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Angular redistribution of nonlinear perturbations: A universal feature of nonuniform flows
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Classically, the net action of nonlinear turbulent processes is interpreted as either a direct or inverse cascade.
However, in nonuniform/shear flows the dominant process is a nonlinear redistribution over wave number
angle of perturbation spatial Fourier harmonics. We call this process a nonlinear transverse redistribution
(NTR). This phenomenon is demonstrated for a simple two-dimensional constant shear (non-normal) flow by
numerically simulating the nonlinear dynamics of coherent and stochastic vortical perturbations in the flow.
NTR is a general feature of nonlinear processes that should manifest itself in nonuniform engineering, envi-
ronmental, and astrophysical flows. The conventional characterization of turbulence in terms of direct and
inverse cascades, which ignores NTR, appears to be misleading for shear flow turbulence. We focus on the
action of nonlinear processes on the spectral energy. NTR redistributes perturbations over different quadrants
of the wave number plane and the interplay of this nonlinear redistribution with linear phenomena becomes
intricate: it can realize either positive or negative feedback. In the case of positive feedback, it repopulates the

quadrants in wave number space where the shear flow induces linear transient growth.
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I. INTRODUCTION

Nonuniform flows are ubiquitous both in nature and in the
laboratory: they occur in atmospheres, oceans, stars, pro-
toplanetary disks, galaxies, pipe flows, and tokamak reactors.
The understanding of nonuniform kinematics associated with
dynamical phenomena is as equally important as thermody-
namic inhomogeneity. Indeed, the appearance of complex
dynamics is often a manifestation of nonuniform kinematics.
For example, (i) the structure and dynamical appearance of
astrophysical disks are largely defined by the differential
character of the disk matter rotation, (ii) turbulent flow in
many engineering circumstances is governed by a nonuni-
form velocity profile, (iii) the encouraging L-H transition in
tokamaks is connected with the appearance of a background
poloidal nonuniform E X B flow.

Historically, the non-normality of nonuniform (shear)
flows substantially delayed the full understanding of their
behavior. In fact, the non-normal nature of shear flow and its
consequences only became well understood by the hydrody-
namic community in the 1990s [1-4]. Shortcomings of tra-
ditional modal analysis (spectral expansion of perturbations
in time and, later, eigenfunction analysis) for shear flows
have been revealed. Operators in the mathematical formal-
ism of shear flow modal analysis, such as for plane Couette
and Poiseuille flows, are non-normal and the corresponding
eigenmodes are nonorthogonal [1,4,5]. The nonorthogonality
leads to strong interference among the eigenmodes. Conse-
quently, a proper approach should fully analyze eigenmode
interference. While possible in principle, this is in practice a
formidable task. The mathematical approach was therefore
changed, and a breakthrough in the understanding and pre-
cise description of linear transient phenomena ensued. In
spectrally stable hydrodynamic shear flows, it became clear
that vortex and wave mode perturbations of certain spatial
characteristics/orientation undergo linear transient growth
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[6,7], leading to short perturbation life times. However, in
certain favorable circumstances, the perturbations are sus-
tained long by the shear flows. Specifically, the imperfect
linear growth must be compensated by the nonlinear positive
feedback that repopulates perturbations transiently by draw-
ing energy from the shear flow. In this case, the nonlinearity
closes the feedback loop, producing self-sustaining perturba-
tions. In the 1990s, on the basis of this interplay between
linear transient growth and nonlinear positive feedback, the
hydrodynamic community formulated the bypass transition
concept to explain the onset of turbulence in spectrally stable
shear flows (see, e.g., [8—12]). Early hypotheses of the by-
pass concept can be found in Refs. [13,14]. These papers,
which examine the continuous spectrum of the Orr-
Sommerfeld equation, primarily discuss linear processes, but
nevertheless contain some speculation on the mechanisms by
which the continuous spectrum could lead to a bypass tran-
sition.

The bypass scenario differs principally from the typical
turbulence scenario, which is based on exponentially grow-
ing perturbations in a system that supplies turbulent energy
and requires no nonlinear positive feedback to maintain the
perturbations. In the classic case the nonlinearity is not vital
to the existence of the perturbations; instead, it merely deter-
mines their scales, via the direct and/or inverse cascade.

