cascade, spectra signifi-
cantly shallower than k−5 in the enstrophy range cannot
be guaranteed.

A steady-state enstrophy cascade was recently shown
by Tran and Shepherd [11] to be impossible in a bounded
domain for an energetically localized forcing. In that
case the inverse cascade strength r vanishes. The present
work addresses the question of what happens either in
an unbounded domain or in bounded quasi-steady flows,
before statistical equilibrium is reached. The strength of
the inverse cascade is again the key quantity.

We then use a numerical simulation to illustrate that
the k−5/3 spectrum persists even when most of the en-
ergy injection is dissipated in the vicinity of the forcing
region, allowing only a small fraction of the energy input
to be transferred (via a scale-independent energy flux)
to the largest scales. Finally, we investigate the dynami-
cal behavior after the inverse cascade reaches the lowest
wavenumber. In accord with the constraint derived in
[7], no Bose condensation [12] of energy on the largest
scale occurs; instead, the k−5/3 range gradually steepens
as an equilibrium is approached. Note that we discuss
only the pure two-dimensional incompressible Navier–
Stokes equation, without the addition of any ad hoc large-
scale damping, unlike most inverse cascade simulations
reported in the literature [3, 4, 10, 13].
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II. THEORETICAL CONSIDERATIONS

The 2D Navier–Stokes equations governing the motion
of an incompressible fluid can be written in terms of the
stream function ψ:

∂t∆ψ + J(ψ,∆ψ) = ν∆2ψ + f. (1)

The fluid velocity v is given in terms of ψ by v =
(−∂yψ, ∂xψ). The spatial operators J(·, ·) and ∆ are,
respectively, the 2D Jacobian and Laplacian. The molec-
ular viscosity coefficient is denoted by ν and f repre-
sents external forcing. The ensemble-averaged energy
spectrum E(k), which represents the energy density as-
sociated with the wavenumber k, is defined by

E(k) =
1

2
k2

∫

|p|=k

〈|ψ̂(p)|2〉 dp, (2)

where 〈·〉 denotes an ensemble average, ψ̂(p) is the
Fourier transform of ψ, and the integral is over all
wavevectors p having magnitude k. The evolution of the
energy spectrum E(k) is governed by (see [1, 14])

d

dt
E(k) = T (k)− 2νk2E(k) + F (k). (3)

Here T (k) and F (k) are, respectively, the ensemble-
averaged energy transfer and energy input rate. The
transfer function T (k) satisfies, by virtue of energy and
enstrophy conservation,

∫ ∞

0

T (k) dk =

∫ ∞

0

k2T (k) dk = 0. (4)

The total energy density E =
∫ ∞

0
E(k) dk and enstro-

phy density Z =
∫ ∞

0
k2E(k) dk evolve according to

d

dt
E = −2νZ + ǫ, (5)

d

dt
Z = −2νP + s2ǫ, (6)

where ǫ =
∫ ∞

0
F (k) dk > 0 is the energy injection rate,

P =
∫ ∞

0
k4E(k) dk is the palinstrophy density, and s

is the forcing wavenumber defined by s2
∫ ∞

0
F (k) dk =∫ ∞

0
k2F (k) dk. We consider the quasisteady dynamics,

where a steady spectrum has been established down to
a wavenumber k0 ≪ s. The enstrophy is in equilibrium
and the energy continues to cascade toward wavenumbers
k < k0 at a steady growth rate dE/dt = ǫ0. It follows
from (5) and (6) that

P

Z
= s2

ǫ

ǫ− ǫ0
. (7)

A direct enstrophy cascade requires P/Z ≫ s2 [11], which
in turn requires ǫ0 ≈ ǫ. For a more quantitative analy-
sis, let us assume that the quasisteady spectrum can be

approximated by

E(k) =

{
ak−α if k0 ≤ k < s,
bk−β if s ≤ k ≤ kν ,

(8)

where a, b, α, β are constants and kν is the highest
wavenumber in the enstrophy range, beyond which the
spectrum is supposed to be steeper than k−β. Following
[7] we estimate the ratio P/Z as

