Contents

1 Measure theory 4
 1.A The problem of measure .. 4
 1.B Elementary measure ... 10
 1.C Jordan measure ... 13
 1.D Lebesgue measure ... 15
 1.E The Lebesgue integral 29
 1.F Abstract Measure Spaces 43
 1.G Modes of convergence 60
 1.H Differentiation theorems 62

Bibliography 66

Index 67
Chapter 1

Measure theory

1.A The problem of measure

The measure $m(E)$ of a solid body E is a fundamental concept in Euclidean geometry. In one, two, and three dimensions, we refer to this measure as the length, area, or volume of E respectively.

In classical geometry, the measure of a body is typically determined by partitioning the body into components that can be translated or rotated and then reassembled into a simpler body with the same measure. Alternatively, lower and upper bounds on the measure of a body can be obtained by computing the measure of some inscribed or circumscribed body. Such arguments were justified by viewing the measure of a macroscopic body as the sum of the measures of its microscopic components.

With the advent of analytic geometry, Euclidean geometry was reinterpreted as the study of Cartesian products \mathbb{R}^d of the real line \mathbb{R}. Within this analytical framework, it is no longer intuitively obvious how to define the measure $m(E)$ of a general subset E of \mathbb{R}^d. This is known as the problem of measure.

Remark: If one tries to formalize the physical notion of the measure of a body as the sum of the measure of its component “atoms”, one runs into an immediate problem: a typical solid body consists of an uncountably infinite number of points, each of which has zero measure, and the product $\infty \cdot 0$ is indeterminate. Moreover, two bodies with the same number of points need not have the same measure: in one dimension, the intervals $[0, 1]$ and $[0, 2]$ have the same cardinality (using the bijection $x \mapsto 2x$) but different lengths. One can disassemble $[0, 1]$ into an uncountably infinite number of points and reassemble them to form a set of twice the length! Pathological problems of this nature can even occur when one restricts the assembly to a finite number of components. In three or more dimensions, the famous Banach–Tarski paradox illustrates that the unit ball B can be disassembled...
into five pieces that can be translated, rotated, and then reassembled to form two disjoint copies of B!

Remark: The construction of the pathological pieces in the Banach–Tarski paradox requires the controversial **axiom of choice**. While trivial for finite sets (using induction), the axiom of choice for infinite (even countably infinite) sets does not follow from the other axioms of set theory and must be explicitly added to our fundamental list of axioms:

Axiom 1.1 (Axiom of choice): Let $\{ E_\alpha : \alpha \in A \}$ be a family of nonempty sets E_α, indexed by elements of A. Then one can construct a set $\{ x_\alpha : \alpha \in A \}$ of elements x_α chosen from E_α.

- When $A = \mathbb{N}$, the axiom of choice states that it is possible to select a sequence x_1, x_2, \ldots of elements from a sequence of nonempty sets E_1, E_2, \ldots

Two important definitions of measure are the **Jordan measure**, which underlies the **Riemann integral**. This definition suffices for many branches of mathematics, for example, for defining the area under the graph of a continuous function. However, the notion of Jordan measure turns out to be inadequate for certain sets that arise as limits of other sets. The notion of **Lebesgue measure** and the associated **Lebesgue integral** were developed by the French mathematician Henri Lebesgue in 1902 to fill this gap.

Definition: The **indicator function** 1_S for a set S is

$$1_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}.$$

Remark: To see why we might need a new type of integral, let $\{ q_1, q_2, \ldots \}$ be an enumeration of $\mathbb{Q} \cap [0, 1]$ and for $n \in \mathbb{N}$ define $f_n = 1_{q_1, q_2, \ldots, q_n}$. Notice that the sequence of functions $\{ f_n \}$ converges pointwise on $[0, 1]$ to the **Dirichlet function** $1_{\mathbb{Q} \cap [0, 1]}$. However, although the functions f_1, f_2, \ldots are Riemann integrable on $[0, 1]$, with $\int_0^1 f_n = 0$, their pointwise limit $1_{\mathbb{Q} \cap [0, 1]}$ is not, since every nondegenerate interval contains both rational and irrational numbers. Although the interchange of limits and Riemann integration would be guaranteed by uniform convergence, the convergence of f_n is not uniform on $[0, 1]$.

Remark: Similarly, given

$$f(x) = \int_a^b F(x, t) \, dt,$$

the statement

$$f'(x) = \int_a^b \frac{\partial F(x, t)}{\partial x} \, dt$$

does not hold in general (although it does if $\partial F(x, t)/\partial x$ is continuous in both x and t).
Q. Is it possible to find a new type of integral that generalizes the Riemann integral (so that every Riemann integral is still integrable in the new sense, with the same value) but for which limit processes (limits and integrals, derivatives and integrals) can always be interchanged?

A. No, the following example shows that some restrictions will still be required:

\[f_n(x) = \begin{cases}
 n^2x, & \text{if } x \in [0, \frac{1}{n}] \\
 n^2\left(\frac{2}{n} - x\right), & \text{if } x \in \left(\frac{1}{n}, \frac{2}{n}\right] \\
 0 & \text{otherwise.}
\end{cases} \]

We see that \(\lim_{n \to \infty} f_n(x) = 0 \) for \(x \in [0, 1] \) but

\[
\int_0^1 \lim_{n \to \infty} f_n = 0 \neq 1 = \lim_{n \to \infty} \int_0^1 f_n.
\]

Nevertheless, the class of functions for which such interchange of limit process is valid will be much larger with the Lebesgue integral we are about to develop.

Remark: To get an idea of the difference between the Riemann and Lebesgue integrals, we can think of the Riemann integral as “a zebra with vertical stripes.” For example, we can approximate the Riemann integral of a continuous function by the upper sum

\[
\int_a^b f \approx \sum_{k=1}^n f(\xi_k) m(I_k),
\]

obtained by partitioning \([a, b]\) into subintervals \(I_k = [x_{k-1}, x_k] \) for \(k = 1, \ldots, n \), and finding points \(\xi_k \in I_k \) at which \(f \) achieves its maximum on \(I_k \), as illustrated below:
In contrast, one can think of the Lebesgue integral as “a zebra with horizontal stripes,” in the sense that one first partitions the y axis into intervals $[y_{k-1}, y_k]$ and then computes the preimages

$$J_k = \{ x \in [a, b] : f(x) \in [y_{k-1}, y_k] \}.$$

For the Lebesgue approach, the integral is then approximated as

$$\int_a^b f \approx \sum_{k=1}^n y_k m(J_k),$$

as shown in the following diagram

Q. In the above example, we notice that J_2 and J_3 are not intervals. What is the “length” of a general subset of \mathbb{R} that is not an interval?

- For example, what is the “length” of the rational numbers within the unit interval $[0, 1]$. This is equivalent to determining the integral

$$\int_0^1 1_{\mathbb{Q}},$$
which, as we have already discussed, is not Riemann integrable. However we will soon see that the Lebesgue integral of \(1_{\mathbb{Q}}\) does exist and evaluates to 0, as one might expect from Cantor’s diagonalization argument (there are vastly more irrationals than rationals within the unit interval). In fact, the Lebesgue measure will be constructed so that the measure of any countable set is zero, precisely so that one can then integrate functions like \(1_{\mathbb{Q}}\) that have only a countable number of discontinuities (if the subsets \(J_k\) that contain the discontinuities have measure zero, they will not contribute to the integral).

Remark: To attempt to answer the above question, we need to make the notion of “length”, or in general, measure, more precise.

Definition: Let \(S\) be a set. We define the \textit{power set} \(\mathcal{P}(S)\) as the set of all subsets of \(S\):

\[
\mathcal{P}(S) = \{s : s \subset S\}.
\]

- \(\mathcal{P}(\emptyset) = \{\emptyset\}\).
- \(\mathcal{P}(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\).

Problem 1.1: If \(S\) is a finite set of \(n\) elements, use induction to show that the \(\mathcal{P}(S)\) has \(2^n\) elements.

Definition: We define the \textit{non-negative extended real numbers} \([0, \infty]\), with the convention that \(\infty \cdot 0 = 0 \cdot \infty = 0\).

If we wish to generalize our notion of measure from classical geometry to arbitrary subsets of \(\mathbb{R}^d\), it is reasonable to seek a function \(m(\mathcal{P}(\mathbb{R}^d)) \mapsto [0, \infty]\) that satisfies the following properties:

1. \(m(\emptyset) = 0\); \textit{nullity}

2. \(m([a_1, b_1] \times \ldots \times [a_d, b_d]) = \prod_{k=1}^{d} (b_k - a_k)\); \textit{measure of a box}

3. \(m(S+x) = m(S) \quad \forall x \in \mathbb{R}^d, S \subset \mathbb{R}^d\); \textit{translational invariance}

4. \(m\left(\bigcup_{k=1}^{\infty} S_k\right) = \sum_{k=1}^{\infty} m(S_k)\) for disjoint subsets \(S_k\) of \(\mathbb{R}^d\). \textit{countable disjoint additivity}
Remark: The above properties imply the *monotonicity* property

\[S \subset T \Rightarrow m(S) \leq m(T). \]

To see this set \(S_1 = S, S_2 = T \setminus S \), and \(S_k = \emptyset \) for \(k \geq 3 \). Then

\[
m(S) \leq m(S) + m(T \setminus S) = \sum_{k=1}^{\infty} m(S_k) = m \left(\bigcup_{k=1}^{\infty} S_k \right) = m(T).
\]

Remark: Unfortunately, the following counterexample shows that even in one dimension \((d = 1)\), no such measure \(m \) exists.

- Define an equivalence relation \(\sim \) on \([0, 1]\):

\[x \sim y \iff x - y \in \mathbb{Q}. \]

For \(x \in [0, 1] \), let \([x] = \{ a \in [0, 1] : a \sim x \} \).

Claim: If \([x] \neq [y] \), then \([x] \cap [y] = \emptyset \).

Proof: Given \(a \in [x] \) and \(b \in [x] \cap [y] \), we see that \(a \sim b \) and also \(b \sim y \), which implies that \(a \in [y] \). Thus \([x] \subset [y] \). Similarly, \([y] \subset [x] \). \(\square\)

Construct a set \(S \) such that for each \(x \in [0, 1] \), \(S \cap [x] \) consists of precisely one element (this requires the axiom of choice).

Claim:

\[[0, 1] \subset \bigcup_{q \in \mathbb{Q} \cap [-1, 1]} q + S \subset [-1, 2]. \]

Proof: The second inclusion is clear. To see the first, let \(x \in [0, 1] \). Then there exists \(y \in S \) \(\exists y \in [x] \) so that \(q = x - y \in \mathbb{Q} \cap [-1, 1] \). Hence \(x \in q + S \). \(\square\)

Let \(q_1, q_2, \ldots \) be an enumeration of \(\mathbb{Q} \cap [-1, 1] \) such that \(q_n \neq q_m \) for \(n \neq m \).

Claim: \((q_n + S) \cap (q_m + S) = \emptyset \) for \(n \neq m \).

Proof: Let \(x \in (q_n + S) \cap (q_m + S) \). Then \(\exists s_n, s_m \in S \ \exists x = q_n + s_n = q_m + s_m \).

Hence \([s_n] = [x] = [s_m] \), which, by the choice of \(S \), implies that \(s_n = s_m \). Thus \(q_n = q_m \) and hence \(n = m \). If \(m(S) = 0 \), then

\[
1 = m([0, 1]) \leq m \left(\bigcup_{k=1}^{\infty} q_k + S \right) = \sum_{k=1}^{\infty} m(q_k + S) = \sum_{k=1}^{\infty} m(S) = 0.\#
\]

If \(m(S) > 0 \), then

\[
\infty = \sum_{k=1}^{\infty} m(S) = \sum_{k=1}^{\infty} m(q_k + S) = m \left(\bigcup_{k=1}^{\infty} q_k + S \right) \leq m([-1, 2]) = 3.\#
\]

We thus see that it is impossible to find a measure \(m \) for arbitrary subsets of \(\mathbb{R} \) that satisfies the given four properties.
CHAPTER 1. MEASURE THEORY

Remark: Since pathological sets like those encountered in the above example and in the Banach–Tarski paradox rarely occur in practical applications of mathematics, the standard approach to the problem of measure is to abandon the goal of assigning a measure to every subset of \mathbb{R}^d, focusing instead on a certain subclass of “non-pathological” subsets of \mathbb{R}^d, known as measurable sets.

1.B Elementary measure

Before we introduce Lebesgue measure and the associated Lebesgue integral, we will first review the more elementary concept of Jordan measure. To formally define Jordan measure, it is convenient to first introduce the concept of elementary measure, which allows one to assign the notion of measure to elementary sets:

Definition: An interval I is a subset of \mathbb{R} of the form $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$, $(a, b] = \{x \in \mathbb{R} : a < x \leq b\}$, $[a, b) = \{x \in \mathbb{R} : a \leq x < b\}$, $(a, b) = \{x \in \mathbb{R} : a < x < b\}$, where $a \leq b$ are real numbers.

Definition: The length of an interval I is $|I| = b - a$. (We use the symbol \doteq to emphasize a definition, although the notation $:= $ is more common.)

Definition: A box in \mathbb{R}^d is a Cartesian product $I_1 \times \ldots \times I_d$ of intervals $I_1 \ldots I_d$.

Definition: The measure of a box B is $|B| = |I_1| \times \ldots \times |I_d|$.

Definition: An elementary set is a finite union of boxes.

Problem 1.2 (Boolean closure): If $E, F \subset \mathbb{R}^d$ are elementary sets, show that the union $E \cup F$, the intersection $E \cap F$, the set theoretic difference $E \setminus F \doteq \{x \in E : x \notin F\}$, and the symmetric difference $E \triangle F \doteq (E \setminus F) \cup (F \setminus E)$ are also elementary. If $x \in \mathbb{R}^d$, show that the translate $E + x = \{y + x : y \in E\}$ is also an elementary set.

Lemma 1.1 (Measure of an elementary set): Let $E \subset \mathbb{R}^d$ be an elementary set.

(i) E can be expressed as the finite union of disjoint boxes.

(ii) If E is partitioned as a finite union $B_1 \cup \ldots \cup B_n$ of disjoint boxes, then the quantity $m(E) \doteq |B_1| + \ldots + |B_n|$ is independent of the partition. In other words, given any other partition $B'_1 \cup \ldots \cup B'_{n'}$ of E, one has $|B'_1| + \ldots + |B'_{n'}| = |B_1| + \ldots + |B_n|$.

Proof:
1.B. ELEMENTARY MEASURE

(i) First consider the one-dimensional case $d = 1$. We can sort the $2n$ endpoints of any finite collection of intervals I_1, \ldots, I_n in ascending order, discarding repetitions. Denote the open intervals between these endpoints, together with the endpoints themselves (treated as degenerate intervals), by J_1, \ldots, J_n'. Each interval I_i can be expressed as a union of a finite subcollection of the disjoint intervals J_1, \ldots, J_n'. The union $\bigcup_{i=1}^n I_i$ can thus be expressed as a finite union of disjoint intervals. For $d > 1$, express $E = \bigcup_{i=1}^n B_i$ where $B_i = I_{i,1} \times \ldots \times I_{i,d}$. For each $j = 1, \ldots, d$ we can decompose $I_{1,j}, \ldots, I_{n,j}$ as the union of disjoint intervals. On taking the Cartesian product over $j = 1, \ldots, d$ we can then express E as a finite union of disjoint boxes.

(ii) Let $\#A$ denote the cardinality of a finite set A and define $1/\mathbb{N} \mathbb{Z} = \{ n/\mathbb{N} : n \in \mathbb{Z} \}$. The length $|I|$ of any interval I can then be computed as

$$|I| = \lim_{N \to \infty} \frac{1}{N} \# \left(I \cap \frac{1}{N} \mathbb{Z} \right).$$

On taking the Cartesian product, we find that the measure of a box B can be expressed as

$$|B| = \lim_{N \to \infty} \frac{1}{N^d} \# \left(B \cap \left(\frac{1}{N} \mathbb{Z} \right)^d \right).$$

The measure of an elementary set E can thus be expressed as

$$m(E) = \lim_{N \to \infty} \frac{1}{N^d} \# \left(E \cap \left(\frac{1}{N} \mathbb{Z} \right)^d \right),$$

independent of its decomposition into disjoint boxes.