The aim of this work is to describe the general behavior
of nonlinear processes of the Navier-Stokes equations by di-
rect numerical simulation. To supplement Kida’s elegant ki-
nematic description of how an elliptic vortex responds to a
uniform shear flow [15], we follow the dynamics of coherent
(cyclonic/anticyclonic) and stochastic vortical perturbations
in a prototypical two-dimensional (2D) constant shear flow.
Since our focus is on nonlinear phenomena, we do not in-
voke methods such as rapid distortion theory that deal pri-
marily with linear transient dynamics.
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We also do not attempt to model turbulence. Instead, we
simply highlight a novel feature of the nonlinearity in shear
flows. Usually, linear processes in different systems depend
on some combination of wave number values, say (in the 2D
case) kf and k)2 Therefore, nonlinear processes can increase
or decrease ki and k%, leading to direct or inverse cascades.
In our case, flow velocity shear introduces a dependency of
the linear processes on the combination k.k,/ k. Nonlinear
processes can thus lead to changes in the sign of k k, due to
nonlinear redistribution of perturbation Fourier harmonics
over wave number angle. We call this process nonlinear
transverse redistribution (NTR). Tt is important to stress that
the nonlinear processes redistribute perturbations between
different quadrants of the wave number plane: from kk,
>0 to kk,<0, or the reverse. Such nonlinear processes are
impossible in the usual cases where linear processes depend
only on some combination of kﬁ and ki. As a consequence of
NTR, the nonlinearity produces positive or negative feed-
back, and the interplay of linear and nonlinear phenomena
becomes intricate. The nonlinearity acquires a vital role: it
enables the self-sustenance or self-suppression of regular or
stochastic perturbations.

II. BASIC EQUATIONS AND PROCESSES

Let us illustrate NTR for localized, coherent, and stochas-
tic perturbations in a 2D spectrally stable incompressible hy-
drodynamic uniform shear flow, Uy(x)=(0,Ax), with con-
stant mean pressure and density. The same underlying
mechanism should be relevant to three-dimensional (3D)
shear flows and in more complex media such as plasmas.
The dynamical equation written for the stream function ¢ has
the form

<§t+U0(x)~V)A¢/f+J(1/f,Al/f)—VA2¢/=O, (1)

where v is the kinematic viscosity and the spatial operators J
and A represent the two-dimensional Jacobian and Laplac-
ian, respectively. Without loss of generality, we adopt A >0.
The velocity v and energy density e of the perturbation are
defined in terms of the stream function and the constant fluid
mass density p,

v=(v,0,) =2 X V= (— Z—;[I,Z—f>, (2)
1 ap\* [ay\?
e(x,y,t):zpo[(a—f> +<a—;{l> ] (3)

Introducing dimensionless variables normalized with the
time scale T and spatial scale €,

t X y . €
r=—, X=-, Y==, A=AT, R,=—,
T ¢ € vl
Ty Tv, Tv, 2T%
V=— V,=—>= V=—2 E= , (4
Iz ¢ YT pol2 @)

and performing Fourier analysis with respect to X and Y,
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V(X,Y,7) = f dk,dl, W (Dexp(ik X +ik,Y),  (5)

one obtains a nonlinear equation for the dynamics of the
spatial Fourier harmonics (SFHs) of the perturbations,

v, . k¥
Rr—* —Akvu + R = D (KK
aT . 8kx k=t +k" 4
=k'+k
— kyky )k 2 W, (6)
E =KW, [, E(n= f dk,dk,E(7), (7)

where k25k§+k§, E, is twice the spectral energy density
associated with the wave number (k,,k,) and E(7) is twice
the total energy of the perturbations. On the RHS of Eq. (6)
is the nonlinear term describing three-wave coupling. Equa-
tions (6) and (7) form the basis of our numerical study. With
these equations, one can quantitatively explore the dynamics
of the stream function, spectral energy density, and total per-
turbed energy. However, to investigate the physics of the
phenomena, it is helpful to analyze the dynamical equation
for the spectral energy density, which follows from Egs. (6)
and (7),

IE,  ~2kk, . B .
o —A?Ek + E(_ AkE) +R'IPE =Ny, (8)
where

Nk - E (k),ck;, - k;,k‘,’)klz X (\I,;q,k"l,k” + ‘qu,];/q,]://)
k=k'+k"

)

is a functional of W} describing the contribution of the non-
linear term to JE;/d.

One can see from Eq. (8) that the dynamics of Ej is the
result of the interplay of four basic phenomena:

(1) The second term on the LHS represents the energy
exchange between the perturbations and the background
flow. SFHs draw shear flow energy and are amplified in
quadrants I and III of the wave number plane, where kk,
>0, giving energy back to the flow in quadrants II and IV
where k.,<0. Note that quadrant IIT (IV) behaves analo-
gously to T (II).

