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We study energy transfer in unbounded two-dimensional Charney–Hasegawa–Mima and surface
quasi-geostrophic turbulence. The inverse-cascading quantities in these systems are respectively
I ≡

∫

∞

0
E(k)/k2 dk and J ≡

∫

∞

0
E(k)/k dk, where E(k) is the kinetic energy spectrum. The direct-

cascading quantities for both surface quasi-geostrophic and Navier–Stokes turbulence are shown to
be bounded. We derive a constraint on E(k) for the surface quasi-geostrophic system.

PACS numbers: 47.27.Eq, 52.35.Ra

Two-dimensional (2D) turbulence governed by the
Navier–Stokes (NS) equations, the Charney–Hasegawa–
Mima (CHM) equation [1–3], and the so-called α tur-
bulence equations [4], is characterized by the simultane-
ous existence of two inviscid quadratic invariants. For
unbounded 2D NS turbulence, the conserved quantities
are the kinetic energy E ≡

∫

∞

0 E(k) dk and fluid enstro-

phy Z ≡
∫

∞

0
k2E(k) dk, where E(k) is the kinetic energy

spectrum. For CHM turbulence, the conserved quantities
are the total energy E+λ2I and total enstrophy Z+λ2E,
where I ≡

∫

∞

0 E(k)/k2 dk and λ is a positive constant.

The class of α turbulence features
∫

∞

0
kα−2E(k) dk and

∫

∞

0
k2α−2E(k) dk as inviscid invariants. Statistical quasi-

equilibrium arguments [5] show the possible existence of a
dual cascade in 2D NS turbulence: an inverse energy cas-
cade to low wavenumbers and a direct enstrophy cascade
to high wavenumbers. These arguments, when applied
to the other two cases, imply the possibility of a dual
cascade of the corresponding quadratic quantities [6, 7].

Interesting cases arise where the supposed direct-
cascading quantity is the kinetic energy. This occurs for
α turbulence when α = 1, a model known as the surface
quasi-geostrophic (SQG) equation. Another case is the
CHM equation in the asymptotic limit λ/s → ∞, where
s is the forcing wavenumber. The system obtained in
this limit is often referred to as the asymptotic model

(AM) [8, 9] or the potential energy regime of the CHM
system. In the former system, the inviscid invariants are
J ≡

∫

∞

0
E(k)/k dk and E. For the latter case, the in-

viscid invariants become I and E. This rules out the
possibility of the kinetic energy being transferred toward
low wavenumbers by nonlinear interactions, in marked
contrast to 2D NS turbulence, where the kinetic energy
is transferred to ever-larger scales at a steady rate. As a
consequence, the possibility that the kinetic energy may
grow unbounded, as in the NS system, is in jeopardy. In
fact, we will establish that the kinetic energy of the SQG
system remains bounded. This implies that the spectrum
E(k) must be shallower than k−1 for k < s, which is sig-
nificantly shallower than that predicted theoretically and
found numerically for other systems. Such a constraint
may not exist for the CHM system; however, if the ki-

netic energy grows unbounded, it does so at a vanishing
growth rate. This applies for all λ/s > 0, the potential
energy regime being a rather peculiar case, where both of
the supposed cascading quantities may grow unbounded
(a dynamical behavior forbidden in the other systems).

The CHM equation, which governs the potential vor-
ticity of an equivalent-barotropic fluid is [2, 8, 10]

∂

∂t
(∆ − λ2)φ + J(φ, ∆φ) = ν∆2φ + f. (1)

Here φ(x, y, t) is the variable part of the free surface
height or the stream function of the fluid and f is the
forcing. The spatial operators J(·, ·) and ∆ are, respec-
tively, the Jacobian and two-dimensional Laplacian. The
positive constant λ has the dimensions of a wavenumber
(corresponding to the Rossby deformation radius) and
ν is the kinematic viscosity coefficient. Equation (1) is
known as the quasi-geostrophic potential vorticity equa-
tion. It also governs the evolution of quasi-2D fluctua-
tions of the electrostatic potential in the plane perpen-
dicular to a strong magnetic field applied uniformly to a
plasma, in which case φ(x, y, t) is the electrostatic poten-
tial and λ−1 is the ion Larmor radius.

Similar to the NS equations [5, 11], the evolution of
the ensemble-averaged CHM energy spectrum E(k) is

(

1 +
λ2

k2

)

d

dt
E(k) = T (k) − 2νk2E(k) + F (k). (2)

Here T (k) and F (k) are, respectively, the ensemble-
averaged energy transfer and energy input. The energy
transfer function T (k) is the same as in the NS case:

∫

∞

0

T (k) dk =

∫

∞

0

k2T (k) dk = 0. (3)

As a consequence of these conservation laws, the inviscid
unforced dynamics features two quadratic invariants: the
total energy E + λ2I and the total enstrophy Z + λ2E.