Definition: We refer to $m(E)$ in Lemma 1.1 as the elementary measure of E.

• The elementary measure of $[1, 2] \cup (3, 5)$ is 3.

Remark: The elementary measure $m(E)$ of an elementary set E is non-negative and satisfies the following properties:

1. $m(\emptyset) = 0$; \textit{nullity}

2. $m([a_1, b_1] \times \ldots \times [a_d, b_d]) = \prod_{k=1}^d (b_k - a_k)$ \textit{measure of a box}

3. $m(E + x) = m(E) \ \forall x \in \mathbb{R}^d$; \textit{translational invariance}

4. $m \left(\bigcup_{k=1}^n E_k \right) = \sum_{k=1}^n m(E_k)$ for disjoint elementary sets E_k. \textit{finite disjoint additivity}
Remark: As previously shown, these properties imply the monotonicity property

\[E \subset F \Rightarrow m(E) \leq m(F) \]

for nested elementary sets \(E \) and \(F \).

Problem 1.3: Show that the above properties imply the finite subadditivity property

\[m(E \cup F) \leq m(E) + m(F), \]

for arbitrary (not necessarily disjoint) elementary sets \(E \) and \(F \). By induction, deduce that

\[m\left(\bigcup_{k=1}^{n} E_k \right) \leq \sum_{k=1}^{n} m(E_k) \]

for arbitrary elementary sets \(E_k \).

Problem 1.4 (Uniqueness of elementary measure): Let \(d = 1 \). Let \(m' : \mathcal{E}(\mathbb{R}^d) \mapsto [0, \infty) \) be a map from the collection \(\mathcal{E}(\mathbb{R}^d) \) of elementary subsets of \(\mathbb{R}^d \) to \([0, \infty) \) that satisfies non-negativity, finite disjoint additivity, and translational invariance. Prove that there exists a constant \(c \in \mathbb{R} \) such that \(m'(E) = cm(E) \) for all elementary sets \(E \). Moreover, if we enforce the normalization \(m'([0,1]^d) = 1 \), show that \(m' = m \). Hint: Set \(c = m'([0,1]^d) \), and then compute \(m'(\cdot[0,1/n]^d) \) for any positive integer \(n \).

Problem 1.5: Let \(d_1, d_2 \geq 1 \), and \(E_1 \subset \mathbb{R}^{d_1}, E_2 \subset \mathbb{R}^{d_2} \) be elementary sets. Show that \(E_1 \times E_2 \subset \mathbb{R}^{d_1+d_2} \) is elementary, with measure \(m^{d_1+d_2}(d_1 + d_2)(E_1 \times E_2) = m^{d_1}(E_1)m^{d_2}(E_2) \).
1.C Jordan measure

Definition: Let $S \subset \mathbb{R}^d$ be a bounded set. The *Jordan inner measure* $m_{\ast J}(S)$ of S is

$$m_{\ast J}(S) = \sup_{E \subset S} m(E).$$

The *Jordan outer measure* $m^{\ast J}(S)$ of S is

$$m^{\ast J}(S) = \inf_{E \supseteq S} m(E).$$

Definition: If $m_{\ast J}(S) = m^{\ast J}(S)$, we say that S is Jordan measurable, and call $m(S) = m_{\ast J}(S) = m^{\ast J}(S)$ the *Jordan measure* of S. To emphasize the dimension d, we sometimes write $m(S)$ as $m^d(S)$.

Remark: The finite disjoint additivity and subadditivity properties of elementary measure allow us to rewrite the Jordan outer measure $m^{\ast J}(S)$ of S as

$$m^{\ast J}(S) = \inf_{\bigcup_{k=1}^n B_k \supseteq S} \sum_{k=1}^n |B_k|.$$

Remark: Unbounded sets are not Jordan measurable (we say they have *infinite Jordan inner and outer measure*).

Remark: The following lemma shows that Jordan measurable sets are those sets that are “almost elementary” with respect to Jordan outer measure.

Lemma 1.2: Let $S \subset \mathbb{R}^d$ be bounded. The following are equivalent:

(i) S is Jordan measurable

(ii) For every $\epsilon > 0$, there exist elementary sets E and F such that $E \subset S \subset F$ and $m(F \setminus E) < \epsilon$.

(iii) For every $\epsilon > 0$, there exists an elementary set E such that $m^{\ast J}(E \triangle S) < \epsilon$.

Remark: Many common geometrical objects are Jordan measurable:

- A compact *convex polytope* in \mathbb{R}^d formed by intersecting finitely many closed half spaces $\{x \in \mathbb{R}^d : \mathbf{a} \cdot x \geq b\}$, where $\mathbf{a} \in \mathbb{R}^d$ and $b \in \mathbb{R}$;
• The region under the graph of a continuous non-negative function;

• The open Euclidean ball $B_r(c) = \{ x \in \mathbb{R}^d : |x - c| < r \}$;

• The closed Euclidean ball $\bar{B}_r(c)$;

• The linear transformation of a Jordan measurable set.

Remark: Jordan measure inherits many of the properties of elementary measure.

Lemma 1.3: Let $S, T \subset \mathbb{R}^d$ be Jordan measurable sets. Then

(i) $S \cup T$, $S \cap T$, $S \setminus T$, and $S \triangle T$ are Jordan measurable. Boolean closure

(ii) $m(S) \geq 0$; non-negativity

(iii) If S and T are disjoint then $m(S \cup T) = m(S) + m(T)$; finite disjoint additivity

(iv) If $S \subset T$, then $m(S) \leq m(T)$; monotonicity

(v) $m(S \cup T) \leq m(S) + m(T)$; finite subadditivity

(vi) For any $x \in \mathbb{R}^d$, $m(S + x) \exists = m(S)$. translational invariance

Problem 1.6:

(a) Show that a set S and its topological closure \bar{S} have the same Jordan outer measure.

(b) A set S and its interior S° have the same Jordan outer measure.

(c) Show that a set S is Jordan measurable iff its topological boundary ∂S has Jordan outer measure zero. Use this result to prove that $\mathbb{Q} \cap [0, 1]$ is not measurable.
1.D Lebesgue measure

Definition: Let $S \subset \mathbb{R}^d$. The Lebesgue outer measure $m^*(S)$ of S is

$$m^*(S) = \inf_{\bigcup_{k=1}^{\infty} B_k \supseteq S} \sum_{k=1}^{\infty} |B_k|.$$

Remark: The Lebesgue outer measure of a set is the infimal “cost” required to cover it by a countable union of boxes.

Remark: Since we can always convert a finite union of boxes to an infinite union by adding an infinite number of empty boxes, we see that $m^*(S) \leq m^J(S)$.

Remark: Observe that the Lebesgue outer measure can now be defined for unbounded sets.

- Let $S = \{x_0, x_1, \ldots\} \subset \mathbb{R}^d$ be a countable set. The Lebesgue outer measure of S is easily seen to be zero: one simply covers S by the degenerate boxes $\{x_0\}, \{x_1\}, \ldots$, each having measure zero. Alternatively given $\epsilon > 0$, one can cover each x_k by a hypercube of sidelength $\epsilon/2^k$, leading to a total cost $\sum_{k=0}^{\infty} (\epsilon/2^k)^d = 2^d \epsilon^d$; on taking the infimum, the Lebesgue outer measure of S is then seen to be zero. In contrast, the Jordan outer measure of a countable set can be large: $m^J(Q \cap [0, R]) = R$ and $m^J(Q) = \infty$.

Definition: Given a sequence $\{x_k\}_{k=1}^{\infty}$ of non-negative extended real numbers, we define

$$\sum_{k=1}^{\infty} x_k = \sup_{F \text{ finite}} \sum_{n \in F} x_n,$$

which may be finite or infinite.

Definition: Given any collection $\{x_a\}_{a \in A}$ of non-negative extended real numbers indexed by an arbitrary set A, we define

$$\sum_{a \in A} x_a = \sup_{F \text{ finite}} \sum_{a \in F} x_a.$$
Remark: One can relabel the collection in an arbitrary manner without affecting the sum. In particular:

Theorem 1.1 (Tonelli’s theorem for series): Let \(\{x_{n,k}\}_{n,k \in \mathbb{N}} \) be a doubly infinite sequence of extended non-negative real numbers. Then

\[
\sum_{(n,k) \in \mathbb{N}^2} x_{n,k} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} x_{n,k} = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} x_{n,k}.
\]

Remark: Note that this rearrangement does not hold when dealing with signed summands (cf. Riemann rearrangement theorem).

Theorem 1.2 (Properties of Lebesgue outer measure):

(i) \(m^*(\emptyset) = 0 \); nullity

(ii) \(S \subset T \subset \mathbb{R}^d \Rightarrow m^*(S) \leq m^*(T) \). monotonicity

(iii) \(m^* \left(\bigcup_{k=1}^{\infty} S_k \right) \leq \sum_{k=1}^{\infty} m^*(S_k) \), where \(S_k \subset \mathbb{R}^d \).

Proof:

(ii) Given \(\epsilon > 0 \), there exists a union of boxes \(B_k \) such that

\[
\bigcup_{k=1}^{\infty} B_k \supset T \supset S \quad \text{and} \quad \sum_{k=1}^{\infty} |B_k| < m^*(T) + \epsilon.
\]

Thus

\[
m^*(S) \leq \sum_{k=1}^{\infty} |B_k| < m^*(T) + \epsilon.
\]

Since this holds for all \(\epsilon > 0 \), the only possibility is that \(m^*(S) \leq m^*(T) \).

(iii) Given \(\epsilon > 0 \), for each \(k \in \mathbb{N} \), there exists a countable union \(\bigcup_{n=1}^{\infty} B_{k,n} \) of boxes \(B_{k,n} \) containing \(S_k \) such that

\[
\sum_{n=1}^{\infty} |B_{k,n}| < m^*(S_k) + \frac{\epsilon}{2^k}.
\]

Since

\[
\bigcup_{k=1}^{\infty} S_k \subset \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} B_{k,n},
\]
we see that
\[
m^\ast\left(\bigcup_{k=1}^\infty S_k\right) \leq \sum_{k=1}^\infty \sum_{n=1}^\infty |B_{k,n}| < \sum_{k=1}^\infty \left(m^\ast(S_k) + \frac{\epsilon}{2^k} \right) = \sum_{k=1}^\infty m^\ast(S_k) + \sum_{k=1}^\infty \frac{\epsilon}{2^k} = \sum_{k=1}^\infty m^\ast(S_k) + \epsilon.
\]

Thus \(m^\ast\left(\bigcup_{k=1}^\infty S_k\right) \leq \sum_{k=1}^\infty m^\ast(S_k) \).

Definition: Let \(X \) and \(Y \) be two nonempty subsets of \(\mathbb{R}^d \). The *distance* between \(X \) and \(Y \) is
\[
dist(X,Y) = \inf\{|x-y|; \ x \in X, y \in Y\}.
\]

Definition: The *diameter* of a nonempty set \(S \) is \(\sup\{|x-y|; \ x, y \in S\} \).

Definition: Two sets \(S, T \subset \mathbb{R}^d \) are *separated* if \(\text{dist}(S,T) > 0 \).

Problem 1.7: Prove that compact disjoint sets in \(\mathbb{R}^d \) are separated.

Lemma 1.4 (Finite additivity for separated sets): *Let \(S \) and \(T \) be separated sets. Then \(m^\ast(S \cup T) = m^\ast(S) + m^\ast(T) \).*

Proof: From subadditivity, we know that \(m^\ast(S \cup T) \leq m^\ast(S) + m^\ast(T) \), so it suffices to prove \(m^\ast(S) + m^\ast(T) \leq m^\ast(S \cup T) \). This is trivial if \(S \cup T \) has infinite Lebesgue outer measure. Otherwise \(S \cup T \) has finite Lebesgue outer measure and, by monotonicity, so do \(S \) and \(T \).

Given \(\epsilon > 0 \), without loss of generality we can cover \(S \cup T \) by a countable collection of boxes \(B_1, B_2, \ldots \) with diameter less than \(\text{dist}(S,T) > 0 \) such that \(\sum_{k=1}^\infty |B_k| < m^\ast(S \cup T) + \epsilon \). By construction, each box intersects at most one of \(S \) and \(T \). We can therefore split this collection into two countable subcollections \(B'_1, B'_2, \ldots \) and \(B''_1, B''_2, \ldots \) that cover \(S \) and \(T \), respectively. Then
\[
m^\ast(S) \leq \sum_{k=1}^\infty |B'_k|
\]
and
\[
m^\ast(T) \leq \sum_{k=1}^\infty |B''_k|.
\]

On summing, we find that
\[
m^\ast(S) + m^\ast(T) \leq \sum_{k=1}^\infty |B'_k| + \sum_{k=1}^\infty |B''_k| = \sum_{k=1}^\infty |B_k|.
\]
Thus
\[m^*(S) + m^*(T) < m^*(S \cup T) + \epsilon. \]
We have thus obtained the desired result
\[m^*(S) + m^*(T) \leq m^*(S \cup T). \]

Lemma 1.5 (Outer measure of elementary set): *Let \(E \) be an elementary set. Then the Lebesgue outer measure \(m^*(E) \) and the elementary measure \(m(E) \) are equal.*

Proof: Since \(m^*(E) \leq m^J(E) = m(E) \), we only need to establish that \(m(E) \leq m^*(E) \). We first show this in the case where \(E \) is closed. Given \(\epsilon > 0 \), there exists a countable family \(B_1, B_2, \ldots \) of boxes that cover \(E \) such that
\[\sum_{k=1}^{\infty} |B_k| < m^*(E) + \epsilon. \]

Each box \(B_k \) can be enclosed within an open box \(B'_k \) such that \(|B'_k| < |B_k| + \epsilon/2^k \). We have thus constructed an open cover \(\bigcup_{k=1}^{\infty} B'_k \) of the closed set \(E \), with
\[\sum_{k=1}^{\infty} |B'_k| < \sum_{k=1}^{\infty} \left(|B_k| + \frac{\epsilon}{2^k} \right) = \sum_{k=1}^{\infty} |B_k| + \epsilon < m^*(E) + 2\epsilon. \]

By the Heine-Borel theorem, \(E \) is compact and therefore has a finite subcover \(\bigcup_{k=1}^{n} B'_k \) for some \(n \in \mathbb{N} \). The finite subadditivity of elementary measure then yields
\[m(E) \leq \sum_{k=1}^{n} |B'_k| \leq \sum_{k=1}^{\infty} |B'_k| < m^*(E) + 2\epsilon. \]

Then \(m(E) \leq m^*(E) \) and hence \(m(E) = m^*(E) \) for any closed elementary set \(E \).

If \(E \) is not closed, express \(E \) as a finite union \(\bigcup_{k=1}^{n} B_k \) of disjoint boxes. Given \(\epsilon > 0 \), for every \(k \in 1, \ldots, n \) there is a closed sub-box \(B'_k \) of \(B_k \) such that \(|B_k| - \epsilon/n \leq |B'_k| \). Then
\[m(E) - \epsilon = \sum_{k=1}^{n} (|B_k| - \epsilon/n) \leq \sum_{k=1}^{n} |B'_k| = m \left(\bigcup_{k=1}^{n} B'_k \right) = m^* \left(\bigcup_{k=1}^{n} B'_k \right) \leq m^*(E), \]

using our result for the closed elementary set \(\bigcup_{k=1}^{n} B'_k \subset E \) and the monotonicity of the Lebesgue outer measure. Thus \(m(E) \leq m^*(E) \).