(2) The quantity (—AkyEk) in the third term on the LHS
represents the flux of the spectral energy density along the &,

axis with velocity —Aky. Each SFH “drifts” along the k, axis.
The drift is caused by shearing of the perturbations due to the
background shear flow and results in the time dependence of

the SFH wave number: kX(T)=kX(0)—AkyT. Since [dk,dk,d(

—AkyEk)/r?kX:O, this drift does not change the total energy;
instead, it transfers energy from the amplification region
(kyky,>0) to the attenuation region (kk,<0). Consequently,
the linear drift gives rise to the transient character of the
growth.
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(3) The fourth term on the LHS represents the energy
dissipation by viscosity. The linear drift ultimately leads to

an increase in the SFH wave number: |k,(7)|= |k, (0)-Ak,]
— 0, enhancing viscous dissipation.

(4) The nonlinear term N, on the RHS leads to energy
exchange between different SFHs, redistributing perturbation
energy in the wave number plane while leaving the total
energy unchanged: 3;N;=0. The term Ny, being responsible
for NTR, is the key focus of our research. The property
2Nx=0 is maintained and used to monitor the accuracy of
the numerical solutions of Eq. (6).

III. NUMERICAL SIMULATIONS

The simulations are done using the dealiased Fourier
pseudospectral method, with a 256 X 256 grid superimposed
on a spatial box of size 25€¢ X 25¢, yielding a minimum wave
number k,;=27/(25¢)=0.25¢"" and maximum wave number
kmax = 85k 1-

We computed the dynamic picture given by Egs. (6)—(9)
for the Fourier transform of a localized perturbation,

W(X,Y,0) =Bn(X,Y)exp(- X* - Y?). (10)

Thus, n(X,Y)=1 yields coherent circular anticyclonic per-
turbations, where the vorticity is antiparallel to the back-
ground vorticity A, while n(X,Y)=-1 corresponds to coher-
ent cyclonic ones, where the vorticity is parallel to A. We
also considered stochastic vortical perturbations, by taking
n(X,Y) to be the inverse Fourier transform of exp(—(ki
+k§)/a2+2m'§k), using the Gaussian filter width ¢=4.6 and a
random number &, € [0, 1] for each wave number k, to pro-
duce several random vortices within the perturbed area. For
the coherent vortexes n(X,Y)= =1, the parameter B=3, the
ratio of the vortex eddy turnover time to the shear time scale,
is chosen to maximize the feedback [16]. The same factor B
is applied to the stochastic perturbations. We simulated the
dynamic equations for cyclonic, anticyclonic, and stochastic
perturbations for 0= =35 using different values of the Rey-
nolds number R, and the amplitude B.

In the simulation, the time scale is the inverse of the
shearing rate, T=A"". Therefore, the amplitude B measures
the ratio of the shearing time to the eddy turn-over time. The
eddy rotation has an isotropizing effect, whereas the shear
flow drives anisotropy.

For R,=1000 and B=3, we present in Fig. 1 typical re-
sults that demonstrate key features of the total perturbation
energy dynamics and, in Figs. 2—4, the corresponding spec-
tral perturbation energy density E(k) and nonlinear energy

transfer ]Q’(k) in the wave number plane.

In Fig. 1, the evolution of the fluctuation energy E nor-
malized by the initial energy E, for the anticyclonic (solid
red), cyclonic (dotted blue) and stochastic (dashed black)
perturbations are presented. The energy of the anticyclonic
vortex (n=1) increases monotonically, while the energy of
the cyclonic vortex (n=—1) initially increases and then oscil-
lates weakly. Since the linear dynamics of the perturbations
are identical, the difference in the energy evolutions must be
due to nonlinear phenomena. In the present case all types of
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FIG. 1. (Color online) Normalized total energy vs time for an-
ticyclonic (solid red), cyclonic (dotted blue) and stochastic (dashed
black) perturbations for R,=1000 and B=3

perturbations are self-sustainable during the simulation time.
The energy behavior of the anticyclonic and stochastic per-
turbations indicates the existence of a self-consistent positive
nonlinear feedback. The energy of the cyclonic perturbation
oscillates in time, due to alternating positive and negative
feedback. These insights are confirmed in Figs. 2—4.