P

Z
≥
a

∫ s

k0

k4−α dk + b
∫ kν

s
k4−β dk

a
∫ s

k0

k2−α dk + b
∫ ∞

s k2−β dk

=
as5−α

∫ 1

k0/s κ
4−α dκ+ bs5−β

∫ 1

s/kν

κβ−6 dκ

as3−α
∫ 1

k0/s κ
2−α dκ+ bs3−β

∫ 1

0
κβ−4 dκ

= s2

∫ 1

k0/s κ
4−α dκ+

∫ 1

s/kν

κβ−6 dκ
∫ 1

k0/s κ
2−α dκ+

∫ 1

0
κβ−4 dk

, (9)

where the inequality results on dropping from the nu-
merator the spectral contribution beyond kν (which is
considerable if β ≤ 5) and the second line is obtained by
making the respective changes of variables κ = k/s and
κ = s/k in the two integrals in each of the numerator
and denominator. The continuity relation as−α = bs−β

was used to obtain the third line. It follows that
∫ 1

s/kν

κβ−6 dκ
∫ 1

k0/s κ
2−α dκ+

∫ 1

0
κβ−4 dk

≤ ǫ

ǫ− ǫ0
. (10)

Now β = 5 implies that the dissipation of enstrophy
is uniformly distributed among the wavenumber octaves
higher than the forcing wavenumber s. A direct cas-
cade requires β < 5. We consider the non-cascading case
β > 5. If the Kolmogorov–Kraichnan energy-range spec-
trum (α = 5/3) is realizable, the denominator on the left-
hand side of (10) is less than 5/4. On the other hand, the
numerator can be considerably larger than 5/4, making
the left-hand side of (10) considerably larger than unity.
This requires ǫ0 to be sufficiently close to ǫ, allowing for
the possibility of a strong inverse cascade in the absence
of a direct cascade [7]. In order for β to approach 5
from above, (10) requires ǫ0 → ǫ. When α = 5/3 and
β = 5, a good lower bound, namely (4/5) ln(kν/s), for
the left-hand side of (10) can be obtained by replacing
the lower integration limit k0/s by 0. For example, if the
k−5 spectrum extends for five decades of wavenumbers,
the left-hand side of (10) must be approximately ten.
Therefore, (10) requires ǫ0/ǫ ≈ 0.9, corresponding to an
inverse cascade carrying 90% of the energy input to the
largest scales. This explains the robustness of the inverse
cascade observed in numerical simulations, regardless of
what happens to the enstrophy: in the limit s/kν → 0,
as is the case for high-Reynolds number turbulence, any
spectral slope β ∈ (3, 5] would require ǫ0 → ǫ. In other
words, a direct enstrophy cascade associated with a spec-
trum even slightly shallower than k−5 is ruled out, except
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possibly in the limit ǫ0 → ǫ. (The classical enstrophy
cascade requires a huge value for the ratio ǫ/(ǫ − ǫ0).)
It is interesting to note that several other theories of 2D
Navier–Stokes turbulence predict different values of β in
the range 3 < β < 5 [15–17].

Further analytical considerations of (10) are met with
difficulties since it is not known how ǫ0, β, and kν vary
with Reynolds number. On the other hand, numerical
studies of this problem face an equally formidable task
(see [7] for a discussion of the numerical limitations). A
plausible possibility is to explore how ǫ0, β, and kν ad-
just with respect to Reynolds number in the non-direct-
cascading regime. This information may then be extrap-
olated to the limit β → 5.

III. NUMERICAL RESULTS

We now consider results from simulations that illus-
trate the realization of an inverse cascade where energy
is transferred to the large scales via the Kolmogorov–
Kraichnan spectrum k−5/3, in the absence of a direct
cascade. We simulate (1) in a doubly periodic square of

side 2π, where the forcing f̂(k) is nonzero only for those
wavevectors k having magnitudes lying in the interval
K = [99, 101]:

f̂(k) =
ǫ

N

ψ̂(k)∑

|p|=k

|ψ̂(p)|2
. (11)