Remark: We have seen that the Lebesgue outer measure of a countable set is zero. Since the elementary measure of \([0, 1]\) is 1, the above lemma then establishes that the Lebesgue outer measure of \([0, 1]\) is also 1. This proves that the real numbers are uncountable.
1.D. LEBESGUE MEASURE

Remark: Since the Lebesgue outer measure \(m^*(E) \) of an elementary set \(E \) is \(m(E) \), we observe from monotonicity that for any \(S \subset \mathbb{R}^d \),

\[
m_{*,J}(S) \doteq \sup_{E \subset S} m(E) = \sup_{E \text{ elementary}} m(E) \leq \sup_{E \subset S} m^*(E) = m^*(S).
\]

Thus

\[
m_{*,J}(S) \leq m^*(S) \leq m^*(S).
\]

Remark: Not every bounded open or compact set is Jordan measurable. For example, enumerate the countable set \(\mathbb{Q} \cap [0, 1] \) as \(q_1, q_2, \ldots \). Given \(\epsilon > 0 \), the Lebesgue outer measure of the open union

\[
U = \bigcup_{k=1}^\infty \left(q_k - \frac{\epsilon}{2^k}, q_k + \frac{\epsilon}{2^k} \right)
\]

is

\[
m^*(U) \leq \sum_{k=1}^\infty \frac{2\epsilon}{2^k} = 2\epsilon.
\]

In contrast, since \([0, 1] \subset \overline{U} \) (\(U \) is dense in \([0, 1]\)), we see from Problem 1.6(a) that

\[
1 = m^*(\mathbb{Q}) \leq m^*(\overline{U}) = m^*(U) \leq 1.
\]

For \(\epsilon = 1/3 \) (say), we see that the Lebesgue and Jordan outer measures of the open set \(U \) disagree. Moreover, from the previous remark, we see that \(m_{*,J}(U) \leq m^*(U) = 0 \), which implies that \(U \) is not Jordan measurable. Likewise, the complement of \(U \) in \([-1, 2]\) is compact but not Jordan measurable.

Definition: Two boxes are *almost disjoint* if their interiors are disjoint.

- \([0, 1]\) and \([1, 2]\) are almost disjoint.

Remark: Since a box has the same elementary measure as its interior, the finite additivity property

\[
m\left(\bigcup_{k=1}^n B_k \right) = \sum_{k=1}^n |B_k|
\]

also holds for almost disjoint boxes \(B_k \).

Lemma 1.6 (Countable unions of almost disjoint boxes): Let \(S \) be a countable union of almost disjoint boxes \(B_1, B_2, \ldots \). Then

\[
m^*(S) = \sum_{k=1}^\infty |B_k|.
\]
Proof: Using countable subadditivity and Lemma 1.5, we find

\[m^*(S) \leq \sum_{k=1}^{\infty} m^*(B_k) = \sum_{k=1}^{\infty} |B_k|. \]

Moreover, for each \(n \in \mathbb{N} \), the elementary set \(\bigcup_{k=1}^{n} B_k \) is contained in \(S \). Using Lemma 1.5 again and monotonicity, we find that

\[\sum_{k=1}^{n} |B_k| = m\left(\bigcup_{k=1}^{n} B_k \right) = m^*\left(\bigcup_{k=1}^{n} B_k \right) \leq m^*(S). \]

On letting \(n \to \infty \), we obtain

\[\sum_{k=1}^{\infty} |B_k| \leq m^*(S), \]

which establishes the desired result.

Remark: We thus see that \(\mathbb{R}^d \) has an infinite Lebesgue outer measure.

Problem 1.8: If a set can be expressed as the countable union of almost disjoint boxes, show that its Lebesgue outer measure is equal to its Jordan inner measure.

Definition: Let \(n \in \mathbb{Z} \). A closed dyadic cube with sidelength \(2^{-n} \) has the form

\[\left[\frac{i_1}{2^n}, \frac{i_1+1}{2^n} \right] \times \cdots \times \left[\frac{i_d}{2^n}, \frac{i_d+1}{2^n} \right] \]

for integers \(i_1, i_2, \ldots, i_d \).

Remark: The set of closed dyadic cubes of a fixed sidelength \(2^{-n} \) are almost disjoint and cover all of \(\mathbb{R}^d \).

Remark: Each closed dyadic cube in \(\mathbb{R}^d \) of sidelength \(2^{-n} \) has \(2^d \) children of sidelength \(2^{-n-1} \).

Definition: Given a collection \(Q \) of closed dyadic cubes, we say that a cube is maximal if it is not contained in any other cubes in \(Q \).

Lemma 1.7: Every open set can be expressed as a countable union of almost disjoint closed cubes.

Proof: Recall that around every point \(x \) of an open set \(S \) there is an open ball entirely contained within \(S \). Since each open ball contains a closed dyadic cube that includes \(x \), an open set is the (countable) union of a collection \(Q \) of dyadic cubes contained within it. Let us restrict \(n \geq 0 \) to enforce a maximum cube sidelength of 1 and let \(Q^* \) denote the collection of cubes that are maximal in \(Q \). Note that every cube in \(Q \) is contained in exactly one maximal cube and that any two such maximal cubes are almost disjoint. We thus see that \(S \) can be expressed as a countable union of (almost disjoint) maximal cubes.
Remark: From Prob 1.8, we thus see that for open sets, the Lebesgue outer measure is equal to the Jordan inner measure and corresponds to the total measure of any countable partitioning of the set into almost disjoint boxes.

Q. Can we express the Lebesgue outer measure of an arbitrary set in terms of open sets?

Lemma 1.8 (Outer regularity): Let $S \subset \mathbb{R}^d$ be an arbitrary set. Then

$$m^*(S) = \inf_{U \supseteq S \atop U \text{ open}} m^*(U).$$

Proof: It follows immediately from monotonicity that

$$m^*(S) \leq \inf_{U \supseteq S \atop U \text{ open}} m^*(U).$$

The other direction

$$\inf_{U \supseteq S \atop U \text{ open}} m^*(U) \leq m^*(S)$$

holds trivially if $m^*(S)$ is infinite. If $m^*(S)$ is finite, given $\epsilon > 0$, there exists a countable collection B_1, B_2, \ldots of boxes that cover S, with

$$\sum_{k=1}^{\infty} |B_k| < m^*(S) + \epsilon.$$

Each box B_k can be enclosed within an open box B'_k such that $|B'_k| < |B_k| + \epsilon/2^k$, with

$$\sum_{k=1}^{\infty} |B'_k| < \sum_{k=1}^{\infty} \left(|B_k| + \frac{\epsilon}{2^k}\right) = \sum_{k=1}^{\infty} |B_k| + \epsilon < m^*(S) + 2\epsilon.$$

From countable subadditivity, we see that

$$m^*\left(\bigcup_{k=1}^{\infty} B'_k\right) \leq \sum_{k=1}^{\infty} |B'_k| < m^*(S) + 2\epsilon,$$

from which we deduce that

$$\inf_{U \supseteq S \atop U \text{ open}} m^*(U) < m^*(S) + 2\epsilon.$$

The desired result then follows.

Remark: Outer regularity motivates the following definition.
Definition: A set \(S \subset \mathbb{R}^d \) is said to be \textit{Lebesgue measurable} if for every \(\epsilon > 0 \), there exists an open set \(U \subset \mathbb{R}^d \) containing \(S \) such that \(m^*(U \setminus S) < \epsilon \).

Definition: If \(S \) is Lebesgue measurable, we refer to \(m(S) = m^*(S) \) as the \textit{Lebesgue measure} of \(S \). To emphasize the dimension \(d \), we sometimes write \(m(S) \) as \(m^d(S) \).

Remark: A Lebesgue measurable set is one that can be contained efficiently within an open set (with respect to Lebesgue measure).

Lemma 1.9 (Lebesgue measurability of compact sets): Every compact set is Lebesgue measurable.

Proof: Let \(S \) be a compact set. Given \(\epsilon > 0 \), Lemma 1.8 there exists an open set \(U \) containing \(S \) such that \(m^*(U) < m^*(S) + \epsilon \). The set \(U \setminus S = U \cap S^c \) is open and so by Lemma 1.7 is the countable union \(\bigcup_{k=1}^{\infty} Q_k \) of almost disjoint closed cubes \(Q_k \). By Lemma 1.6, \(m^*(U \setminus S) = \sum_{k=1}^{\infty} |Q_k| \). The finite union \(\bigcup_{k=1}^{n} Q_k \) for every \(n \in \mathbb{N} \) of closed cubes is itself closed and is disjoint from the compact set \(S \). Since compact disjoint sets in \(\mathbb{R}^d \) are separated, it follows from Lemma 1.4 and monotonicity that

\[m^*(S) + m^* \left(\bigcup_{k=1}^{n} Q_k \right) = m^* \left(S \cup \bigcup_{k=1}^{n} Q_k \right) \leq m^*(U) < m^*(S) + \epsilon. \]

Since for each \(n \in \mathbb{N} \), we have \(\sum_{k=1}^{n} |Q_k| = m^*(\bigcup_{k=1}^{n} Q_k) < \epsilon \), it follows that \(m^*(U \setminus S) = \sum_{k=1}^{\infty} |Q_k| \leq \epsilon \). Hence \(S \) is Lebesgue measurable.

Definition: A \textit{null set} is a set of Lebesgue outer measure zero.

Lemma 1.10 (Measurable Lebesgue sets): The following sets are Lebesgue measurable:

(i) An open set.

(ii) A closed set.

(iii) A null set.

(iv) The empty set.

(v) The complement of a Lebesgue measurable subset of \(\mathbb{R}^d \).

(vi) A countable union of Lebesgue measurable sets.

(vii) A countable intersection of Lebesgue measurable sets.

Proof:
Claims (i), (iii), and (iv) follow directly from the definition of Lebesgue measurability.
(vi) Given $\epsilon > 0$, let S_1, S_2, \ldots be a sequence of Lebesgue measurable sets. For each $k \in \mathbb{N}$, S_k is contained in an open set U_k such that $m^*(U_k \setminus S_k) < \epsilon/2^k$. The Lebesgue measurability of $\bigcup_{k=1}^{\infty} S_k$ follows from the openness of $\bigcup_{k=1}^{\infty} U_k$ and countable subadditivity: $m^*(\bigcup_{k=1}^{\infty} U_k \setminus \bigcup_{k=1}^{\infty} S_k) \leq \sum_{k=1}^{\infty} m^*(U_k \setminus S_k) < \sum_{k=1}^{\infty} \epsilon/2^k = \epsilon$.

(ii) Given a closed set $S \subset \mathbb{R}^d$, we can express it as a countable union of compact sets: $S = \bigcup_{k=1}^{\infty} B_k(0) \cap S$. The result then follows from Lemma 1.9 and (vi).

(v) If S is Lebesgue measurable then for each $n \in \mathbb{N}$ there exists an open set U_n containing S such that $m^*(U_n \setminus S) < 1/n$. Let $F = \bigcup_{n=1}^{\infty} U_n^c$. For each $n \in \mathbb{N}$, we note that $S^c \setminus F \subset S^c \setminus U_n^c$ and hence, using monotonicity, $m^*(S^c \setminus F) \leq m^*(S^c \setminus U_n^c) < 1/n$, noting that $S^c \setminus U_n^c = U_n \setminus S$. Hence $m^*(S^c \setminus F) = 0$, so that $S^c = F \cup (S^c \setminus F)$ is the union of a countably many closed sets U_n^c and a set of Lebesgue outer measure zero. By (ii), (iii), and (vi), S^c is Lebesgue measurable.

(vii) Apply DeMorgan’s laws to (vi), using (v) twice.

Definition: A *Boolean algebra* is an algebraic structure that characterizes both set and logic operations: a subset Y of a set X is associated with a collection of bits indexed by $x \in X$ as 1 or 0 according to whether or not $x \in Y$. A Boolean algebra is thus analogous to the *field of sets*, which is any nonempty collection of subsets of a given set closed under finite union, finite intersection, and complement operations.

Remark: Properties (iv), (v), and (vi) of Lemma 1.10 state that the set of Lebesgue measurable sets is closed under countably many Boolean operations and thus forms a *σ-algebra*, a generalization of a Boolean algebra that requires closure under countable unions.\(^1\)

\(^1\)The σ (the Greek letter corresponding to the initial *s* in the German word “Summe” originally used to denote union) in σ-*algebra* denotes closure under countable union. Likewise, δ-*algebra* is closed under countable intersections (δ is the Greek letter corresponding to the initial *d* in the German word “Durchschnitt” for intersection).
Lemma 1.11 (Characterization of measurability): Let $S \subset \mathbb{R}^d$. The following are equivalent:

(i) S is Lebesgue measurable.

(ii) Given $\epsilon > 0$, there exists an open set U_ϵ containing S with $m^*(U_\epsilon \setminus S) < \epsilon$. (outer open approximation);

(iii) Given $\epsilon > 0$, there exists an open set U_ϵ with $m^*(U_\epsilon \triangle S) < \epsilon$. (almost open);

(iv) Given $\epsilon > 0$, there exists a closed set F_ϵ contained in S with $m^*(S \setminus F_\epsilon) < \epsilon$. (inner closed approximation);

(v) Given $\epsilon > 0$, there exists a closed set F_ϵ with $m^*(F_\epsilon \triangle S) < \epsilon$. (almost closed);

(vi) Given $\epsilon > 0$, there exists a Lebesgue measurable set S_ϵ with $m^*(S_\epsilon \triangle S) < \epsilon$. (almost measurable).

Proof:

(i) \Rightarrow (ii) This is the definition of Lebesgue measurability.

(ii) \Rightarrow (iii) $U_\epsilon \supset S \Rightarrow U_\epsilon \setminus S = U_\epsilon \setminus S$.

(iii) \Rightarrow (vi) This follows from Lemma 1.10.

(i) \Rightarrow (iv) By Lemma 1.10 (v), S^c is Lebesgue measurable: given $\epsilon > 0$, there exists U_ϵ such that $S^c \subset U_\epsilon$, with $m^*(U_\epsilon \setminus S^c) < \epsilon$. Hence $S \supset U_\epsilon^c$, where U_ϵ^c is closed. Since $U_\epsilon \setminus S^c = U_\epsilon \cap S = S \cap U_\epsilon = S \setminus U_\epsilon^c$, we see that $m^*(S \setminus U_\epsilon^c) < \epsilon$.

(iv) \Rightarrow (v) $S \supset F_\epsilon \Rightarrow F_\epsilon \setminus S = S \setminus F_\epsilon$.

(v) \Rightarrow (vi) This follows from Lemma 1.10.

(vi) \Rightarrow (i) First, notice for any sets A, B, and S that $(A \cup B) \triangle S \subset (A \triangle S) \cup B$.

Given $\epsilon > 0$, there exists a measurable set S_ϵ with $m^*(S_\epsilon \triangle S) < \epsilon$. Since S_ϵ is measurable, it can be contained in an open set U_ϵ such that $m^*(U_\epsilon \setminus S_\epsilon) < \epsilon$. Then

$$U_\epsilon \setminus S \subset (S_\epsilon \triangle S) \cup (U_\epsilon \setminus S_\epsilon);$$

monotonicity and subadditivity then lead to

$$m^*(U_\epsilon \setminus S) \leq m^*(S_\epsilon \triangle S) + m^*(U_\epsilon \setminus S_\epsilon) < \epsilon + \epsilon = 2\epsilon.$$

By outer regularity, there exists an open set V_ϵ containing $S \setminus U_\epsilon$ with

$$m^*(V_\epsilon) \leq m^* (S \setminus U_\epsilon) + \epsilon \leq m^*(S \triangle U_\epsilon) + \epsilon < 2\epsilon + \epsilon = 3\epsilon.$$
Finally, we note that the open set $U \cup V$ contains S and that by monotonicity and subadditivity,

$$m^*((U \cup V) \setminus S) = m^*((U \cup V) \Delta S) \leq m^*(U \Delta S) + m^*(V) < 2\epsilon + 3\epsilon = 5\epsilon,$$

as desired.

Remark: We thus see that every measurable set S can be expressed as the union of a closed set $F \subset S$ and a set $S \setminus F$ of arbitrarily small measure. Likewise, there exists a set of arbitrarily small measure whose union with S is open.

Lemma 1.12 (Properties of Lebesgue measure):

(i) $m(\emptyset) = 0$; (nullity);

(ii) If $S_1, S_2, \ldots \subset \mathbb{R}^d$ is a countable sequence of disjoint Lebesgue measurable sets, then $m(\bigcup_{k=1}^{\infty} S_k) = \sum_{k=1}^{\infty} m(S_k)$.

(countable additivity)

Proof:

(i) We note that $m^*(\emptyset \setminus \emptyset) = m^*(\emptyset) = 0$.

(ii) First suppose that all of the sets S_k are compact and let $n \in \mathbb{N}$. Since compact disjoint sets in \mathbb{R}^d are separated, we see using Lemma 1.4 and monotonicity that

$$\sum_{k=1}^{n} m(S_k) = m\left(\bigcup_{k=1}^{n} S_k\right) \leq m\left(\bigcup_{k=1}^{\infty} S_k\right),$$

on replacing m^* with m, in view of Lemma 1.10. As $n \to \infty$, we see that

$$\sum_{k=1}^{\infty} m(S_k) \leq m\left(\bigcup_{k=1}^{\infty} S_k\right).$$

Also, from countable subadditivity, we have

$$m\left(\bigcup_{k=1}^{\infty} S_k\right) \leq \sum_{k=1}^{\infty} m(S_k).$$

The result then follows.