The spectral energy density Ej and the contribution of
nonlinear processes to the spectral energy density dynamics

1<Jk for an anticyclonic vortex is presented in Fig. 2 in the
wave number plane at 7=0.5 and 2. The nonlinearity redis-

tributes the perturbation energy from the blue areas (1</k
<0) to the red ones (N, >0), with the green regions indicat-

ing Nk:O. As one can see in Figs. 2(c) and 2(d), the non-
linear interactions redistribute energy from quadrant II (IV),

where Nk is predominantly negative, to quadrant I (III),

(a) (b)

Anticyclonic E, (t =0.5) Anticyclonic E, (t =2.0)

:
ze

R
2F

6420 2 4 86 6 -4 20 2 4 6
k k

X

X

Anticyclonic N, (t = 0.5)

Anticyclonic N, (t = 2.0)

FIG. 2. (Color online) [(a),(b)] The spectral energy density Ej
[(c),(d)] the contribution Nk of the nonlinear processes to the spec-
tral energy density dynamics [cf. Egs. (8) and (9)] for an anticy-
clonic vortex, with R,=1000 and B=3 at times 7=0.5 and 2.
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FIG. 3. (Color online) The same as in Fig. 2 but for the cyclonic
vortex at times 7=0.5 and 2.

where Nk is predominantly positive. This angular redistribu-
tion dominates the linear drift. Therefore, the perturbation
population in quadrant I (IIT) prevails over the perturbation
population in quadrant IT (IV) and dE(7)/d7>0 for 7>0 [cf.
Figs. 2(a) and 2(b)]. Indeed, the simulations for anticyclonic
vortices show that nonlinear processes repopulate the grow-
ing SFHs during the simulation time (0= 7=5). This feed-
back mechanism leads to the self-sustenance of anticyclonic
perturbations, so that the total energy of the anticyclonic per-
turbations increases, as seen in Fig. 1. Also, one can see that
the domain of significant nonlinear activity converges in time
to lower wave numbers: an inverse cascade is in progress.
However, the dominant nonlinear process is the angular re-
distribution of perturbation Fourier harmonics.

Figures 3 and 4 show that NTR is also strongly pro-
nounced for coherent cyclonic and stochastic perturbations.
In the case of cyclonic vortices, the nonlinear dynamics is

E,(1=0.5) E,(1=2.0) E,(1=3.0)

E,(1=4.0) E,(1=5.0)

. N,(1=3.0) N,(1=4.0) N,(1=5.0)
-

4 -

2 “ 4 = =

o S =55 - ks
—

- - — - -
i Al o F . ~ . =
5 e —-—r =
6-4202 46

0
ke

FIG. 4. (Color online) Contours of Ej, (top) and Ny, (bottom) are
shown at 7=0.5, 2, 3, 4, and 5. The horizontal and vertical axis
represent k, and k, in the interval [-6,6].
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more complicated. Positive and negative feedbacks alternate
in time. Indeed, in Figs. 3(c) and 3(d) we see that nonlinear
interactions redistribute energy mainly in wave number
angle, from quadrant IT (IV) to quadrant I (IIT) at 7=0.5 and
vice versa at 7=2. NTR repopulates growing SFHs for which
kky,>0 at 7=0.5 [see Fig. 3(a)], contributing to an increase
in the total perturbation energy. In contrast, the repopulation
of decaying SFHs by the nonlinear angular redistribution
[see Fig. 3(b)] leads to a decrease in the total perturbation
energy at 7=2 (cf. dotted blue curve in Fig. 1). So, in the
case of a cyclonic vortex, the nonlinearity does not ensure a
continuous positive feedback.

Figure 4 shows that the nonlinear contributions are not as
smooth for the case of a stochastic perturbation. There is no
well-defined positive feedback in the initial stages (see plots
at 7=0.5 and 2). However, at later times (see plots for 7=3,
4, and 5), positive nonlinear feedback becomes pronounced,
particularly at 7=3. In accordance with this, dE(7)/d7 has a
maximum in the vicinity of 7=3 (cf. dashed black curve of
Fig. 1). In any case, from Fig. 4 it follows that NTR and not
the inverse cascade appears to be the dominant nonlinear
phenomenon for the stochastic perturbations, just as in the
case of coherent perturbations.