Here ǫ = 0.01 is the constant energy injection rate
and N is the number of distinct wavenumbers in K.
The (constant) enstrophy injection rate is s2ǫ ≈ 100,
where s2 ≈ 104 is the mean of k2 over K. This forc-
ing is described for the velocity formulation in [11]. A
similar type of forcing was used by Shepherd [18] in
numerical simulations of a large-scale zonal jet on the
so-called beta-plane. The attractive aspect of (11), as
noted in [18], is that it is steady. We ran dealiased
13652 pseudospectral simulations (20482 total modes)
with ν = 5×10−5. We initialized the simulation with the
spectrum E(k) = 10−5πk/(104 +k2). Figure 1 shows the
evolution of the total energy, enstrophy, and palinstro-
phy. The dissipation of enstrophy 2νP quickly reaches
the enstrophy injection rate s2ǫ (before t = 10), giving
rise to a quasisteady enstrophy Z ≈ 79. This amounts
to an energy dissipation rate 2νZ ≈ 0.0079, accounting
for 79% of the energy injection rate. The energy growth
rate is then 21% of the energy injection rate, due to the
inverse cascade carrying 21% of the energy injection to
the lowest wavenumbers. It is evident from the spec-
trum (time-averaged from t = 59 to t = 60) in Fig. 2
that the inverse cascade reaches the lowest wavenumber
at t ≈ 60; one observes an energy-cascading range, ex-
tended for almost two decades of wavenumbers, with the

Kolmogorov–Kraichnan exponent −5/3. This is realiz-
able in the complete absence of a direct cascade: the
enstrophy range is as steep as k−5.7, so that virtually all
of the enstrophy is dissipated in the vicinity of the forced
region.

0 200 400 600 800

FIG. 1: The energy E, enstrophy Z, and palinstrophy P vs. t.

The cumulative energy transfer function ΠE(k) =∫ ∞

k
T (p) dp averaged from t = 35 to t = 60 is plotted vs. k

in Fig. 3, along with the cumulative forcing/dissipation
ǫE(k) =

∫ ∞

k
[2νk2E(p) − F (p)] dp. The quasisteady na-

ture of the spectrum is reflected in the near coincidence of
these two curves for k > 5. The energy flux is seen to be
nearly uniform between k = 5 and k = 10; this is a signa-

FIG. 2: The energy spectrum E(k) vs. k at t = 60.
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FIG. 3: The cumulative energy transfer function ΠE(k) and
cumulative forcing/dissipation ǫE(k) vs. k averaged between
t = 35 and t = 60.

ture of an energy inertial range. Note that ǫE(k0) = −ǫ0.
In the corresponding vorticity field, depicted at t = 28

in Fig. 4, one notes that the coherent structures in this
flow are limited in size to the scale 2π/s by the decorrelat-
ing effect of the forcing. Indeed, since the inverse cascade
spectrum is shallower than k−3 and the enstrophy-range
spectrum is steeper than k−3, one sees immediately that
most of the enstrophy must be distributed (in the form
of coherent structures) around the forcing scale. In ac-
cord with Ref. 11, the forcing scale is also the region of
maximum enstrophy dissipation (the spectrum is steeper
than k−5).

The above simulation was continued up to t = 720,
considerably long after the inverse cascade reached the
lowest wavenumber (cf. Figure 5). It was observed that
the energy growth in the two-decade energy range was
just sufficient to allow a spectral slope ≈ −3 to form
in the lowest wavenumber decade. A similar result was
observed and physically interpreted by Borue [4]. The
other decade in the energy range maintained a slope of
about −5/3 and the enstrophy range remained steady.
After that the whole energy range seems to relax to-
ward a slope between −3 and −5/3. Since the dissi-
pation rate at the lowest wavenumber, 1, is 2ν = 10−4,
for the system to approach equilibrium, it would take
a time t ≈ 1/(2ν) = 104 from the moment the inverse
cascade reaches wavenumber 1. Nevertheless, the qua-
sisteady assumption that the spectrum from the forcing
wavenumber (s = 100) to the upper truncation wavenum-
ber (kT = 682) is in equilibrium may be used to predict
the final energy-range exponent α. Given that the total
equilibrium enstrophy is ǫ/2ν = 100 and that the enstro-