If S_k are bounded but not necessarily compact, we know from Lemma 1.11 that they can each be expressed as the union of a compact set K_k and a set of arbitrarily small measure:

$$m(S_k) < m(K_k) + \frac{\epsilon}{2^k},$$
so that

\[\sum_{k=1}^{\infty} m(S_k) \leq \sum_{k=1}^{\infty} m(K_k) + \epsilon. \]

But from the compact case and monotonicity, we know that

\[\sum_{k=1}^{\infty} m(K_k) = m\left(\bigcup_{k=1}^{\infty} K_k \right) \leq m\left(\bigcup_{k=1}^{\infty} S_k \right), \]

from which we deduce

\[\sum_{k=1}^{\infty} m(S_k) \leq m\left(\bigcup_{k=1}^{\infty} S_k \right) + \epsilon \]

for every \(\epsilon > 0 \). The result then follows from countable subadditivity:

\[m\left(\bigcup_{k=1}^{\infty} S_k \right) \leq \sum_{k=1}^{\infty} m(S_k). \]

Finally, if the sets \(S_k \) are not bounded or closed, we decompose each of them as a countable union of disjoint Lebesgue measurable sets, using the bounded annuli \(A_m = B_m(0) \setminus B_{m-1}(0) \) for \(m \in \mathbb{N} \):

\[S_k = \bigcup_{m=1}^{\infty} S_k \cap A_m. \]

The bounded case then yields

\[m(S_k) = \sum_{m=1}^{\infty} m(S_k \cap A_m). \]

We can similarly decompose \(\bigcup_{k=1}^{\infty} S_k \) as a countable union of the disjoint bounded measurable sets \(S_k \cap A_m \) over \((k, m) \in \mathbb{N} \times \mathbb{N} \) to obtain

\[m\left(\bigcup_{k=1}^{\infty} S_k \right) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} m(S_k \cap A_m) = \sum_{k=1}^{\infty} m(S_k). \]

Problem 1.9 (Monotone convergence theorem for Lebesgue measurable sets):

(i) *(Upward monotone convergence)* Let \(S_1 \subset S_2 \subset \ldots \) be a countable increasing sequence of Lebesgue measurable subsets of \(\mathbb{R}^d \). Show that \(m(\bigcup_{k=1}^{\infty} S_k) = \lim_{n \to \infty} m(S_n) \). Hint: Express \(\bigcup_{k=1}^{\infty} S_k \) in terms of the lacuna \(L_n = S_n \setminus \bigcup_{k=1}^{n-1} S_k \).

(ii) *(Downward monotone convergence)* Let \(S_1 \supset S_2 \supset \ldots \) be a countable decreasing sequence of Lebesgue measurable subsets of \(\mathbb{R}^d \). If at least one of the \(m(S_k) \) is finite, show that \(m(\bigcap_{k=1}^{\infty} S_k) = \lim_{n \to \infty} m(S_n) \).

(iii) Show that one cannot drop the assumption that at least one of the \(m(S_m) \) is finite.
Definition: A sequence \(\{S_n\}_{n=1}^{\infty} \) of sets in \(\mathbb{R}^d \) converges pointwise to another set \(S \) in \(\mathbb{R}^d \) if the indicator functions \(1_{S_n} \) converge pointwise to \(1_S \).

Definition: Recall that
\[
\limsup_{n \to \infty} x_n = \limsup_{n \to \infty} \sup_{k \geq n} x_k
\]
\[
\liminf_{n \to \infty} x_n = \liminf_{n \to \infty} \inf_{k \geq n} x_k.
\]

In the extended \(d \)-dimensional reals \(\mathbb{R}^d \), a sequence \(\{x_n\} \) converges iff \(\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n \).

Problem 1.10: Suppose \(S_n \subset \mathbb{R}^d \), \(n = 1, 2, \ldots \) are Lebesgue measurable sets that converge pointwise to a set \(S \).

(i) Show that \(S \) is Lebesgue measurable. Hint: use the fact that \(1_S(x) = \liminf_{n \to \infty} 1_{S_n}(x) = \limsup_{n \to \infty} 1_{S_n}(x) \) to write \(S \) in terms of countable unions and intersections of \(S_n \).

(ii) (Dominated convergence theorem) Suppose that the \(S_n \) are all contained in another Lebesgue measurable set \(F \) of finite measure. Show that \(m(S_n) \) converges to \(m(S) \). Hint: use the upward and downward monotone convergence theorems.

(iii) Give a counterexample to show that the dominated convergence theorem fails if the \(S_n \) are not contained in a set of finite measure, even if we assume that the \(m(S_n) \) are all uniformly bounded.

Problem 1.11: Let \(S \subset \mathbb{R}^d \). Show that \(S \) is contained in a Lebesgue measurable set of measure \(m^*(S) \).

Problem 1.12: Let \(S \subset \mathbb{R}^d \). Provide a counterexample that establishes that the claim
\[
m^*(S) = \sup_{U \subset S} m^*(U)
\]
if false.

Problem 1.13: (Inner regularity). Let \(S \subset \mathbb{R}^d \) be Lebesgue measurable. Show that
\[
m(S) = \sup_{K \subset S} m(K).
\]
Problem 1.14: (Characterization of finite measurability) Let $S \subset \mathbb{R}^d$. Given $\epsilon > 0$, show that the following are equivalent:

(i) S is Lebesgue measurable with finite measure;

(ii) There exists an open set U_ϵ of finite measure containing S with $m^*(U_\epsilon \setminus S) < \epsilon$; (outer open approximation)

(iii) There exists a bounded open set U_ϵ with $m^*(U_\epsilon \triangle S) < \epsilon$; (almost open bounded)

(iv) There exists a compact set K_ϵ contained in S with $m^*(S \setminus K_\epsilon) < \epsilon$; (inner compact approximation)

(v) There exists a compact set K_ϵ with $m^*(K_\epsilon \triangle S) < \epsilon$; (almost compact)

(vi) There exists a bounded Lebesgue measurable set S_ϵ with $m^*(S_\epsilon \triangle S) < \epsilon$; (almost bounded measurable)

(vii) There exists a Lebesgue measurable set S_ϵ with finite measure such that $m^*(S_\epsilon \triangle S) < \epsilon$; (almost finite measure)

(viii) There exists an elementary set E_ϵ such that $m^*(E_\epsilon \triangle S) < \epsilon$; (almost elementary)

(ix) There exists a finite union F_ϵ of closed dyadic cubes such that $m^*(F_\epsilon \triangle S) < \epsilon$. (almost dyadic)

Problem 1.15: (Carathéodory criterion, one direction) Let $S \subset \mathbb{R}^d$. Show that the following are equivalent.

(i) S is Lebesgue measurable;

(ii) For every elementary set E,

$$ m(E) = m^*(E \cap S) + m^*(E \cap S^c); $$

(iii) For every box B,

$$ m(B) = m^*(B \cap S) + m^*(B \cap S^c). $$

Definition: Let $S \subset \mathbb{R}^d$ be a bounded set contained within an elementary set E. The Lebesgue inner measure of S is

$$ m_*(S) = m(E) - m^*(E \setminus S). $$
Problem 1.16:

(i) Show that the definition of Lebesgue inner measure is well defined in that it does not depend on the choice of elementary set E.

(ii) Show that $m_*(S) \leq m^*(S)$ and that equality hold iff S is Lebesgue measurable.

Definition: A G_{δ} set is a countable intersection of open sets.

Definition: An F_{σ} set is a countable union of closed sets.

Remark: Note that a G_{δ} set need not be open and a F_{σ} set need not be closed.

Problem 1.17: Show that the following are equivalent:

(i) S is Lebesgue measurable;

(ii) S is the difference of a G_{δ} set and a null set;

(iii) S is the union of an F_{σ} set and a null set.

Problem 1.18: (Translation invariance)

If $S \subset \mathbb{R}^d$ is Lebesgue measurable, show that $S + x$ is Lebesgue measurable for any $x \in \mathbb{R}^d$, with $m(S + x) = m(S)$.

1.E The Lebesgue integral

Definition: Let $\{c_k\}_{k=1}^{\infty}$ be a sequence of elements of the set of complex numbers \mathbb{C}. We say that $\{c_k\}_{k=1}^{\infty}$ converges absolutely or is absolutely summable if

$$\sum_{k=1}^{\infty} |c_k| < \infty.$$

Remark: Recall that the partial sums $\sum_{k=1}^{n} c_k$ of an absolutely convergent sequence converge to a finite number. Furthermore, one can rearrange the terms of an absolutely convergent sequence without affecting its sum, defined in terms of its real and imaginary parts as

$$\sum_{k=1}^{\infty} c_k = \sum_{k=1}^{\infty} \text{Re} \ c_k + i \sum_{k=1}^{\infty} \text{Im} \ c_k,$$

for complex c_k, where for real c_k,

$$\sum_{k=1}^{\infty} c_k = \sum_{k=1}^{\infty} c_k^+ - \sum_{k=1}^{\infty} c_k^-,$$

with $c_k^+ \doteq \max(c_k, 0)$ and $c_k^- \doteq \max(-c_k, 0)$.
Definition: A (complex-valued) simple function $f : \mathbb{R}^d \to \mathbb{C}$ is a finite linear combination

$$f = \sum_{k=1}^{n} c_k 1_{S_k}.$$

of indicator functions 1_{S_k} of Lebesgue measurable sets $S_k \subset \mathbb{R}^d$ for $c_k \in \mathbb{C}$, where $k = 1, \ldots, n$ and $n \in \mathbb{N}$. If $f : \mathbb{R}^d \to [0, \infty]$ and $c_K \in [0, \infty]$, we say that f is an unsigned simple function.

Definition: Denote the complex vector space of simple functions over \mathbb{R}^d as $\text{Simp}(\mathbb{R}^d)$.

Definition: Denote the space of unsigned simple functions over \mathbb{R}^d as $\text{Simp}^+(\mathbb{R}^d)$.

Remark: In addition to the usual closure properties of a vector space, $\text{Simp}(\mathbb{R}^d)$ is also closed under the pointwise product $f, g \mapsto fg$ and complex conjugation $f \mapsto \overline{f}$, making $\text{Simp}(\mathbb{R}^d)$ a commutative \ast-algebra (or involutive algebra). The space $\text{Simp}^+(\mathbb{R}^d)$ is a $[0, \infty]$-module: it is closed under addition and under multiplication by elements of $[0, \infty]$.

Remark: Although we don’t require the Lebesgue measurable sets S_1, \ldots, S_n to be disjoint, we can achieve this by noting that they partition \mathbb{R}^d into 2^n measurable sets, each of which is an intersection of $S_1, \ldots S_n$ and their complements in \mathbb{R}^d.

Definition: Denote

$$\int_{\mathbb{R}^d} 1_S = m(S).$$

Definition: If $f = \sum_{k=1}^{n} c_k 1_{S_k}$ is an unsigned simple function, define the simple integral

$$\text{Simp} \int_{\mathbb{R}^d} f = \sum_{k=1}^{n} c_k m(S_k).$$

Lemma 1.13 (Well-definedness of the simple integral): Let $n, n' \in \mathbb{N}, c_1, \ldots, c_n, c_1', \ldots, c_{n'}' \in [0, \infty]$ and $S_1, \ldots S_n, S_1', \ldots S_{n'}' \subset \mathbb{R}^d$ be Lebesgue measurable sets such that

$$\sum_{k=1}^{n} c_k 1_{S_k} = \sum_{k=1}^{n'} c_k' 1_{S_k'}.$$

Then

$$\sum_{k=1}^{n} c_k m(S_k) = \sum_{k=1}^{n'} c_k' m(S_k').$$

Proof: The $k + k'$ sets S_k and S_k' partition \mathbb{R}^d into $2^{k+k'}$ disjoint sets. The result then follows from the finite additivity of Lebesgue measure (for details see Tao, page 52, noting that 1_{A_i} should be replaced by $1_{A_{k'}}$, etc.).
Definition: A property \(P(x) \) of a point \(x \in \mathbb{R}^d \) is said to hold \textit{almost everywhere} (or \textit{a.e.}) in \(\mathbb{R}^d \) if the set of \(x \in \mathbb{R}^d \) on which \(P(x) \) fails has Lebesgue measure zero (i.e. \(P \) is true outside of a null set).

Definition: Two functions \(f \) and \(g \) on \(\mathbb{R}^d \) are said to \textit{agree almost everywhere} if \(f(x) = g(x) \) almost everywhere in \(\mathbb{R}^d \).

Definition: The \textit{support} of a function \(f : \mathbb{R}^d \to \mathbb{C} \) or \(f : \mathbb{R}^d \to [0, \infty] \) is the set \(\{ x \in \mathbb{R}^d : f(x) \neq 0 \} \).

Problem 1.19: (Properties of the simple unsigned integral). Let \(f, g : \mathbb{R}^d \to [0, \infty] \) be simple unsigned functions. Then

(i) \[
\text{Simp} \int_{\mathbb{R}^d} (f + g) = \text{Simp} \int_{\mathbb{R}^d} f + \text{Simp} \int_{\mathbb{R}^d} g
\]

and

(ii) \[
\text{Simp} \int_{\mathbb{R}^d} cf = c \text{Simp} \int_{\mathbb{R}^d} f
\]

for every \(c \in [0, \infty] \); \hspace{1cm} \text{(unsigned linearity)}

(ii) \[
\text{Simp} \int_{\mathbb{R}^d} f < \infty \text{ iff } f \text{ is finite almost everywhere and its support has finite measure}; \hspace{1cm} \text{(finiteness)}
\]

(iii) \[
\text{Simp} \int_{\mathbb{R}^d} f = 0 \text{ iff } f = 0 \text{ almost everywhere}; \hspace{1cm} \text{(vanishing)}
\]

(iv) If \(f \) and \(g \) agree almost everywhere, \[
\text{Simp} \int_{\mathbb{R}^d} f = \text{Simp} \int_{\mathbb{R}^d} g;
\]

(equivalence)

(v) \[
\text{Simp} \int_{\mathbb{R}^d} f \leq \text{Simp} \int_{\mathbb{R}^d} g \text{ for almost every } x \in \mathbb{R}^d \;
\]

(monotonicity)

(vi) For any Lebesgue measurable set \(S \), \[
\text{Simp} \int_{\mathbb{R}^d} 1_S = m(S). \hspace{1cm} \text{(compatibility)}
\]

Definition: A complex-valued simple function \(f : \mathbb{R}^d \to \mathbb{C} \) is said to be \textit{absolutely integrable} if \[
\text{Simp} \int_{\mathbb{R}^d} |f| < \infty.
\]

Definition: If the real-valued function \(f \) is absolutely integrable, let

\[
\text{Simp} \int_{\mathbb{R}^d} f \doteq \text{Simp} \int_{\mathbb{R}^d} f_+ - \text{Simp} \int_{\mathbb{R}^d} f_-
\]

in terms of the unsigned simple functions \(f_+ \doteq \max(f,0) \) and \(f_- \doteq \max(-f,0) \) (which are both dominated by \(|f| \)).
Definition: If a complex-valued simple function $f : \mathbb{R}^d \to \mathbb{C}$ is absolutely integrable,

$$\text{Simp} \int_{\mathbb{R}^d} f = \text{Simp} \int_{\mathbb{R}^d} \text{Re } f + i \text{Simp} \int_{\mathbb{R}^d} \text{Im } f$$

Remark: We note that a complex-valued simple function f is absolutely integrable iff its support has finite measure. In particular, the space $\text{Simp}_{\text{abs}}(\mathbb{R}^d)$ of absolutely integrable simple functions, begin closed under addition and scalar multiplication by complex numbers, is a complex vector space.

