Name (Last, First): ________________________________

Student ID: ________________________________

Email: ________________________________@ualberta.ca

• Scrap paper is supplied.

• No notes or books are permitted.

• All electronic equipment, including calculators, is prohibited. Make certain that cell phones are turned off. Check that you have 3 pages.

• This exam consists of 3 questions, for a total of 12 points.

If anything is unclear, please ask!
1. If $S \subset \mathbb{R}^d$ is an elementary set, prove directly from the definition of the Jordan inner and outer measures that $m_{*J}(S)$ and $m^{*J}(S)$ equal the Lebesgue measure $m(S)$.

Since S is one of the elementary sets that we need to consider in the supremum,

$$m_{*J}(S) \doteq \sup_{E \subseteq S} m(E) \geq m(S).$$

Also

$$m^{*J}(S) \doteq \inf_{E \supseteq S} m(E) \leq m(S),$$

so that $m_{*J}(S) \geq m^{*J}(S)$. By monotonicity of the elementary measure, we also see that $m_{*J}(S) \leq m^{*J}(S)$. Hence $m_{*J}(S) = m^{*J}(S) = m(S)$.

2. Let $\{B_k\}_{k=1}^{\infty}$ be a sequence of almost disjoint boxes. Prove that the Lebesgue measure of $\bigcup_{k=1}^{\infty} B_k$ is equal to its Jordan inner measure.

By countable additivity,

$$m(S) = \sum_{k=1}^{\infty} |B_k|.$$

For each $n \in \mathbb{N}$, let $T_n = \bigcup_{k=1}^{n} B_k$. Since $T_n \subseteq S$, we know from the definition of Jordan inner measure that

$$m_{*J}(S) \geq m(T_n).$$

From monotone upward convergence, we then see that

$$m_{*J}(S) \geq \lim_{n \to \infty} m(T_n) = m\left(\bigcup_{n=1}^{\infty} T_n\right) = m(S).$$

But we have also seen that

$$m_{*J}(S) \leq m(S).$$

Hence

$$m_{*J}(S) = m(S).$$

3. Families \mathcal{F}_1 and \mathcal{F}_2 generate the same σ-algebra if $\langle \mathcal{F}_1 \rangle \supset \mathcal{F}_2$ and $\langle \mathcal{F}_2 \rangle \supset \mathcal{F}_1$. Show that the collection of subsets of \mathbb{R}^d that are:

- open;
- closed;
- compact;
- open balls;
- boxes;
all generate the Borel σ-algebra on \mathbb{R}^d. Use the notation \langleopen$, \rangle$, \langleclosed\rangle, etc.

- By definition, the Borel σ-algebra is the σ-algebra generated by the collection of open sets.
- Since a σ-algebra is closed under complements, \langleopen\rangle contains \langleclosed\rangle and \langleclosed\rangle contains \langleopen\rangle.
- Since every compact set in \mathbb{R}^d is closed, \langleclosed\rangle contains \langlecompact\rangle.
- Every open set can be written as a countable union of open balls, so \langleopen balls\rangle contains \langleopen\rangle. Since open balls are open, \langleopen\rangle contains \langleopen balls\rangle.
- Since every open set can be written as a countable union of almost disjoint closed cubes, \langleboxes\rangle contains \langleopen\rangle. Since closed cubes are compact, \langlecompact\rangle contains \langleopen\rangle and hence also \langleboxes\rangle (finite intersections of open and closed sets).
- Every elementary set is a finite union of boxes, so \langleboxes\rangle contains \langleelementary\rangle. Since boxes are elementary, \langleelementary\rangle contains \langleboxes\rangle.

There are many other possible routes to showing these equivalent representations of the Borel σ-algebra. For example, one can show directly that \langlecompact\rangle contains \langleclosed\rangle since every closed set F can written as a countable union of compact sets $F \cap B_k[0]$.