FIG. 4: Vorticity field corresponding to the simulation in
Fig. 1 at t = 28.

phy contribution Z(k > k1) = 38.4 from wavenumbers
larger than k1 = 90 has already reached equilibrium,
the remaining enstrophy contribution must come from

the large scales: 100 − 38.4 = E(k1)
∫ k1

1
k2(k/k1)

−α dk.
We measured E(k1) = 8.2 × 10−5 and used this value
to deduce that the exponent α of an equilibrium energy
range extending from k0 = 1 to k1 must be 2.04. It fol-
lows that α+ β ≈ 8, in rough agreement with the result
α+β ≥ 8 derived in [7] on the basis of the balance equa-
tion P = s2Z [obtained by setting ǫ0 = 0 in (7)] for a
bounded fluid in equilibrium, with kν/s ≥ s/k0. In the
present case, we have kν/s ≈ 5 and s/k0 ≈ 100, so that
the condition kν/s ≥ s/k0 is violated; this allows the
sum α+ β to fall slightly below eight. In order to obtain
kν/s ≥ s/k0 one would have to extend kν to at least 104.

Finally, we note that in a bounded domain, a k−3 en-
strophy cascade can in fact be obtained if one includes
a linear damping at the large scales. This breaks the
balance equation P = s2Z and the constraint β > 5
derived from it [11], allowing the k−3 enstrophy cas-
cade illustrated in Fig. 6 to form (dashed curve, with√
P/Z ≈ 20 ≫ s = 2). If one in addition artificially

sets the molecular dissipation to zero within the enstro-
phy inertial range by introducing the cutoff kH = 300,
one obtains the pristine logarithmically corrected in-
ertial range depicted in Fig. 6 [19] (solid curve, with√
P/Z ≈ 65 ≫ s = 2). Given an energetically localized

forcing, these direct enstrophy cascades have been proven
to be unrealizable in a steady state when the (Laplacian)
molecular viscosity acts alone [11].

The vorticity fields corresponding to the spectra in
Fig. 6 are shown in Figs. 7 and 8. The fact that fewer co-
herent structures are seen in Figs. 7 and 8 than in Fig. 4
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FIG. 5: The energy spectrum E(k) vs. k at t = 720.

FIG. 6: Direct enstrophy cascades (6832 dealiased modes)
forced at wavenumber 2, with small-scale molecular dissipa-
tion coefficient 1.25×10−4k2H(k−kH) (H denotes the Heav-
iside function) and large-scale dissipation coefficient 0.1k0 for
k ≤ 3.

supports the suggestion [20] that coherent structures are
associated with steep enstrophy-range spectra. However,
these steep spectra were shown in Refs. 7 and 11 to be a
consequence of the global properties of a bounded fluid,
and it may well be that it is the steepness of the spec-
trum (steeper than k−5) that allows the coherent struc-
tures seen in Fig. 4 to form, rather than the other way
around.

Ultimately, to settle the question about the validity

FIG. 7: Vorticity field corresponding to the simulation in
Fig. 6 with kH = 0.

FIG. 8: Vorticity field corresponding to the simulation in
Fig. 6 with kH = 300.

of the Kraichnan theory of the dual cascade, it will be
necessary to learn more about the behavior of the in-
verse cascade strength r = 1 − 2νZ/ǫ with Reynolds
number R. The variation of r with t is shown in
Fig. 9 for a series of runs based on the simulation pre-
sented in Fig. 1, formed by scaling s and the number
of modes in each direction by λ and ν by 1/λ2, for
λ = {1/8, 1/4, 1/2, 1, 2}. A well-developed k−5/3 qua-
sisteady inverse cascade forms only for the three highest
resolutions in this series. In Fig. 10 we illustrate the be-
havior thus obtained for r vs. the steady-state Reynolds
number (2π/s)2

√
Z/ν = (2π/s)2

√
ǫ/(2ν)/ν determined
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FIG. 9: Inverse cascade strength vs. t for several dealiased
resolutions.