Problem 1.20: (Properties of the complex-valued simple integral). Let $f, g : \mathbb{R}^d \to \mathbb{C}$ be simple complex-valued functions. Then

(i)

$$\text{Simp} \int_{\mathbb{R}^d} (f + g) = \text{Simp} \int_{\mathbb{R}^d} f + \text{Simp} \int_{\mathbb{R}^d} g$$

and

$$\text{Simp} \int_{\mathbb{R}^d} cf = c \text{Simp} \int_{\mathbb{R}^d} f$$

for every $c \in \mathbb{C}$, along with

$$\text{Simp} \int_{\mathbb{R}^d} f = \text{Simp} \int_{\mathbb{R}^d} f;$$

(*-linearity)

(ii) If f and g agree almost everywhere, $\text{Simp} \int_{\mathbb{R}^d} f = \text{Simp} \int_{\mathbb{R}^d} g$; (equivalence)

(iii) For any Lebesgue measurable set S, $\text{Simp} \int_{\mathbb{R}^d} 1_S = m(S)$. (compatibility)

Hint: Use the decomposition

$$f + g = (f + g)_+ - (f + g)_- = (f_+ - f_-) + (g_+ - g_-).$$

Definition: An unsigned function $f : \mathbb{R}^d \to [0, \infty]$ is **unsigned Lebesgue measurable** (or **measurable**) if it is the pointwise limit of a sequence of unsigned simple functions.
Definition: Let $X \subset \mathbb{R}^d$. A set $U \subset X$ is relatively open (relatively closed) in X if there is an open (closed) set V in \mathbb{R}^d such that $U = V \cap X$.

Lemma 1.14 (Characterization of measurable unsigned functions):
Let $f : \mathbb{R}^d \to [0, \infty]$ be an unsigned function. The following are equivalent:

(i) f is unsigned Lebesgue measurable.

(ii) f is the pointwise limit of a sequence of unsigned simple functions.

(iii) f is the pointwise almost everywhere limit of unsigned simple functions.

(iv) $f = \sup_n f_n$ for an increasing sequence f_n of bounded unsigned simple functions that have finite-measure support.

(v) For every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) > \lambda\}$ is Lebesgue measurable.

(vi) For every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) \geq \lambda\}$ is Lebesgue measurable.

(vii) For every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) < \lambda\}$ is Lebesgue measurable.

(viii) For every $\lambda \in [0, \infty]$, the set $\{x \in \mathbb{R}^d : f(x) \leq \lambda\}$ is Lebesgue measurable.

(ix) For every interval $I \subset [0, \infty)$, the set $f^{-1}(I) = \{x \in \mathbb{R}^d : f(x) \in I\}$ is Lebesgue measurable.

(x) For every relatively open set $U \subset [0, \infty)$, the set $f^{-1}(U) = \{x \in \mathbb{R}^d : f(x) \in U\}$ is Lebesgue measurable.

(xi) For every relatively closed set $F \subset [0, \infty)$, the set $f^{-1}(F) = \{x \in \mathbb{R}^d : f(x) \in F\}$ is Lebesgue measurable.

Proof:

(i) \iff (ii) This is the definition of Lebesgue measurability of an unsigned function.

(ii) \Rightarrow (iii) Everywhere implies almost everywhere.

(iv) \Rightarrow (ii) Every monotone sequence in $[0, \infty]$ converges.

(iii) \Rightarrow (v) We are given that for almost all $x \in \mathbb{R}^d$,

$$f(x) = \lim_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x) = \limsup_{n \to \infty} \sup_{k \geq n} f_k(x) = \inf \sup_{n \in \mathbb{N}, k \geq n} f_k(x).$$

Then to within a set of measure zero, the set $\{x \in \mathbb{R}^d : f(x) > \lambda\}$ equals

$$\bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \left\{ x \in \mathbb{R}^d : \sup_{k \geq n} f_k(x) > \lambda + \frac{1}{M} \right\}.$$
or equivalently,
\[\bigcup_{M \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} \left\{ x \in \mathbb{R}^d : f_k(x) > \lambda + \frac{1}{M} \right\}. \]

But each set \(\{ x \in \mathbb{R}^d : f_k(x) > \lambda + 1/M \} \) is Lebesgue measurable since the \(f_k \) are unsigned simple functions. Since countable unions and intersections of Lebesgue measurable sets are Lebesgue measurable, we arrive at (v).

(v) \iff (vi)

(vii) \iff (viii) To establish these two equivalences, let \(Q^+ = \mathbb{Q} \cap [0, \infty) \). Then for \(\lambda \in (0, \infty) \),
\[\{ x \in \mathbb{R}^d : f(x) \geq \lambda \} = \bigcap_{\lambda' \in Q^+ : \lambda' < \lambda} \{ x \in \mathbb{R}^d : f(x) > \lambda' \}. \]
Likewise for \(\lambda \in [0, \infty) \),
\[\{ x \in \mathbb{R}^d : f(x) > \lambda \} = \bigcup_{\lambda' \in Q^+ : \lambda' > \lambda} \{ x \in \mathbb{R}^d : f(x) \geq \lambda' \}. \]
Since \(Q^+ \) is countable, we then see that (v) and (vi) are equivalent and so are (vii) and (viii).

(v) \iff (viii)

(vi) \iff (vii)

(x) \iff (xi) These three equivalences follow immediately upon taking complements.

(vi)–(viii) \Rightarrow (ix) Every interval \(I \subset [0, \infty] \) can be expressed as the intersection of two semi-infinite intervals (half lines).

(x) \Rightarrow (vii) Let \(U = [0, \lambda) \).

(ix) \Rightarrow (x) Every open set in \([0, \infty)\) is the union of countably many open intervals.

(ix) \Rightarrow (iv) For every \(n \in \mathbb{N} \), let \(f_n(x) \) be the largest integer multiple of \(2^{-n} \) bounded by \(\min(f(x), n) \) for \(x \in B_n[0] \) and zero elsewhere. At each \(x \), we see that \(f(x) \) is the supremum of the increasing sequence of functions \(f_n(x) \). Note that \(f_n \) achieves each of its finite number of nonzero values \(c \) on a Lebesgue measurable set \(f_n^{-1}(c) = f^{-1}(I_c) \cap B_n[0] \), where \(I_c \subset [0, \infty) \) is an interval or half line. Thus each function \(f_n \) is a bounded unsigned simple function with finite-measure support.
Remark: Having established these characterizations of measurable functions, we now observe that many of the unsigned functions that arise in practical applications are measurable:

- every continuous unsigned function $f : \mathbb{R}^d \to [0, \infty]$;
- every unsigned simple function;
- the supremum, infimum, limit superior, and limit inferior of unsigned measurable functions;
- an unsigned function that is almost everywhere equal to an unsigned measurable function;
- the composition $\phi \circ f$ of a continuous function $\phi : [0, \infty] \to [0, \infty]$ and an unsigned measurable function f;
- the sum and product of unsigned measurable functions.

Remark: If an unsigned measurable function f is bounded by M, the functions f_n constructed in Lemma 1.14 (ix) \Rightarrow (iv) are each bounded by M. Thus, f is a bounded unsigned measurable function iff it is the limit of a uniformly bounded sequence of simple functions.

Problem 1.21: Show that an unsigned function $f : \mathbb{R}^d \to [0, \infty]$ is a simple function iff it is measurable and takes on finitely many values.

Remark: If f is measurable, Lemma 1.14 shows that $f^{-1}(S)$ is Lebesgue measurable for many, but not all, measurable sets S (for a counterexample, see Tao, Remark 1.3.10).

Definition: An almost everywhere-defined complex-valued function $f : \mathbb{R}^d \to \mathbb{C}$ is Lebesgue measurable (or measurable) if it is the pointwise almost-everywhere limit of a sequence of complex-valued simple functions.

Lemma 1.15 (Characterization of measurable complex-valued functions): Let $f : \mathbb{R}^d \to \mathbb{C}$ be an almost-everywhere defined complex-valued function. The following are equivalent:

(i) f is measurable.
(ii) \(f \) is the pointwise almost-everywhere limit of a sequence of complex-valued simple functions.

(iii) The magnitudes of the positive and negative parts of \(\text{Re}f \) and \(\text{Im}f \) are unsigned measurable functions.

(iv) For every open set \(U \subset \mathbb{C} \), the set \(f^{-1}(U) \) is measurable.

(v) For every closed set \(F \subset \mathbb{C} \), the set \(f^{-1}(F) \) is measurable.

Problem 1.22: Let \(f : \mathbb{R}^d \to \mathbb{C} \). Show that

(i) if \(f \) is continuous, it is measurable;

(ii) \(f \) is simple iff it is measurable and takes on finitely many values;

(iii) if \(f \) is almost everywhere equal to a measurable function, it is itself measurable.

(iv) if a sequence \(f_n \) of complex-valued measurable functions converges pointwise almost everywhere to \(f \), then \(f \) is measurable.

(v) if \(f \) is measurable, the composition \(\phi \circ f \) of a continuous function \(\mathbb{C} \to \mathbb{C} \) and \(f \) is measurable.

Problem 1.23: Show that the sum and product of measurable functions are measurable.

Definition: Let \(f : \mathbb{R}^d \to [0, \infty] \) be an unsigned (but not necessarily measurable) function. The *lower unsigned Lebesgue integral* is

\[
\int_{\mathbb{R}^d} f \doteq \sup_{h \text{ simple}} \text{Simp} \int_{\mathbb{R}^d} h.
\]

Likewise, the *upper unsigned Lebesgue integral* is

\[
\int_{\mathbb{R}^d} f \doteq \inf_{h \text{ simple}} \text{Simp} \int_{\mathbb{R}^d} h.
\]
Remark: For any unsigned function $f : \mathbb{R}^d \to [0, \infty]$ observe that

$$\int_{\mathbb{R}^d} f \leq \overline{\int_{\mathbb{R}^d} f}$$

Theorem 1.3 (Properties of the lower and upper Lebesgue integrals): Let $f, g : \mathbb{R}^d \to \mathbb{C}$ be unsigned (not necessarily measurable) functions. Then

(i) if f is simple, $\int_{\mathbb{R}^d} f = \overline{\int_{\mathbb{R}^d} f} = \text{Simp} \int_{\mathbb{R}^d} f$; compatibility

(ii) if $f \leq g$ pointwise almost everywhere, $\underline{\int_{\mathbb{R}^d} f} \leq \int_{\mathbb{R}^d} g$ and $\overline{\int_{\mathbb{R}^d} f} \leq \overline{\int_{\mathbb{R}^d} g}$; monotonicity

(iii) $\int_{\mathbb{R}^d} cf = c \int_{\mathbb{R}^d} f$ for every $c \in [0, \infty)$; scaling

(iv) if f and g agree almost everywhere, $\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} g$ and $\overline{\int_{\mathbb{R}^d} f} = \overline{\int_{\mathbb{R}^d} g}$; equivalence

(v) $\int_{\mathbb{R}^d} (f + g) \geq \int_{\mathbb{R}^d} f + \int_{\mathbb{R}^d} g$; lower superadditivity

(vi) $\overline{\int_{\mathbb{R}^d} (f + g)} \leq \overline{\int_{\mathbb{R}^d} f} + \overline{\int_{\mathbb{R}^d} g}$; upper subadditivity

(vii) for any measurable set $S \subset \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} f 1_S + \int_{\mathbb{R}^d} f 1_{S^c};$$

complementarity

(viii)

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} \min(f(x), n) \, dx = \int_{\mathbb{R}^d} f;$$

vertical truncation

(ix)

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} f(x) 1_{B_n[0]} \, dx = \int_{\mathbb{R}^d} f;$$

(\text{use the monotone convergence theorem})

horizontal truncation

(x) if $f + g$ is a bounded simple function with finite measure support,

$$\text{Simp} \int_{\mathbb{R}^d} (f + g) = \int_{\mathbb{R}^d} f + \int_{\mathbb{R}^d} g.$$ reflection
Definition: If $f : \mathbb{R}^d \to [0, \infty]$ is measurable, we define the unsigned Lebesgue integral $\int_{\mathbb{R}^d} f$ to be the lower lower unsigned Lebesgue integral $\int_{\mathbb{R}^d} f$.

Problem 1.24: Let $f : \mathbb{R}^d \to [0, \infty)$ be measurable, bounded, and vanishing outside of a set of finite measure. Show that the lower and upper Lebesgue integrals agree. Hint: use the fact that a bounded unsigned measurable function is the pointwise limit of a uniformly bounded sequence of simple functions.

Corollary 1.3.1 (Finite additivity of the Lebesgue integral): Let $f, g : \mathbb{R}^d \to [0, \infty]$ be measurable. Then $\int_{\mathbb{R}^d} (f + g) = \int_{\mathbb{R}^d} f + \int_{\mathbb{R}^d} g$.

Proof: We first prove this in the case where f and g are bounded and have bounded support. By Problem 1.24, the lower and upper integrals of f, g, and $f + g$ agree. The result then follows from lower superadditivity and upper subadditivity. The general case can then be reduced to this case by applying horizontal and vertical truncation and taking the corresponding limits.

Problem 1.25: Show for an arbitrary set $S \subset \mathbb{R}^d$ that $\int_{\mathbb{R}^d} 1_S = m^*(S)$.

From outer regularity, we know that

$$m^*(S) = \inf_{U \supseteq S} m^*(U) = \inf_{U \supseteq S} \int_{\mathbb{R}^d} 1_U \geq \int_{\mathbb{R}^d} 1_S$$

since $1_U \geq 1_S$. Furthermore, given $\epsilon > 0$, there exists a simple function $h_\epsilon \geq 1_S$ such that $h_\epsilon \geq 1$ on a measurable set $T_\epsilon \supset S$ and

$$\int_{\mathbb{R}^d} 1_S + \epsilon > \int_{\mathbb{R}^d} h_\epsilon \geq \int_{\mathbb{R}^d} 1_{T_\epsilon} = m(T_\epsilon) \geq m^*(S).$$

Since ϵ is arbitrary, we conclude that $\int_{\mathbb{R}^d} 1_S = m^*(S)$.

Remark: In view of the fact that Lebesgue outer measure is not necessarily additive, a consequence of Problem 1.25 is that the upper and lower Lebesgue integrals need not be additive.

Problem 1.26: If $f : \mathbb{R}^d \to [0, \infty]$ is Lebesgue measurable, show that the Lebesgue measure of $\{(x,y) \in \mathbb{R}^d \times \mathbb{R} : 0 \leq y \leq f(x)\}$ exists and equals $\int_{\mathbb{R}^d} f$.

Remark: The statement in Problem 1.26 can be used as an alternate definition of the Lebesgue integral of a measurable function.
Remark: The Lebesgue integral is the unique map from measurable unsigned functions over \mathbb{R}^d that is compatible with the simple integral and obeys finite additivity, along with the horizontal and vertical truncation properties.

Remark: We can extend a given function $f : [a, b] \to [0, \infty)$ to \mathbb{R} by assigning it the value 0 on $\mathbb{R} \setminus [a, b]$. If f is Riemann integrable on $[a, b]$, then it is the pointwise limit of a sequence of piecewise constant functions and is therefore measurable. Since a lower sum for f is the integral of a simple function bounded above by f, it must be less than or equal to $\int_{\mathbb{R}^d} f$. Likewise, an upper sum for f must be greater than or equal to $\int_{\mathbb{R}^d} f$. Let L be the lower Riemann integral (the supremum of all lower sums) and U be the upper Riemann integral (the infimum of all upper sums). Then $L \leq \int_{\mathbb{R}^d} f \leq \int_{\mathbb{R}^d} f \leq U$. Since $L = U = \int_a^b f$, we conclude that $\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} f = \int_a^b f$. That is, the Lebesgue integral of a Riemann integrable function exists and equals $\int_a^b f$.

Definition: A measurable complex-valued function $f : \mathbb{R}^d \to \mathbb{C}$ is said to be absolutely integrable if the L^1 semi-norm

$$|f|_{L^1(\mathbb{R}^d)} := \int_{\mathbb{R}^d} |f| < \infty.$$

Definition: The space of all absolutely integrable functions is denoted $L^1(\mathbb{R}^d)$.

Definition: If f is real-valued and absolutely integrable, we define

$$\int_{\mathbb{R}^d} f \doteq \int_{\mathbb{R}^d} f_+ - \int_{\mathbb{R}^d} f_-,$$

where $f_+ \doteq \max(f, 0)$ and $f_- \doteq \max(-f, 0)$.