In this work, F (k) is assumed to have a spectrally lo-
calized support K = [k1, k2], where k1 > 0, and its en-
ergy injection ε ≡

∫

K
F (k) dk and enstrophy injection

η ≡
∫

K
k2F (k) dk satisfy 0 < k2

1ε ≤ η ≤ k2
2ε. A hypothe-

sis of this sort is often employed in theoretical studies and
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is a common numerical situation for the 2D NS system
(see [12, 13] and references therein). In fact, this inequal-
ity trivially holds for any band-limited positive injection.
We define a forcing wavenumber s ≡

√

η/ε, which by hy-
pothesis, lies in K. There are three dynamical regimes,
which exhibit quite distinct behaviors. The first is the NS
regime obtained when λ/s → 0. The second is the AM
model obtained in the limit λ/s → ∞. Finally, we have
the intermediate regime where the ratio λ/s is finite.

We first review some fundamental dynamical proper-
ties of the NS system [5, 14–16], which will be compared
with those of other regimes and of the SQG system. In
the limit λ/s → 0, Eq. (2) reduces to the well-known NS
energy balance

d

dt
E(k) = T (k)− 2νk2E(k) + F (k). (4)

Consider an initial injection E0 at wavenumber s, corre-
sponding to an enstrophy Z0 = s2E0. The redistribution
of E0 toward k > s by nonlinear interactions involves
a large increase in the total enstrophy; hence, a direct
energy cascade is prohibited. On the other hand, the
redistribution of virtually all E0 toward k � s involves
a loss of virtually all enstrophy Z0; hence, to make up
for this loss, the remainder of the kinetic energy must
be transferred toward k � s. The spreading of the in-
jected energy from the forcing region into the extremes
in this manner is a basis for the classical dual cascade
theory of 2D NS turbulence. Note that the energy that
gets transferred to k � s enjoys virtually no dissipation,
while the enstrophy that gets transferred to k � s will
be completely dissipated. That gives rise to an impor-
tant feature in this case: the kinetic energy is allowed to
grow unbounded in time, but the enstrophy must remain
bounded. A simple mathematical basis for this fact can
be seen from the evolution of energy and enstrophy:

d

dt
E = −2νZ + ε, (5)

d

dt
Z = −2νP + s2ε, (6)

as obtained by multiplying (2) by k2 and integrating both
the original and resulting equations over all wavenum-
bers, noting from the conservation laws (3) that the non-
linear terms drop out. The quantity P ≡

∫

∞

0 k4E(k) dk
is known as the palinstrophy. Now, if a quasi-steady state
is established, in which the injection ε becomes steady,
Z is required to be bounded from above by ε/2ν. Other-
wise, if Z > ε/2ν, the energy would approach zero in the
limit t → ∞. At sufficiently long times, when E becomes
less than Z/(2s2), we would find

dZ

dt
= −2νP + s2ε

= 2ν

(

s4E − 2s2Z −

∫

∞

0

(k2
− s2)2E(k) dk

)

+ s2ε

≤ −3νs2Z + s2ε < −νs2Z. (7)

This would imply Z → 0 as t → ∞, a clear contradiction.
Hence, Z satisfies Z ≤ ε/2ν. However, similar considera-
tions do not apply to the potential energy regime of the
CHM equation, making it difficult in that case to estab-
lish whether the corresponding direct-cascading quantity
E remains bounded.

In the potential energy regime, (2) reduces to

λ2

k2

d

dt
E(k) = T (k) − 2νk2E(k) + F (k), (8)

for k � λ. The two inviscid quadratic invariants in (8)
are I and E; the dissipation effectively becomes hyper-
viscous (bi-Laplacian), and the turbulence evolves on a
much slower time scale (by a factor s2/λ2). This is ap-
parent from the evolution equations for I and E:

d

dτ
I = −

2ν

s2
Z +

ε

s2
, (9)

d

dτ
E = −

2ν

s2
P + ε, (10)

where τ = (s2/λ2)t is a rescaled time variable. The ar-
guments concerning the turbulent cascade in the NS case
apply to this regime, with E and Z replaced by I and E,
respectively. More precisely, for an initial injection E0 at
wavenumber s (corresponding to I0 = E0/s2) to spread
out in wavenumber space, the conservation of I and E by
nonlinear interactions requires that I = I0 and E = E0

be invariant. Now the redistribution of E0 toward k � s
involves a large increase in I ; hence, an inverse cascade
of E is prohibited. This is analogous to the exclusion of
a direct energy cascade in NS turbulence. On the other
hand, a redistribution of virtually all of E0 toward k � s
involves a loss of virtually all of I0; hence, to make up for
this loss, the remainder of the kinetic energy is required
to be transferred toward k � s. This is analogous to
the dual cascade scenario in NS turbulence, in which the
transfer of virtually all of the kinetic energy to k � s
corresponds to the transfer of the remaining amount to
k � s, due to the conservation of enstrophy. We note,
in passing, that although the inverse cascade carries vir-
tually no kinetic energy toward k = 0, one cannot, in
general, rule out the unboundedness of E in the limit
τ → ∞. This is due to the fact that the dissipation of I
is given in terms of Z not E, so a buildup of E (although
at a vanishing rate) toward k = 0 does not prevent the
steady growth of the potential energy.