We initialized our simulations with isotropic perturbations
[see Eq. (10)]. However, the spectral energy density in Figs.
2, 3, 4(a), and 4(b) indicates in each case that the perturba-
tions became anisotropic, dominated by shearwise-
independent perturbations (i.e., ones with k,=0). To charac-
terize the nature of the transverse redistribution, the averages

of N(k) introduced in the next section provide quantitative
measures of NTR.

IV. QUANTITATIVE CHARACTERISTICS OF THE
(DIRECT AND INVERSE) CASCADES AND NTR

On averaging N,(7) over the polar angle 6, one can char-
acterize the intensity of the cascade with the quantity

2

1 A
Iy (k,7) = ;TJO Ny(ndo. (11)

Alternatively, on averaging over the wave number magnitude
k, one can characterize the intensity of NTR by

1 [fo,
I-(0,7) = —zf Ny (7)kdk. (12)
ko Jo

The corresponding plots of the NTR intensity and direct
and inverse cascades for the anticyclonic, cyclonic, and sto-
chastic perturbations at 7=1.75 are presented in Figs. 5 and
6. The NTR intensity for the stochastic perturbation at 7=3,
4, and 5 is presented in Fig. 7.

Taking k=10, at 7=1.75 we observe in Fig. 5 the follow-
ing features:

(1) Typically, for the anticyclonic perturbation, /—(6, 7) is
positive for 6/ e [O%] and negative for 6/ 7 e [% 1]. This
illustrates the positive feedback mechanism that redistributes
SFHs from quadrant II to quadrant I and vice versa, where
NTR repopulates growing SFHs for which k.k,>0.
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t=1.75
0.002 F j j ' ' k!

0.001
0.000 [
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n=1
..... n=random kk, <0
.

0.0 0.2 0.4 0.6 0.8 1.0
o/n

FIG. 5. (Color online) Intensity of NTR /—(6, 7) vs polar angle
@ for anticyclonic (solid red), cyclonic (dotted blue), and stochastic
(dashed black) perturbations at 7=1.75.

(2) For the cyclonic perturbation, I (6, 7) is negative for
0/776[0,%] and positive for 6/ e [%,1] at 7=1.75. This
constitutes negative feedback: NTR repopulates attenuating
SFHs for which k., <0.

(3) For the stochastic perturbation, the repopulation is
mixed and the positive feedback is not pronounced at the
beginning. However, positive feedback is clearly seen in the
plots of the intensities for the stochastic perturbation at 7
=3, 4, and 5 presented in Fig. 7.

Figure 6 shows that at 7=1.75 the inverse cascade is pro-
nounced only for the anticyclonic case. The complete set of
results for our numerical simulations is available from our
website [17]. The results contain demonstrative movies that
help one follow and comprehend the dynamical processes.
Specifically, the results include movies of the dynamics of
Ey, Nk, 1-(60,7), and I, (k, 7) for anticyclonic, cyclonic, and
stochastic perturbations.

V. CONCLUSION

In this work we demonstrated, as a first step toward un-
derstanding more realistic 3D sheared turbulent flows, the
dominance of nonlinear transverse redistribution (NTR) over
the direct or inverse cascades in a simple 2D shear flow.
Being a general feature of nonlinear processes in shear flows,
NTR should be inherent to 3D flows as well. It thus appears
that the conventional characterization of turbulence solely in

t=1.75
0.002 - n=t ——

FIG. 6. (Color online) Intensity of (direct and inverse) cascades
I (k,7) vs wave number magnitude k for the anticyclonic (solid
red), cyclonic (dotted blue), and stochastic (dashed black) perturba-
tions at 7=1.75.
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Stochastic Case
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T -0.0005} -
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0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. (Color online) Intensity of NTR 7—(#, 7) vs polar angle
6 for the stochastic perturbation at 7=3, 4 and 5, indicated by the
solid red, dotted blue, and dashed black curves, respectively.

terms of direct and inverse cascades, which neglects NTR, is
misleading for shear flow turbulence.

In our simulations, NTR ensured positive feedback and
the self-sustenance of regular and stochastic perturbations.
Consequently, NTR could provide a mechanism for the de-
velopment of turbulent spots from stochastic perturbations,
following the bypass scenario of turbulence.

According to our simulations (see the dynamics of Ej and

N, in Figs. 2-4 and in the demonstrative movies [17]),
streamwise-independent SFHs (perturbations with k,=0) are
not distinguished from streamwise-dependent SFHs in the
self-sustenance process. Unlike in the 3D case, streamwise-
independent perturbations do not appear to be central partici-
pants in the dynamical processes. Instead, the dominant per-
turbations are shearwise independent (with k,=0).