Definition: If f is complex-valued and absolutely integrable, we define

$$\int_{\mathbb{R}^d} f \doteq \int_{\mathbb{R}^d} \text{Re } f + i \int_{\mathbb{R}^d} \text{Im } f$$

Theorem 1.4 (Markov’s inequality): Let $f : \mathbb{R}^d \to \mathbb{C}$ be measurable. Then for every $\lambda \in (0, \infty)$,

$$m(\{x \in \mathbb{R}^d : |f(x)| \geq \lambda\}) \leq \frac{1}{\lambda} \int_{\mathbb{R}^d} |f|.$$
CHAPTER 1. MEASURE THEORY

Proof: In view of the pointwise inequality
\[\lambda 1_{\{x \in \mathbb{R}^d : |f(x)| \geq \lambda \}} \leq |f(x)|, \]
we see from the definition of the lower Lebesgue integral that
\[\lambda m(\{x \in \mathbb{R}^d : |f(x)| \geq \lambda \}) \leq \int_{\mathbb{R}^d} |f|. \]

Corollary 1.4.1: Let \(f : \mathbb{R}^d \to \mathbb{C} \) be measurable.

(i) If \(\int_{\mathbb{R}^d} |f| < \infty \), then \(f \) is finite almost everywhere.

(ii) \(\int_{\mathbb{R}^d} |f| = 0 \) iff \(f \) is zero almost everywhere.

Proof:

(i) Consider the limit \(\lambda \to \infty \).

(ii) Consider the limit \(\lambda \to 0 \).

Remark: The converse to Corollary 1.4.1 (i) is false: consider \(\int_{\mathbb{R}^d} 1 = m(\mathbb{R}^d) = \infty \).

Remark: The use of the integral \(\int_{\mathbb{R}^d} |f| \) to control the distribution of \(f \) is the first moment method. In probability theory, one also uses higher moments such as \(\int_{\mathbb{R}^d} |f|^p \) and Fourier moments \(\int_{\mathbb{R}^d} e^{itf} \) to control the distribution of \(f \).

Remark: From the pointwise triangle inequality \(|f(x) + g(x)| \leq |f(x)| + |g(x)| \), we obtain the \(L^1 \) triangle inequality \(|f + g|_{L^1(\mathbb{R}^d)} \leq |f|_{L^1(\mathbb{R}^d)} + |g|_{L^1(\mathbb{R}^d)} \) for every measurable function \(f, g : \mathbb{R}^d \to \mathbb{C} \). Note also for \(c \in \mathbb{C} \) that \(|cf|_{L^1(\mathbb{R}^d)} = |c||f|_{L^1(\mathbb{R}^d)} \) and that \(|f|_{L^1(\mathbb{R}^d)} = 0 \) iff \(f \) vanishes almost everywhere. Together these properties make \(L^1(\mathbb{R}^d) \) a complex vector space, with semi-norm \(L^1 \) (it is a semi-norm because of the almost everywhere qualifier).

Remark: The Lebesgue integral is a *-linear operator from \(L^1(\mathbb{R}^d) \) to \(\mathbb{C} \).

Problem 1.27: (Translation invariance)
If \(f \in L^1(\mathbb{R}^d) \), show for every \(y \in \mathbb{R} \) that \(\int_{\mathbb{R}^d} f(x + y) \, dx = \int_{\mathbb{R}^d} f(x) \, dx \).

Problem 1.28: (Linear change of variables)
If \(f \in L^1(\mathbb{R}^d) \) and \(T \) is an invertible linear transformation, show that
\[\int_{\mathbb{R}^d} f(T^{-1}x) \, dx = |\det T| \int_{\mathbb{R}^d} f. \]
Problem 1.29: If S and T are disjoint measurable subsets of \mathbb{R}^d and $f : S \cup T \to \mathbb{C}$ is absolutely integrable, show that

$$\int_{S \cup T} (f1_S) = \int_S f$$

and

$$\int_S f + \int_T f = \int_{S \cup T} f.$$

Lemma 1.16 (Triangle inequality): Let $f \in L^1(\mathbb{R}^d)$. Then

$$\left| \int_{\mathbb{R}^d} f \right| \leq \int_{\mathbb{R}^d} |f|.$$

Proof: If $f = f_+ - f_-$ is real-valued then $|f| = f_+ + f_-$ and the claim follows from the triangle inequality for \mathbb{R}. If f is complex-valued we can express

$$\left| \int_{\mathbb{R}^d} f \right| = e^{i\theta} \int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} e^{i\theta} f$$

for some real phase θ. On taking real parts, we find

$$\left| \int_{\mathbb{R}^d} f \right| = \int_{\mathbb{R}^d} \text{Re}(e^{i\theta} f) \leq \int_{\mathbb{R}^d} |e^{i\theta} f| = \int_{\mathbb{R}^d} |f|.$$

Definition: A step function is a finite linear combination of indicator functions 1_B of boxes B.

Theorem 1.5 (Approximation of L^1 functions): Let $f \in L^1(\mathbb{R}^d)$ and $\epsilon > 0$. There exists

(i) an absolutely integrable simple function g such that $|f - g|_{L^1(\mathbb{R}^d)} < \epsilon$.

(ii) a step g such that $|f - g|_{L^1(\mathbb{R}^d)} < \epsilon$.

(iii) a continuous, compactly supported function $g \in L^1(\mathbb{R}^d)$ such that $|f - g|_{L^1(\mathbb{R}^d)} < \epsilon$.

Proof:

(i) In the case where f is unsigned, by the definition of the lower Lebesgue integral there exists an unsigned simple function $g \leq f$ such that $\int_{\mathbb{R}^d} g > \int_{\mathbb{R}^d} f - \epsilon$, which implies that $|f - g|_{L^1(\mathbb{R}^d)} < \epsilon$. This result can then immediately be generalized to the real-valued and complex-valued case.
(ii) The case where f is a simple function can be reduced, using linearity and the triangle inequality, to the case where f is the indicator function of a set with finite measure. The claim then follows from the fact that such sets can be approximated by an elementary set. The general case then follows on applying (i) and the triangle inequality.

(iii) It suffices to show this in the case where f is the indicator function of a box B. Let B' be a slightly enlarged box that contains B within its interior, such that $|B'| < |B| + \epsilon$. Let $g(x) = \max(1 - C \operatorname{dist}(x, B), 0)$ where C is chosen sufficiently large such that $g(x) = 0$ outside of B'. Then g is continuous and compactly supported, with $|f - g|_{L^1(\mathbb{R}^d)} < \epsilon$.

Definition: A sequence of functions $f_n : \mathbb{R}^d \to \mathbb{C}$ converges *locally uniformly* to a $f : \mathbb{R}^d \to \mathbb{C}$ if for every bounded subset $S \subset \mathbb{R}^d$, $f_n : \mathbb{R}^d \to \mathbb{C}$ converges uniformly to f on S.

- The sequence of functions $x \mapsto x/n$ on \mathbb{R} for $n = 1, 2, \ldots$ converges locally uniformly (and hence pointwise) to 0 on \mathbb{R}, but not uniformly.

- The partial sums $\sum_{k=0}^{n} x^k/k!$ of the Taylor series of e^x converges to e^x locally uniformly on \mathbb{R}, but not uniformly.

- The functions

$$f_n(x) = \begin{cases}
\frac{1}{nx} & \text{if } x > 0 \\
0 & \text{otherwise}
\end{cases}$$

converge pointwise everywhere to zero as $n \to \infty$, but not locally uniformly (due to the behaviour of f_n near $x = 0$).

Remark: Although pointwise convergence is evidently a weaker mode of convergence than local uniform convergence, the following theorem establishes that one can recover local uniform convergence if one is willing to delete as set of arbitrarily small measure.

Theorem 1.6 (Egorov’s theorem): Let $f_n : \mathbb{R}^d \to \mathbb{C}$ be a sequence of measurable functions that converge pointwise almost everywhere to $f : \mathbb{R}^d \to \mathbb{C}$. Given $\epsilon > 0$, there exists a Lebesgue measurable set S of measure at most ϵ such that f_n converges locally uniformly to f outside of S.

Proof: By modifying f_n and f as needed on a null set (which can be absorbed into S), we may assume that f_n converges pointwise to f on \mathbb{R}^d. That is, for each $x \in \mathbb{R}^d$ and $m \in \mathbb{N}$, the Lebesgue measurable set

$$S_N = \{x \in \mathbb{R}^d : |f_n(x) - f(x)| \geq 1/m \text{ for some } n > N\}$$

obeys

$$\bigcap_{N=1}^{\infty} S_N = \emptyset.$$

On exploiting the downward monotone convergence of the decreasing sequence of sets S_N, we find

$$\lim_{N \to \infty} m(S_N \cap B_m(0)) = 0.$$

In particular, for each $m \in \mathbb{N}$, we can find $N_m \in \mathbb{N}$ such that

$$N > N_m \Rightarrow m(S_N \cap B_m(0)) < \frac{\epsilon}{2^m}.$$

Then by countable subadditivity, the Lebesgue measurable set

$$S = \bigcup_{m=1}^{\infty} S_N \cap B_m(0)$$

has measure less than ϵ. We thus see that for every $m \geq 1$ and $n > N_m$ that

$$|f_n(x) - f(x)| < 1/m \text{ (} f_n \text{ converges uniformly to } f \text{) on } x \in B_m(0) \setminus S.$$

Since every bounded set is contained within a ball $B_m(0)$ for some m, the claim follows.

Remark: We have now witnessed the three heuristic principles of measure theory first articulated by Littlewood:

1. Every measurable set is nearly a finite union of boxes;
2. Every absolutely integrable function is nearly continuous;
3. Every pointwise convergent sequence of functions is nearly locally uniformly convergent.

1.F Abstract Measure Spaces

Definition: Let X be a set. A **Boolean algebra** on X is a collection \mathcal{B} of subsets of X such that:

(i) $\emptyset \in \mathcal{B}$;
(ii) If $S \in \mathcal{B}$, then the complement $S^c = X \setminus S$ is also an element of \mathcal{B};
(iii) If $S, T \in \mathcal{B}$, then $S \cup T \in \mathcal{B}$.

(EMPTY SET)
(CLOSURE UNDER COMPLEMENT)
(CLOSURE UNDER FINITE UNION)
Definition: Given two Boolean algebras \mathcal{B}, \mathcal{B}' on X, we say that \mathcal{B} is finer than (coarser than) \mathcal{B}' if $\mathcal{B} \supset \mathcal{B}'$ ($\mathcal{B} \subset \mathcal{B}'$).

- The coarsest Boolean algebra on a set X is the trivial algebra $\{\emptyset, X\}$.
- The finest Boolean algebra on a set X is the discrete algebra $\mathcal{P}(X) = \{S : S \subset X\}$.

Remark: All other Boolean algebras are intermediate between these two extremes: finer than the trivial algebra, but coarser than the discrete one.

- The *elementary Boolean algebra* on \mathbb{R}^d is the collection of subsets of \mathbb{R}^d that are either elementary or have an elementary complement.

- The *Jordan algebra* on \mathbb{R}^d is the collection of subsets of \mathbb{R}^d that are either Jordan-measurable or have a Jordan-measurable complement.

- The *Lebesgue algebra* $\mathcal{L}[\mathbb{R}^d]$ on \mathbb{R}^d is the collection of Lebesgue-measurable subsets of \mathbb{R}^d.

Remark: The Lebesgue algebra is finer than the Jordan algebra, which is itself finer than the elementary Boolean algebra.

- The *null algebra* is the collection of sets in \mathbb{R}^d that are either Lebesgue null sets or have null complements.

Remark: The null algebra is coarser than the Lebesgue algebra.

Remark: Let \mathcal{F} be a family of subsets of X. The intersection $\langle \mathcal{F} \rangle_{\text{bool}}$ of all Boolean algebras that contain \mathcal{F} is itself a Boolean algebra. It is the coarsest Boolean algebra that contains \mathcal{F}; we say that $\langle \mathcal{F} \rangle_{\text{bool}}$ is generated by \mathcal{F}.

Definition: Suppose we express a set X as a union $\bigcup_{\alpha \in I} A_\alpha$ of disjoint sets A_α, called atoms, where I is an index set. This partitioning of X generates a Boolean algebra, the *atomic algebra* $\mathcal{A}(\{A_\alpha : \alpha \in I\})$, defined as the collection of all unions $\bigcup_{\alpha \in J} A_\alpha$ such that $J \subset I$.

Remark: The trivial algebra corresponds to the trivial partition of X into a single atom, namely X itself.
Remark: The discrete algebra corresponds to the discrete partition of \(X = \bigcup_{x \in X} \{x\} \) into singleton atoms.

- Let \(n \) be an integer. The dyadic algebra \(D_n(\mathbb{R}^d) \) at scale \(2^{-n} \) is the atomic algebra generated by taking unions and complements of half-open dyadic cubes

\[
\left[\frac{i_1}{2^n}, \frac{i_1 + 1}{2^n} \right) \times \ldots \times \left[\frac{i_d}{2^n}, \frac{i_d + 1}{2^n} \right)
\]

for integers \(i_1, i_2, \ldots, i_d \). Note that \(D_{n+1} \supset D_n \).

Definition: A Boolean algebra is finite if it contains only finitely many sets.

Remark: Every finite Boolean algebra is an atomic algebra.

Remark: The elementary, Jordan, Lebesgue, and null algebras are not atomic algebras: they are not composed of indivisible atoms.

Definition: Let \(X \) be a set. A \(\sigma \)-algebra on \(X \) is a collection \(\mathcal{B} \) of \(X \) such that

(i) \(\emptyset \in \mathcal{B} \); (empty set)

(ii) If \(S \in \mathcal{B} \), then the complement \(S^c = X \setminus S \) is also an element of \(\mathcal{B} \); (closure under complement)

(iii) If \(S_1, S_2, \ldots \in \mathcal{B} \), then \(\bigcup_{n=1}^{\infty} S_n \in \mathcal{B} \). (closure under countable union)

- All atomic algebras are \(\sigma \)-algebras.

- The Lebesgue and null algebras are \(\sigma \)-algebras, but the elementary and Jordan algebras are not.

- Every \(\sigma \)-algebra is a Boolean algebra.

- Every finite Boolean algebra is an atomic algebra.

Remark: An intersection \(\bigcap_{\alpha \in I} \mathcal{B}_\alpha \) of \(\sigma \)-algebras \(\mathcal{B}_\alpha \) is itself a \(\sigma \)-algebra and is the finest \(\sigma \)-algebra that is coarser than each of the \(\mathcal{B}_\alpha \).
Remark: Let F be a family of subsets of X. The intersection $\langle F \rangle$ of all σ-algebras that contain F is itself a σ-algebra. It is the coarsest σ-algebra that contains F; we say that $\langle F \rangle$ is generated by F.

Remark: Observe that $\langle F \rangle_{\text{bool}} \subset \langle F \rangle$, with equality holding iff $\langle F \rangle_{\text{bool}}$ is a σ-algebra.

- Let F be the collection of all boxes in \mathbb{R}^d. Then $\langle F \rangle_{\text{bool}}$ is the elementary algebra, which is not a σ-algebra.

Definition: Let X be a set and B be a σ-algebra. We refer to the pair (X, B) as a measurable space.

Remark: In abstract measure theory, the σ-algebra B identifies the subsets of X that one is allowed to measure.

Definition: Let X be a metric space. The Borel σ-algebra $B[X]$ on X is the σ-algebra generated by the collection of open subsets of X. The elements of $B[X]$ are Borel measurable.

- The Borel σ-algebra contains all open sets, all closed sets, all G_δ sets, and all F_σ sets (along with countable unions and intersections thereof).

Remark: Since every open set in \mathbb{R}^d is Lebesgue measurable, the Borel σ-algebra is coarser than the Lebesgue σ-algebra.

Remark: Let F be a family of subsets of X with cardinality κ. Using transfinite induction, one can show that $\langle F \rangle$ has cardinality at most κ^{\aleph_0}, where \aleph_0 denotes the cardinality of \mathbb{N}.

Remark: Since every open set in \mathbb{R}^d can be expressed as a countable union of open balls (centered on a rational d-tuple, with rational radius), the cardinality of the generator of open sets is the same as the cardinality \aleph_0 of the rationals. Then $B[\mathbb{R}^d]$ has cardinality at most $\aleph_0^{\aleph_0}$, which is the same as the cardinality $c = 2^{\aleph_0}$ of the reals.

