MATH 417 Section Q1

Midterm Exam

Dr. J. Bowman
28 February 2020
10:00–10:50

Name (Last, First): ____________________________

Student ID: ____________________________

Email: ____________________________@ualberta.ca

• Scrap paper is supplied.

• No notes or books are permitted.

• All electronic equipment, including calculators, is prohibited. Make certain that cell phones are turned off. Check that you have 3 pages.

• This exam consists of 3 questions, for a total of 14 points.

If anything is unclear, please ask!
1. For each \(n \in \mathbb{N} \), consider the unsigned functions \(f_n : \mathbb{R} \to [0, \infty) \) defined by

\[
 f_n(x) = \begin{cases}
 1 - n|x| & \text{if } |x| \leq \frac{1}{n}, \\
 0 & \text{otherwise}.
 \end{cases}
\]

(a) Is each \(f_n \) a simple function? Circle the correct answer: Yes / No.

Each \(f_n \) takes on more than a finite number of values.

(b) Determine the pointwise limit \(f(x) = \lim_{n \to \infty} f_n(x) \).

\[
 f(x) = \begin{cases}
 1 & \text{if } x = 0, \\
 0 & \text{otherwise}.
 \end{cases}
\]

(c) Is \(f \) continuous? Circle the correct answer: Yes / No.

The function \(f \) takes on values of both 0 and 1 in any neighbourhood of \(x = 0 \).

(d) Is \(f \) measurable? Circle the correct answer: Yes / No.

In fact \(f \) is a simple function.

(e) Is \(f \) a simple function? Circle the correct answer: Yes / No.

The sets \(\{0\} \) and \(\mathbb{R} \setminus \{0\} \) are both Lebesgue measurable.

(f) Evaluate \(\int_{\mathbb{R}} f \).

\[
 \int_{\mathbb{R}} f = 1 \cdot m(\{0\}) + 0 \cdot m(\mathbb{R} \setminus \{0\}) = 1 \cdot 0 + 0 \cdot \infty = 0.
\]

2. Let \(S \) be a subset of \(\mathbb{R}^d \) with finite outer Lebesgue measure \(m^*(S) \).

(a) For each \(j \in \mathbb{N} \), show that there exists a Lebesgue measurable set \(S_j \supset S \) such that \(m(S_j) < m^*(S) + 1/j \).

By the definition of the Lebesgue outer measure, for each \(j \in \mathbb{N} \), the set \(S \) is contained in a countable union \(S_j = \bigcup_{k=1}^{\infty} B_{k,j} \) of boxes \(B_{k,j} \) such that

\[
 \sum_{k=1}^{\infty} |B_{k,j}| < m^*(S) + \frac{1}{j}.
\]

(b) Use your sets \(S_j \) to construct Lebesgue measurable sets \(T_n \supset S \) for each \(n \in \mathbb{N} \) such that \(T_{n+1} \subset T_n \subset S_n \).

The sets \(T_n = \bigcap_{j=1}^{n} S_j \) contains \(S \) and satisfies \(T_{n+1} \subset T_n \subset S_n \).
(c) Show that S is contained in a Lebesgue measurable set T, with $m(T) = m^*(S)$.

From monotonicity, we see that

$$m^*(S) \leq m(T_n) \leq m(S_n) < m^*(S) + \frac{1}{n}.$$

Let $T = \bigcap_{n=1}^{\infty} T_n$. Since $m(T_1) < m^*(S) + 1 < \infty$, we know from downward monotone convergence that

$$m^*(S) \leq m(T) = \lim_{n \to \infty} m(T_n) \leq m^*(S).$$

Thus T is a Lebesgue measurable set with $m(T) = m^*(S)$.

Alternative solution: Since $S \subset T = \bigcap_{n=1}^{\infty} T_n \subset T_j \subset S_j$ for every $j \in \mathbb{N}$ we know from monotonicity that $m^*(S) \leq m(T) \leq m^*(S_j) < m^*(S) + 1/j$ for every $j \in \mathbb{N}$. On taking the limit $j \to \infty$, we find $m(T) = m^*(S)$.

(d) Show that every arbitrary subset A of \mathbb{R}^d is contained in a Lebesgue measurable set T with measure $m(T) = m^*(A)$.

The case were $m^*(A)$ is finite is proven in (c). When $m^*(A) = \infty$, consider $T = \mathbb{R}^d$.

3. Suppose that $S \subset \mathbb{R}^d$ is a Lebesgue null set and let $T \subset S$. Prove that T is Lebesgue measurable and determine $m(T)$.

We are given that $m(S) = 0$. Given $\epsilon > 0$, there exists an open set $U \supset S \supset T$ such that

$$m^*(U \setminus S) < \epsilon.$$

Since $U \setminus T \subset (U \setminus S) \cup (S \setminus T)$, we see from subadditivity and monotonicity that

$$m^*(U \setminus T) \leq m^*(U \setminus S) \cup m^*(S \setminus T) < \epsilon + m(S) < \epsilon.$$

Thus T, is also Lebesgue measurable. It follows from monotonicity that T has Lebesgue measure zero; that is, it also a Lebesgue null set.

Alternative solution: If S is a null set, we know from outer regularity that

$$0 \leq m^*(T) = \inf_{U \supseteq T, U \text{ open}} m^*(U) \leq \inf_{U \supseteq S \supseteq T, U \text{ open}} m^*(U) = m^*(S) = 0$$

and we have seen that null sets are Lebesgue measurable, so $m(T) = m^*(T) = 0$.

Alternative solution: From monotonicity we know that $0 \leq m^*(T) \leq m(S) = 0$. Hence T is also a null set. We have seen that null sets are Lebesgue measurable, so $m(T) = m^*(T) = 0$.