by (5). We note that the inverse cascade strength cer-
tainly increases with Reynolds number, as expected, but
what happens in the high-Reynolds number limit remains
unclear. As seen from (7), the manner in which the palin-
strophy diverges as the Reynolds number increases is crit-
ical to the validity of the dual cascade theory. What is
clear is that our highest resolution is still far away from
being able to assess this theory. Even if the inverse cas-
cade strength should continue to rise with the roughly
linear dependence (with respect to the logarithm of the
Reynolds number) suggested in Fig. 10, at least two more
decades in Reynolds number would be needed at this rate
to reach the strong inverse cascade regime (r = 1) re-
quired for the existence of a quasisteady direct enstrophy
cascade.

IV. DISCUSSION

In conclusion, we have derived a relation, (10), be-
tween the energy growth rate, the enstrophy-range spec-
tral slope, and the dissipation wavenumber. We used
this to explain how an inverse cascade can be realizable
in the complete absence of a direct cascade, as observed
in direct numerical simulations reported in the literature.

An inverse energy cascade transferring energy to the
large scales via the Kolmogorov–Kraichnan spectrum
k−5/3 and an enstrophy range significantly steeper than
k−5 form, consistent with many numerical results in the
literature, in which large-scale long-lived vortices, known
as coherent structures, are observed [4, 20–25]; these
are often blamed for causing enstrophy spectra steeper
than k−3. However, these steep spectra can be explained

0

0.2

0.4

0.6

0.8

1

FIG. 10: Inverse cascade strength vs. Reynolds number.

without reference to coherent structures: the steepness is
merely a consequence of global conservation laws, molec-
ular viscosity, and a spectrally localized forcing [7, 11].

The inverse cascade is seen to carry only a small frac-
tion of the energy input to the largest scale and yet a
k−5/3 spectrum manifests itself nonetheless. This sug-
gests that a k−5/3 inverse-cascading range does not re-
quire the transfer of virtually all energy input to the
largest scales in the system. We ran our numerical simu-
lations significantly long after the inverse cascade reached
the lowest wavenumber and observed the subsequent ap-
proach to equilibrium. We noticed that the energy-range
spectral slope gradually steepens in accord with the con-
straint P = s2Z for equilibrium dynamics. The results
reported here are thus consistent with recent theoretical
analyses [7, 11].

Equation (7) establishes that a direct cascade cannot
coexist with a weak inverse cascade. This feature is com-
mon to a general class of incompressible fluid turbulence
in two dimensions known as α turbulence [26] and not
limited to the present case. Turbulence in a bounded do-
main will eventually approach an equilibrium state [12],
with ǫ0 = dE/dt = 0. We thus recover a principal result
from Refs. 7 and 11: any (bounded) numerical simula-
tion of the two-dimensional incompressible Navier–Stokes
equation cannot exhibit a direct cascade in equilibrium.
Numerical inverse cascades in the existing literature, lim-
ited by finite resolution, are inherently weak; (7) implies
that these weak inverse cascades cannot be accompanied
by a k−3 enstrophy-range spectrum; in fact, the spectrum
must be steeper than k−5. A direct cascade is ruled out
until the inverse cascade becomes extremely strong. In
order to gain insight into the realizability of a direct cas-
cade, it may help to develop a detailed understanding of
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the dynamics of the critical k−5 spectrum that separates
the noncascading and direct cascading regimes. Finally,
we wish to point out that the fact that an inverse en-
ergy cascade at moderate Reynolds numbers carries only
a fraction of the injected energy to the largest scales has
important implications for accurate estimation of the en-
ergy inertial range Kolmogorov constant.

In this work we have established a necessary condition
for a direct cascade to be realizable: the inverse cascade
strength must approach unity as the Reynolds number
is increased. The realization of an inverse cascade in the
absence of a direct cascade poses closely related inter-
esting questions that provide excellent topics for further
study. First, how does the relative strength of the inverse
cascade depend on the Reynolds number? Second, what
Reynolds number corresponds to the onset of a direct
cascade, if such a threshold exists? While we have made
a preliminary attempt at answering the first question,
the second question remains completely open for future
study.
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