Remark: The Cantor set has Lebesgue measure zero, but cardinality c. Since any subset of a Lebesgue null set is also a null set, we see that the power set of the Cantor set has cardinality $2^c > c$. Thus, there exist Lebesgue-measurable sets that are not Borel measurable!
Remark: The Lebesgue \(\sigma\)-algebra on \(\mathbb{R}^d\) is generated by the union of the Borel \(\sigma\)-algebra and the null \(\sigma\)-algebra.

Definition: Let \(B\) be a Boolean algebra on a set \(X\). A \textit{finitely additive measure} \(\mu\) on \(B\) is a map \(\mu : B \rightarrow [0, \infty]\) such that

(i) \(\mu(\emptyset) = 0\); \hspace{1cm} \textit{nullity}

(ii) If \(S\) and \(T\) are disjoint, \(\mu(S \cup T) = \mu(S) + \mu(T)\); \hspace{1cm} \textit{finite additivity}

- The Lebesgue measure \(m\) is a finitely additive measure on the Lebesgue \(\sigma\)-algebra (and hence on the null, Jordan, and elementary sub-algebras).

- Lebesgue outer measure is not finitely additive on the discrete algebra.

- Jordan outer measure is not finitely additive on the Lebesgue algebra.

- Let \(x\) be an element of a set \(X\) and \(B\) be a Boolean algebra on \(X\). The \textit{Dirac measure} \(\delta_x\) at \(x\) defined by \(\delta_x(S) = 1_S(x)\) is finitely additive.

- The \textit{zero measure} \(0 : S \rightarrow 0\) is a finitely additive measure on any Boolean algebra.

Remark: A linear combination of finitely additive measures is also a finitely additive measure.

Remark: Let \(X\) be a set and \(B\) be a Boolean algebra on \(X\). The \textit{counting measure} \(\#: B \rightarrow [0, \infty]\), defined as the cardinality of a finite set and infinity for an infinite set, is a finitely additive measure.

Problem 1.30 (Properties of finitely additive measures): Let \(\mu\) be a finitely additive measure on a Boolean \(\sigma\)-algebra \(B\). Let \(S\) and \(T\) be \(B\)-measurable sets. Show that

(i) If \(S \subset T\), then \(\mu(S) \leq \mu(T)\); \hspace{1cm} \textit{monotonicity}

(ii) \(\mu(S \cup T) \leq \mu(S) + \mu(T)\); \hspace{1cm} \textit{finite subadditivity}

(iii) If \(S\) and \(T\) are disjoint, \(\mu(S \cup T) = \mu(S) + \mu(T)\); \hspace{1cm} \textit{finite additivity}

(iv) \(\mu(S \cup T) + \mu(S \cap T) = \mu(S) + \mu(T)\); \hspace{1cm} \textit{inclusion–exclusion}
Problem 1.31: Let \(\mathcal{B} \) be a finite Boolean algebra generated by a finite family \(A_1, A_2, \ldots, A_k \) of non-empty atoms. For every finitely additive measure \(\mu \) on \(\mathcal{B} \), show that there exists unique values \(c_1, \ldots, c_k \in [0, \infty] \) such that
\[\mu(S) = \sum_{1 \leq j \leq k : A_j \subset S} c_j \quad \forall S \in \mathcal{B}. \]
Equivalently, if \(x_j \in A_j \) for \(j \in \{1, \ldots, k\} \),
\[\mu = \sum_{j=1}^{k} c_j \delta_{x_j}. \]

Definition: Let \(\mathcal{B} \) be a \(\sigma \)-algebra on a set \(X \). A countably additive measure or measure \(\mu \) on \(\mathcal{B} \) is a map \(\mu : \mathcal{B} \to [0, \infty] \) such that

(i) \(\mu(\emptyset) = 0; \) \quad \text{nullity}

(ii) If \(S_1, S_2, \ldots \) are disjoint, \(\mu(\bigcup_k S_k) = \sum_{k=1}^{\infty} \mu(S_k). \) \quad \text{countable additivity}

Definition: Let \(X \) be a general space, \(\mathcal{B} \) be a \(\sigma \)-algebra, and \(\mu(S) \in [0, \infty] \) the measure assigned to each \(S \in \mathcal{B} \). We refer to the triple \((X, \mathcal{B}, \mu)\) as a measure space.

- The Lebesgue measure \(m \) is a countably additive measure on the Lebesgue \(\sigma \)-algebra (and hence on every sub-algebra, including the Borel \(\sigma \)-algebra).

- The Dirac measure is countably additive.

- The counting measure is countably additive.

- The restriction of a countably additive measure to a measurable subspace is again countably additive.

Problem 1.32 (Countable combinations of measures): Let \((X, \mathcal{B})\) be a measurable space.

(i) If \(\mu \) is a countably additive measure on \(\mathcal{B} \) and \(c \in [0, \infty] \), then \(c\mu \) is also countably additive on \(\mathcal{B} \).

(ii) If \(\mu_1, \mu_2, \ldots \) are a sequence of countably additive measures on \(\mathcal{B} \), then their sum \(\sum_{k=1}^{\infty} \mu_n \) is also countably additive on \(\mathcal{B} \).
Remark: Since countably additive measures are also finitely additive, they inherit the monotonicity, finite subadditivity, and inclusion-exclusion properties. In addition, one has further properties.

Problem 1.33: Let \((X, \mathcal{B}, \mu)\) be a measure space. Establish the following properties.

(i) If \(S_1, S_2, \ldots\) are \(\mathcal{B}\)-measurable, then
\[
\mu\left(\bigcup_{k=1}^{\infty} S_k\right) \leq \sum_{k=1}^{\infty} \mu(S_k).
\]

countable subadditivity

(ii) If \(S_1 \subset S_2 \subset \ldots\) is an increasing sequence of \(\mathcal{B}\)-measurable sets, then
\[
\mu\left(\bigcup_{k=1}^{\infty} S_k\right) = \lim_{n \to \infty} \mu(S_n) = \sup_n \mu(S_n).
\]

upward monotone convergence

(iii) If \(S_1 \supset S_2 \supset \ldots\) is a decreasing sequence of \(\mathcal{B}\)-measurable sets and at least one of the \(\mu(S_k)\) is finite, then
\[
\mu\left(\bigcap_{k=1}^{\infty} S_k\right) = \lim_{n \to \infty} \mu(S_n) = \inf_n \mu(S_n).
\]

downward monotone convergence

Problem 1.34: (Dominated convergence theorem) Let \((X, \mathcal{B}, \mu)\) be a measure space. Suppose \(S_n, n = 1, 2, \ldots\) are \(\mathcal{B}\)-measurable sets that converge to a set \(S\).

(i) Show that \(S\) is \(\mathcal{B}\)-measurable.

(ii) Suppose that the \(S_n\) are all contained in another \(\mathcal{B}\)-measurable set \(F\) of finite measure. Show that \(m(S_n)\) converges to \(m(S)\).

Hint: apply downward monotone convergence to the sets \(\bigcup_{n>N} (S_n \Delta S)\).

(iii) Give a counterexample to show that the dominated convergence theorem fails if the \(S_n\) are not contained in a set of finite measure.
Problem 1.35: Let X be an at most countable set and \mathcal{B} be the discrete σ-algebra. Show that every measure μ on (X, \mathcal{B}) can be uniquely represented as

$$\mu(S) = \sum_{x \in S} c_x \quad \forall S \subset X,$$

for some $c_x \in [0, \infty]$. Equivalently

$$\mu = \sum_{x \in X} c_x \delta_x.$$

Definition: A null set of a measure space (X, \mathcal{B}, μ) is a \mathcal{B}-measurable space of measure zero.

Definition: A sub-null set is any subset of a null set.

Definition: A measure space is complete if every sub-null set is a null set.

- The Lebesgue measure space $(\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], m)$ is complete.

- The Borel measure space $(\mathbb{R}^d, \mathcal{B}[\mathbb{R}^d], m)$ is not complete.

Definition: The completion of a measure space (X, \mathcal{B}, μ) is its (unique) coarsest refinement $(X, \tilde{\mathcal{B}}, \tilde{\mu})$ that is complete, consisting of sets that differ from a \mathcal{B}-measurable set by a \mathcal{B}-subnull set.

- The completion of the Borel measure space $(\mathbb{R}^d, \mathcal{B}[\mathbb{R}^d], m)$ is the Lebesgue measure space $(\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], m)$.

Remark: Recall that a function is continuous if the inverse image of every open set is open. In a similar spirit, in view of Lemma 1.14, we can now generalize the notion of a Lebesgue measurable function:

Definition: Let (X, \mathcal{B}) be a measurable space, and let $f : X \to [0, \infty]$ (or $f : X \to \mathbb{C}$) be an unsigned or complex-valued function. We say that f is measurable if $f^{-1}(U)$ is \mathcal{B}-measurable for every open subset U of $[0, \infty]$ (or \mathbb{C}).
1.F. ABSTRACT MEASURE SPACES

Problem 1.36: Let \((X, \mathcal{B})\) be a measurable space. Show that

(i) a function \(f : X \to [0, \infty]\) is measurable iff the level sets \(\{x \in X : f(x) > \lambda\}\) are measurable;

(ii) an indicator function \(1_S\) of a set \(S \subset X\) is measurable iff \(S\) is measurable;

(iii) a function \(f : X \to \mathbb{C}\) is measurable iff \(f^{-1}(S)\) is measurable for every Borel-measurable subset \(S\) of \([0, \infty]\) (or \(\mathbb{C}\));

(iv) a function \(f : X \to \mathbb{C}\) is measurable iff its real and imaginary parts are measurable;

(v) a function \(f : X \to \mathbb{R}\) is measurable iff the magnitudes \(f_+ \doteq \max(f, 0), f_- \doteq \max(-f, 0)\) of its positive and negative parts are measurable;

(vi) the pointwise limit \(f\) of a sequence of measurable functions \(f_n : X \to [0, \infty]\) (or \(\mathbb{C}\)) is also measurable;

(vii) if \(f : X \to [0, \infty]\) (or \(\mathbb{C}\)) is measurable and \(\phi : [0, \infty] \to [0, \infty]\) (or \(\mathbb{C} \to \mathbb{C}\)) is continuous, then \(\phi \circ f\) is measurable;

(viii) the sum or product of two measurable functions in \([0, \infty]\) (or \(\mathbb{C}\)) is measurable.

Remark: Recall that the atomic algebra \(\mathcal{A}(\{A_\alpha : \alpha \in I\})\) is the collection of all subsets of \(X\) that can be represented as the union of one more disjoint atoms \(A_\alpha\).

- Every finite Boolean algebra is an atomic algebra.

Problem 1.37: Let \((X, \mathcal{B})\) be a measurable space that is atomic, so that \(\mathcal{B} = \mathcal{A}(\{A_\alpha : \alpha \in I\})\) for some partition \(\bigcup_{\alpha \in I} A_\alpha\) of \(X\) into disjoint nonempty atoms. Show that a function \(f : X \to [0, \infty]\) or \(f : X \to \mathbb{C}\) is measurable iff it is constant on each atom:

\[f = \sum_{\alpha \in I} c_\alpha 1_{A_\alpha} \]

for some constants \(c_\alpha\) in \([0, \infty]\) or in \(\mathbb{C}\), as appropriate. Furthermore, \(c_\alpha\) are uniquely determined by \(f\).

Remark: We also have an abstract version of Egorov’s theorem:

Theorem 1.7 (Egorov’s theorem): Let \((X, \mathcal{B}, \mu)\) be a finite measure space, that is, \(\mu(X) < \infty\) and let \(f_n : X \to \mathbb{C}\) be a sequence of measurable functions that converge pointwise almost everywhere to \(f : X \to \mathbb{C}\). Given \(\epsilon > 0\), there exists a \(\mathcal{B}\)-measurable set \(S\) of measure at most \(\epsilon\) such that \(f_n\) converges locally uniformly to \(f\) outside of \(S\).
Definition: Let \((X, \mathcal{B}, \mu)\) be a measure space, with \(\mathcal{B}\) finite (and hence atomic). Let \(\mathcal{B} = \mathcal{A}(\{A_\alpha : \alpha \in I\})\) for some partition \(\bigcup_{\alpha \in I} A_\alpha\) of \(X\) into disjoint nonempty atoms. If \(f : X \to [0, \infty]\) is measurable, it has a unique representation of the form

\[
f = \sum_{k=1}^{n} c_k 1_{A_k}
\]

for some constants \(c_k\) in \([0, \infty]\). We then define the simple integral

\[
\text{Simp} \int_X f \, d\mu \doteq \sum_{k=1}^{n} c_k \mu(A_k)
\]

Remark: The precise decomposition of \(\mathcal{B}\) into atoms does not affect the value of the simple integral.

Remark: Having defined the simple integral of unsigned measurable functions, we can then construct the simple integral of real-valued and complex-valued valued functions as we did for Lebesgue measurable functions.

Remark: We immediately see that we have the monotonicity property \(f \leq g\) implies \(\text{Simp} f \, d\mu \leq \text{Simp} g \, d\mu\) as well as linearity:

\[
\text{Simp} \int_X (f + g) \, d\mu = \text{Simp} \int_X f \, d\mu + \text{Simp} \int_X g \, d\mu
\]

and

\[
\text{Simp} \int_X cf \, d\mu = c \text{Simp} \int_X f \, d\mu
\]

for every measurable functions \(f\) and \(g\), with \(c \in [0, \infty]\).

Remark: Let \((X, \mathcal{B}, \mu)\) be a measure space, and \((X, \mathcal{B}', \mu')\) be a refinement of \((X, \mathcal{B}, \mu)\), in the sense that \(\mathcal{B}'\) contains \(\mathcal{B}\) and \(\mu'\) agrees with \(\mu\) on \(\mathcal{B}\). If \(\mathcal{B}'\) is finite, and \(f : \mathcal{B} \to [0, \infty]\) is measurable, then

\[
\text{Simp} \int_X f \, d\mu = \text{Simp} \int_X f \, d\mu'
\]

This allows us to extend the simple integral to simple functions:

Definition: An unsigned simple function \(f : X \to [0, \infty]\) on a measurable space \((X, \mathcal{B})\) is a measurable function that takes on finitely many values \(a_1, \ldots, a_k\).
Definition: Simple functions are automatically measurable with respect to at least one finite sub-algebra B' of B, namely the σ-algebra B' generated by the preimages $f^{-1}(\{a_1\}), \ldots, f^{-1}(\{a_k\})$. We then define

$$\text{Simp} \int_X f \, d\mu = \text{Simp} \int_X f \, d\mu|_{B'},$$

where $\mu|_{B'}$ is the restriction of μ to B'.

Theorem 1.8 (Properties of the simple integral): Let (X, B, μ) be a measure space and let $f, g : X \to [0, \infty]$ be simple functions. Then

(i) if $f \leq g$ pointwise, $\text{Simp} \int_X f \, d\mu \leq \text{Simp} \int_X g \, d\mu$; monotonicity

(ii) $\text{Simp} \int_X 1_S \, d\mu = \mu(S)$ for every B-measurable set S; compatibility

(iii) $\text{Simp} \int_X cf \, d\mu = c\text{Simp} \int_X f \, d\mu$ for every $c \in [0, \infty]$; homogeneity

(iv) $\text{Simp} \int_X (f + g) \, d\mu = \text{Simp} \int_X f \, d\mu + \text{Simp} \int_X g \, d\mu$; finite additivity

(v) if (X, B', μ') is a refinement of (X, B, μ), $\text{Simp} \int_X f \, d\mu = \text{Simp} \int_X f \, d\mu'$; refinement

(vi) if $f(x) = g(x)$ for μ-almost every $x \in X$, $\text{Simp} \int_X f \, d\mu = \text{Simp} \int_X g \, d\mu$; equivalence

(vii) $\text{Simp} \int_X f \, d\mu < \infty$ iff f is finite almost everywhere and is supported on a set of finite measure; finiteness

(viii) $\text{Simp} \int_X f \, d\mu = 0$ iff f is zero almost everywhere. vanishing

Definition: Let (X, B, μ) be a measure space and let $f : X \to [0, \infty]$ be measurable. The **unsigned integral** is

$$\int_X f \, d\mu \doteq \sup_{h \text{ simple}} \text{Simp} \int_X h \, d\mu.$$

Remark: If f is Lebesgue measurable, this definition reduces to the unsigned Lebesgue integral: $\int_X f \, dm = \int_{\mathbb{R}^d} f$.