We now examine the dynamical behavior of the CHM
system for a finite ratio λ/s. The evolution of the total
energy and enstrophy is governed by

d

dt
(E + λ2I) = −2νZ + ε, (11)

d

dt
(Z + λ2E) = −2νP + s2ε. (12)

Similar to the inverse cascade scenario in NS turbulence,
a growth of the total energy requires 2νZ < ε. Such a
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growth ought to proceed toward low wavenumbers (in-
verse cascade); otherwise, the fluid enstrophy Z would
increase until the energy growth rate ε − 2νZ decreases
to zero (for a steady injection rate ε). Now an inverse
cascade of the total energy involves two unequal parts.
For s < λ, the inverse cascade is predominantly a cas-
cade of potential energy. For s > λ, the inverse cascade
is mainly a cascade of kinetic energy until it arrives at λ.
Upon reaching λ, the growth rate is shared equally be-
tween the potential and kinetic components. A transition
to favor the growth rate of the potential energy occurs
when the cascade proceeds to lower wavenumbers. To
see quantitatively how the kinetic energy growth rate di-
minishes, we assume that a quasi-steady spectrum has
been established down to a wavenumber k0 < λ in an
ongoing inverse cascade of the total energy. Suppose the
spectrum scales as E(k) = ak−γ , for k0 ≤ k < λ. The
growth rate of I and E are, respectively, given by

dI

dt
=

dI

dk0

dk0

dt
= −ak−2−γ

0

dk0

dt
, (13)

dE

dt
=

dE

dk0

dk0

dt
= −ak−γ

0

dk0

dt
. (14)

It follows that dE/dt = (k0/λ)2λ2dI/dt, which dimin-
ishes like k2

0/λ2, as k0/λ → 0, leaving the potential
energy as the only cascading quantity. Equation (13)
can be used to estimate k0. Let λ2dI/dt = cε, where
0 < c < 1, we find k0 ∼ [aλ2/c(1 + γ)εt]1/(1+γ). If,
following [7], we suppose that E(k) continues to build
up on the Kolmogorov spectrum ak−5/3 for k < λ, we
would find k0 ∼ (3aλ2/8cεt)3/8. For comparison we have
k0 ∼ (3a/2cεt)3/2 for the NS case.

For a finite ratio λ/s, one would intuitively expect a
compromise between NS and AM dynamics. The argu-
ments in the previous paragraph suggest that in this in-
termediate regime, a persistent inverse cascade of the to-
tal energy (after the spectrum around λ becomes steady,
for s > λ) involves only the potential energy and carries
virtually no kinetic energy (or enstrophy). Physically, λ
acts as a shield to the kinetic energy with respect to the
inverse cascade process [10]. At the same time, a direct
cascade of the total enstrophy, if realizable, involves only
the fluid enstrophy and carries virtually no kinetic en-
ergy (or potential energy). This dynamical behavior is
accessible to numerical analysis [10].

There remains the question whether the kinetic energy
is a finite dynamical quantity. Although the inverse cas-
cade in the region k < λ is predominantly a cascade of
potential energy, the “leaking” of kinetic energy to ever-
larger scales cannot be ruled out. Nevertheless, if E is
to become unbounded as t → ∞, it must do so at a
vanishing growth rate.

Two special cases of α turbulence, governed by

∂

∂t
(−∆)α/2φ + J(φ, (−∆)α/2φ) = D(−∆)α/2φ + f,

are the Navier–Stokes equations (α = 2, D = ν∆) and
the surface quasi-geostrophic equation (α = 1, D =
−µ(−∆)1/2). The latter system originates from the geo-
physical context describing the motion of a stratified fluid
with small Rossby and Ekman numbers [4, 17, 18]. Note
that the dissipation operator is hypoviscous; this is the
natural physical dissipation mechanism for the SQG sys-
tem. A viscous dissipation operator D ∝ ∆, which would
be equivalent to the molecular viscosity in NS turbulence,
has also been considered in the literature for numerical
purposes [19–21]. The kinetic energy spectrum of this
system is studied in [22], where it is rigorously shown
that E(k) ≤ ck−2 for k < s, where c is a constant. The
inviscid unforced version is known to resemble the 3D
Euler equation in many aspects, particularly the possi-
bility of spontaneous development of singularities [23].
This may be attributable to the fact that both systems
have similar energy budgets (as shown below, energy is
transferred to small scales).