The basic equations of our research, Egs. (6)—(9), were
derived for 2D plane shear flows. However, as one can see
from the Appendix, they also describe the local (small-scale)
nonlinear dynamics of 2D rotating shear flows when the sys-
tem is uniform in the direction Z of rotation. Such flows
model local dynamical processes in unmagnetized astro-
physical (galactic or protoplanet) disks, where self-
sustenance of regular as well as stochastic/turbulent pertur-
bations represents the key problem. The local approximation
allows one to identify the 2D rotating case with the nonro-
tating case: within the limits of the local approach the mean
flow vorticity is constant (equal to A) and the Rossby wave
mode degenerates into a vortical perturbation. Thus, in the
local approximation nonlinear processes are not affected by
rotation, which vanishes from the dynamical equation.

Rotation changes the dynamical picture when the pertur-
bation wavenumbers are nonzero in the Z direction (k, #0)
and the dynamics is three dimensional. Features of the dy-
namics in such a system, with rigid rotation, are outlined in
detail in Chapter 4 of Ref. [18]. Even in the local approxi-
mation, perturbations in such a system exhibit wave behavior
in the form of inertial waves. Consequently, the additional
so-called selection rules for resonant triads restrict the pos-
sible nonlinear interactions. Wave turbulence differs essen-
tially from hydrodynamic/eddy turbulence theory; it can be
described by weak turbulence theory in terms of the evolu-
tion of slowly evolving envelopes that modulate high-
frequency oscillations. This theory predicts a drain of energy
onto the wave plane orthogonal to €. It establishes the ten-
dency of even rigid rotating turbulence to become aniso-
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tropic due to spectral transfer on the horizontal wave plane
(see [18]). The same tendency has also been observed in
direct numerical and large-eddy simulations [19,20]. How-
ever, the anisotropy induced by rigid rotation does not affect
the energetic balance of perturbations since there is no linear
growth mechanism in the system. The situation will change
in case of nonuniform rotation, where transient linear growth
of perturbations is expected. Anisotropy in the plane or-
thogonal to Z should also appear, and consequently, the re-
fined nonlinear processes should be more complex. A merger
of the analyses in this work and in Ref. [18] would be a
productive area for future research that could lead to a com-
prehensive understanding of the nature of refined nonlinear-
ity.

In closing, we emphasize that NTR can introduce either a
positive or negative feedback mechanism into turbulent dy-
namics. In the case of positive feedback, the nonlinearity
repopulates growing perturbations and contributes to the
self-sustenance of perturbations. Consequently, NTR natu-
rally appears as a possible cornerstone of the bypass scenario
of turbulence. In the case of negative feedback, the nonlin-
earity can suppress perturbations and may thus reduce
anomalous transport phenomena. In fusion machines, a simi-
lar negative feedback scheme could perhaps be responsible
for the L-H transition associated with poloidal shear flow.
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APPENDIX: 2D ROTATING SHEAR FLOW

The governing ideal hydrodynamic equations of a two-
dimensional incompressible Keplerian disk flows in local
Cartesian coordinates are

PHYSICAL REVIEW E 81, 066304 (2010)

U . . P
—+U-VU=-2Q0y7 X U+2AQOxX—V<—>,
at Po

(A1)

V.U=0, (A2)

where a fiducial radius r=r is introduced to replace the ra-
dial and azimuthal (6) coordinates with local Cartesian coor-
dinates,

X
rran
ro To

x=r—rg y=ry0-Q), (A3)
Here () is the local rotation angular velocity at r=r, and the
local shear rate is defined by

Q(r 3
AE—V0|ia—():| ) =EQ(). (A4)

ar
The first term on the RHS of Eq. (A1) is the Coriolis force,
and the second term accounts for the gravitational and cen-
trifugal forces. The mean shear flow in the considered frame,
which rotates with angular velocity €}, is Uy(0,Ax). Split-
ting U into mean and perturbed (v) parts, Egs. (A1) and (A2)
reduce to the form

d J
(— +Ax—)v +v-Vo=-2Q0w X+ (2Q)-A)v,y

Jat dy
P
()
Po

V-v=0.

(AS)

(A6)

On introducing the stream function ¢, defined by Eq. (2), and
taking the curl of Eq. (AS5), we finally obtain the inviscid
form of our basic Eq. (1):

(A7)

d d
<E‘ +Axo_)—y)A¢+ J(f,A) =0.
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