The energy spectrum E(k) evolves according to

d

dt
E(k) = S(k) − 2µkE(k) + F (k), (15)

where the transfer function S(k) satisfies
∫

∞

0

S(k)

k
dk =

∫

∞

0

S(k) dk = 0. (16)

Like the CHM equation in the potential energy regime,
nonlinear transfer in this system conserves the kinetic
energy as the possible direct-cascading quantity. The
inverse-cascading quantity is J . The dissipation of J is
given in terms of E, in analogy to the NS system, where
the dissipation of energy is given in terms of enstrophy.
Therefore, we can invoke the arguments leading to the
boundedness of enstrophy in the NS case to conclude that
the kinetic energy is bounded in the SQG system. To this
end, we consider the evolution of J and E governed by

d

dt
J = −2µE +

ε

s
, (17)

d

dt
E = −2µ

∫

∞

0

kE(k) dk + ε, (18)

where s ≡
∫

K F (k) dk/
∫

K F (k)/k dk ∈ K and a cor-
responding localization hypothesis for the forcing is as-
sumed. Namely, we require 0 < k1

∫

K
F (k)/k dk ≤

ε ≡
∫

K F (k) dk ≤ k2

∫

K F (k)/k dk. Now, if a quasi-
steady state is established, in which the injection ε be-
comes steady, E is required to be bounded from above
by E ≤ ε/(2µs). Otherwise, J would approach zero in
the limit t → ∞, which in turn would entail

dE

dt
= −2µ

∫

∞

0

kE(k) dk + ε

= 2µ

[

s2J − 2sE −

∫

∞

0

[

k1/2
−

s

k1/2

]2

E(k) dk

]

+ ε

≤ −3µsE + ε ≤ −µsE, (19)
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FIG. 1: Inverse cascade of SQG turbulence

for sufficiently large times. This would imply E → 0 as
t → ∞, a clear contradiction. Hence, E is bounded from
above by E ≤ ε/2µs in a quasi-steady state.

The boundedness of E imposes a stiff constraint
on E(k), requiring that the spectrum be shallower
than k−1 for k < s. The dimensional analysis pre-
diction E(k) ∼ k−1 would imply a logarithmic diver-
gence of

∫ s

0
E(k) dk. We attempted to mimic SQG tur-

bulence in an unbounded domain using a doubly peri-
odic dealiased pseudospectral 1365×1365 simulation and
the truncated Fourier-transformed dissipation operator
D(k) = −µk2H(k − s), where H is the Heaviside unit
step function. While this truncation may in principle
break the above constraint and lead to a steeper slope,
one nevertheless obtains the roughly k−1 transient spec-
trum shown in Figure 1. This is considerably shallower
than the NS spectrum k−5/3 and much tighter than the
a priori estimate E(k) ≤ ck−2 obtained in [22].

Now, the dissipation of energy is proportional to
∫

∞

0 kE(k) dk. So, a direct energy cascade requires
that this integral be primarily dominated by the high
wavenumbers, so that E(k) must be at least as shallow
as k−2 for k > s. Otherwise, energy would be dissipated
in the vicinity of the forcing wavenumber s.

For a bounded system in equilibrium, (17) and (18)
imply

∫

∞

k0

(s − k)E(k) dk = 0, where k0 is the lowest
wavenumber, corresponding to the system size. Follow-
ing [13], if E(k) has the form E(k) = ak−γ for k ≤ s
and E(k) = bk−β for s ≤ k ≤ kν , where s/kν ≤ k0/s, we
obtain the constraint γ + β ≥ 3. In the limits s/kν → 0
and k0/s → 0, this constraint becomes γ + β = 3.

In conclusion, CHM turbulence (for a general ratio
λ/s > 0) is characterized by an inverse cascade of the
potential energy, which carries virtually no kinetic en-
ergy, as t → ∞. More precisely, an inverse cascade of ki-
netic energy is excluded in the region k < λ. This makes
the CHM dynamics distinct from its NS counterpart, al-
though before the inverse cascade reaches λ, CHM tur-
bulence may have much in common with NS turbulence.
Similarly, the kinetic energy in the SQG system is prohib-
ited from being transferred to large scales, just like the
enstrophy for the NS system. In particular, the kinetic
energy is the dissipation agent of the inverse-cascading
quantity and is thereby required to be bounded. As a
consequence, the energy spectrum is shallower than k−1

for k < s.
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