Theorem 1.9 (Properties of the unsigned integral): Let (X, B, μ) be a measure space and let $f, g : X \to [0, \infty]$ be measurable. Then

(i) If $f = g$ μ-almost everywhere, then $\int_X f \, d\mu = \int_X g \, d\mu$; equivalence

(ii) if $f \leq g$ for μ-almost everywhere, $\int_X f \, d\mu \leq \int_X g \, d\mu$; monotonicity
(iii) For every \(c \in [0, \infty] \),
\[
\int_X c f \, d\mu = c \int_X f \, d\mu;
\]
\text{homogeneity}

(iv) \(\int_X (f + g) \geq \int_X f + \int_X g \);
\text{superadditivity}

(v) If \(f \) is simple, then \(\int_X f \, d\mu = \text{Simp} \int_X f \, d\mu \);
\text{compatibility}

(vi) For every \(\lambda \in (0, \infty) \),
\[
\mu(\{x \in \mathbb{R}^d : f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_X f \, d\mu;
\]
\text{Markov’s inequality}

(vii) If \(\int_X f \, d\mu < \infty \), then \(f \) is finite for \(\mu \)-almost every \(x \);
\text{finiteness}

(viii) If \(\int_X f \, d\mu = 0 \), then \(f \) is zero for \(\mu \)-almost every \(x \);
\text{vanishing}

(ix)
\[
\lim_{n \to \infty} \int_X \min(f, n) \, d\mu = \int_X f \, d\mu;
\]
\text{vertical truncation}

(x) If \(S_1 \subset S_2 \subset \ldots \) is an increasing sequence of \(\mathcal{B} \)-measurable sets,
\[
\lim_{n \to \infty} \int_X f 1_{S_n} \, d\mu = \int_X f 1_{\bigcup_{n=1}^{\infty} S_n} \, d\mu;
\]
\text{horizontal truncation}

(xi) If \(Y \) is a measurable subset of \(X \), then \(\int_X f 1_Y \, d\mu = \int_Y f 1_Y \, d\mu |_Y \), where \(f|_Y \) and \(\mu|_Y \) denote the restriction of \(f \) and \(\mu \) to \(Y \).
\text{restriction}

Theorem 1.10 (Properties of the unsigned integral): Let \((X, \mathcal{B}, \mu) \) be a measure space and let \(f, g : X \to [0, \infty] \) be measurable. Then
\[
\int_X (f + g) \, d\mu = \int_X f \, d\mu + \int_X g \, d\mu
\]

Proof: From superadditivity, we only need to establish
\[
\int_X (f + g) \, d\mu \leq \int_X f \, d\mu + \int_X g \, d\mu.
\]

If \(\mu(X) < \infty \) and \(f \) and \(g \) are bounded, given \(\epsilon > 0 \), let \(f^\epsilon \) and \(f_* \) be the simple functions obtained by rounding \(f \) up and down, respectively, to the nearest integer multiple of \(\epsilon \). Then for all \(x \in X \),
\[
f_*(x) \leq f(x) \leq f^\epsilon(x)
\]
and
\[f^\epsilon(x) - f(x) \leq \epsilon. \]

We similarly define \(g^\epsilon \) and \(g_\epsilon \), so that
\[f + g \leq f^\epsilon + g^\epsilon \leq f_\epsilon + g_\epsilon + 2\epsilon, \]
Hence
\[
\int_X (f + g) d\mu \leq \text{Simp} \int_X (f_\epsilon + g_\epsilon + 2\epsilon) d\mu = \text{Simp} \int_X f_\epsilon d\mu + \text{Simp} \int_X g_\epsilon d\mu + 2\epsilon \mu(X).
\]
The desired result follows on letting \(\epsilon \to 0 \).

If \(\mu(X) < \infty \) but \(f \) and \(g \) are not necessarily bounded, one can use vertical truncations to reduce the problem to the above case and then take the limit.

If \(\mu(X) = \infty \) and one of \(\int_X f d\mu \) or \(\int_X g d\mu \) is infinite, then by superadditivity so is \(\int_X (f + g) d\mu \), from which the desired inequality follows.

Otherwise, if \(\mu(X) = \infty \) but \(\int_X f d\mu \) and \(\int_X g d\mu \) are both finite, we can conclude from Markov's inequality that \(S_n = \{x \in X : f(x) > 1/n \} \cup \{x \in X : g(x) > 1/n \} \) has finite measure for each \(n \in \mathbb{N} \). Since \(S_n \) are an increasing sequence of measurable sets, we can apply horizontal truncation:
\[
\lim_{n \to \infty} \int_X (f + g) 1_{S_n} d\mu = \int_X (f + g) 1_{\bigcup_{n=1}^\infty S_n} d\mu = \int_X (f + g) d\mu,
\]
noting that \(\bigcup_{n=1}^\infty S_n \) is the support of \(f + g \). Our previous results establish that
\[
\int_X (f + g) 1_{S_n} d\mu \leq \int_X f 1_{S_n} d\mu + \int_X g 1_{S_n} d\mu.
\]
The desired inequality then follows on taking the limit \(n \to \infty \) and using horizontal truncation.

Problem 1.38: (Linearity in \(\mu \)) Let \((X, \mathcal{B}, \mu)\) be a measure space and let \(f : X \to [0, \infty] \) be measurable. Show that

(i) \(\int_X f d(c \mu) = c \int_X f d\mu \) for every \(c \in [0, \infty] \).

(ii) if \(\mu_1, \mu_2, \ldots \) are a sequence of measures on \(\mathcal{B} \),
\[
\int_X f d\left(\sum_{k=1}^\infty \mu_k\right) = \sum_{k=1}^\infty \int_X f d\mu_k.
\]
Problem 1.39 (Sums as integrals): Let X be an arbitrary set, with the discrete σ-algebra, and $#$ be the counting measure. Show that every unsigned function $f : X \to [0, \infty]$ is measurable, with
\[
\int_X f \, d# = \sum_{x \in X} f(x).
\]

Definition: Let (X, \mathcal{B}, μ) be a measure space. A measurable function $f : X \to \mathbb{C}$ is said to be absolutely integrable if $|f|_{L^1(X, \mathcal{B}, \mu)} = \int_X |f| \, d\mu < \infty$.

Definition: The space of absolutely integrable functions on (X, \mathcal{B}, μ) is denoted by $L^1(X, \mathcal{B}, \mu)$ or simply $L^1(\mu)$.

Definition: If f is real-valued and absolutely integrable, we define
\[
\int_X f \, d\mu \doteq \int_X f_+ \, d\mu - \int_X f_- \, d\mu,
\]
where $f_+ \doteq \max(f, 0)$ and $f_- \doteq \max(-f, 0)$.

Definition: If f is complex-valued and absolutely integrable, we define
\[
\int_X f \, d\mu \doteq \int_X \text{Re} f \, d\mu + i \int_X \text{Im} f \, d\mu.
\]

Theorem 1.11: Let (X, \mathcal{B}, μ) be a measure space and $f, g \in L^1(X, \mathcal{B}, \mu)$. Then

(i) $L^1(X, \mathcal{B}, \mu)$ is a complex vector space;

(ii) the map $f \mapsto \int_X f \, d\mu$ is a complex-linear map from $L^1(X, \mathcal{B}, \mu)$ to \mathbb{C};

(iii) $|f + g|_{L^1(\mu)} \leq |f|_{L^1(\mu)} + |g|_{L^1(\mu)}$

(iv) $|cf|_{L^1(\mu)} = |c||f|_{L^1(\mu)}$ for every $c \in \mathbb{C}$;

(v) if $f = g$ μ-almost everywhere in X, we have $\int_X f \, d\mu = \int_X g \, d\mu$;

(vi) if (X, \mathcal{B}', μ') is a refinement of (X, \mathcal{B}, μ) then $f \in L^1(X, \mathcal{B}', \mu')$ and $\int_X f \, d\mu' = \int_X f \, d\mu$;

(vii) $|f|_{L^1(\mu)} = 0$ iff f is zero μ-almost everywhere;

(viii) if $Y \subset X$ is \mathcal{B}-measurable, then $f_Y \in L^1(Y, \mathcal{B}|_Y, \mu|_Y)$ and $\int_X f \, 1_Y \, d\mu = \int_Y f \, 1_Y \, d\mu|_Y$.

Q. Under what conditions can we interchange integrals and limits? That is, given a sequence of measurable functions f_n that converges pointwise μ-almost everywhere to a function f, under what conditions does

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X \lim_{n \to \infty} f_n \, d\mu?$$

A. There are a number of possible conditions, which we will discuss one at a time.

Theorem 1.12 (Uniform convergence on finite spaces): Suppose that (X, B, μ) is a finite measure space ($\mu(X) < \infty$) and $f_n : X \to [0, \infty]$ (or \mathbb{C}) is a sequence of measurable (or absolutely integrable) functions that converges uniformly to a limit f. Then $\int_X f_n \, d\mu$ converges to $\int_X f \, d\mu$.

Remark: If we relax the finite measure or uniformity conditions, it is easy to construct examples in which the interchange of limit processes is invalid:

- In $(\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], m)$, consider that $f_n = 1_{[n, n+1]}$ converges pointwise to 0 but $\int_{\mathbb{R}} f_n = 1$ does not converge to $\int_{\mathbb{R}} f = 0$. We say that the “mass” of the functions f_n “escapes to horizontal infinity.”

- In $(\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], m)$, consider that $f_n = \frac{1}{n} 1_{[0, n]}$ converges uniformly to 0 but $\int_{\mathbb{R}} f_n = 1$ does not converge to $\int_{\mathbb{R}} f = 0$. We say that the mass of the functions f_n “escapes to width infinity.”

- In $(\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], m)$, consider that $f_n = n 1_{[\frac{1}{n}, 2 \frac{1}{n}]}$ converges pointwise to 0 but $\int_{\mathbb{R}} f_n = 1$ does not converge to $\int_{\mathbb{R}} f = 0$. We say that the mass of the functions f_n “escapes to vertical infinity.”

Remark: One way to prevent these three avenues of escape to infinity is to enforce monotonicity; this prevents each function f_n from “abandoning” the location where the mass of its predecessors was concentrated.

Theorem 1.13 (Monotone convergence theorem): Let (X, B, μ) be a measure space and $f_1 \leq f_2 \leq \ldots$ be an increasing sequence of unsigned measurable functions on X. Then

$$\int_X \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu.$$
Proof: Let \(f = \lim_{n \to \infty} f_n \), which by Problem 1.36 (vi) is measurable. Let \(g \leq f \) be any simple unsigned function. By applying vertical truncation, we can assume that \(g \) is finite everywhere, so that \(g = \sum_{k=1}^{m} c_k 1_{A_k} \) for some \(c_k \in [0, \infty) \) and disjoint \(\mathcal{B} \)-measurable sets \(A_1, \ldots A_m \). Thus
\[
\int_X g \, d\mu = \sum_{k=1}^{m} c_k \mu(A_k).
\]
For each \(x \in A_k \) we know
\[
\sup_n f_n(x) = f(x) \geq g(x) = c_k.
\]
Let \(\epsilon \in (0, 1) \). Since the sets
\[
A_{k,n} = \{ x \in A_k : f_n(x) > (1 - \epsilon)c_k \}
\]
increase in \(n \) to \(A_k \) and are measurable, we know from upwards monotonicity that
\[
\lim_{n \to \infty} \mu(A_{k,n}) = \mu(A_k).
\]
Moreover, on integrating the inequality
\[
f_n > (1 - \epsilon) \sum_{k=1}^{m} c_k 1_{A_{k,n}},
\]
we find
\[
\int f_n \, d\mu \geq (1 - \epsilon) \sum_{k=1}^{m} c_k \mu(A_{k,n}),
\]
On taking the limit as \(n \to \infty \), we find
\[
\lim_{n \to \infty} \int f_n \, d\mu \geq (1 - \epsilon) \sum_{k=1}^{m} c_k \mu(A_k) = (1 - \epsilon) \int g \, d\mu,
\]
Since \(\epsilon \in (0, 1) \) is arbitrary, it follows that
\[
\lim_{n \to \infty} \int_X f_n \, d\mu \geq \int_X g \, d\mu.
\]
On taking the supremum over all simple functions \(g \leq f \), we find
\[
\lim_{n \to \infty} \int_X f_n \, d\mu \geq \int_X f \, d\mu.
\]
Since the reverse inequality holds by monotonicity:
\[
\lim_{n \to \infty} \int_X f_n \, d\mu \leq \int_X f \, d\mu,
\]
we arrive at the desired result.
Corollary 1.13.1 (Tonelli’s theorem for sums and integrals): Let \((X, \mathcal{B}, \mu)\) be a measure space and \(f_1, f_2, \ldots\) be a sequence of unsigned measurable functions on \(X\). Then
\[
\int_X \sum_{k=1}^\infty f_k \, d\mu = \sum_{k=1}^\infty \int_X f_k \, d\mu.
\]

Proof: Apply Theorem 1.13 to the partial sums \(\sum_{k=1}^n f_k\).

Corollary 1.13.2 (Borel–Cantelli lemma): Let \((X, \mathcal{B}, \mu)\) be a measure space and \(S_1, S_2, \ldots\) be a sequence of \(\mathcal{B}\)-measurable sets such that \(\sum_{k=1}^\infty \mu(S_k) < \infty\). Then for \(\mu\)-almost every \(x \in X\) the set \(\{k \in \mathbb{N} : x \in S_k\}\) is finite.

Proof: Apply Tonelli’s theorem to \(1_{S_k}\).

Remark: When one does not have monotonicity, Fatou’s lemma at least provides an inequality:

Corollary 1.13.3 (Fatou’s lemma): Let \((X, \mathcal{B}, \mu)\) be a measure space and \(f_1, f_2, \ldots\) be a sequence of unsigned measurable functions on \(X\). Then
\[
\int_X \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int_X f_n \, d\mu.
\]

Proof: By definition,
\[
\liminf_{n \to \infty} f_n = \lim_{n \to \infty} F_n,
\]
where \(F_n = \inf_{k \geq n} f_k\). Monotonicity implies that \(\int_X F_n \, d\mu \leq \int_X f_k \, d\mu\) for all \(k \geq n\); hence,
\[
\int_X F_n \, d\mu \leq \inf_{k \geq n} \int_X f_k \, d\mu.
\]
Since \(\{F_n\}_{n=1}^\infty\) is an increasing sequence of measurable functions, we know by Theorem 1.13 that
\[
\int_X \lim_{n \to \infty} F_n \, d\mu = \lim_{n \to \infty} \int_X F_n \, d\mu \leq \liminf_{n \to \infty} \int_X f_k \, d\mu = \liminf_{n \to \infty} \int_X f_n \, d\mu.
\]

Remark: Fatou’s lemma tells us that while the “mass” \(\int_X f_n \, d\mu\) can be destroyed in taking pointwise limits, as we saw in the three escapes to infinity, it cannot be created.

Definition: Let \((X, \mathcal{B}, \mu)\) be a measure space and \((Y, \mathcal{C})\) be a measurable space. A measurable morphism is a function \(\phi : X \to Y\) such that \(\phi^{-1}(S)\) is \(\mathcal{B}\)-measurable for every \(\mathcal{C}\)-measurable set \(S\).
Remark: Let \((X, \mathcal{B}, \mu)\) be a measure space, \((Y, \mathcal{C})\) be a measurable space, and \(\phi\) be a measurable morphism from \(X\) to \(Y\). The pushforward \(\phi_* \mu(S) = \mu(\phi^{-1}(S))\) is a measure on \(\mathcal{C}\), so that \((Y, \mathcal{C}, \phi_* \mu)\) is a measure space.

- If \(T : \mathbb{R}^d \to \mathbb{R}^d\) is an invertible linear transformation, then \(T_* m = \frac{1}{|\det T|} m\).

Corollary 1.13.4 (Change of variables): Let \((X, \mathcal{B}, \mu)\) be a measure space, and \(\phi\) be a measurable morphism from \(X\) to \(Y\). If \(f : Y \to [0, \infty]\) is measurable, then

\[
\int_Y f \, d\phi_* \mu = \int_X f \circ \phi \, d\mu.
\]

Remark: Another important way to avoid loss of mass in taking pointwise limits is to dominate all of the functions by an absolutely integrable one:

Theorem 1.14 (Dominated convergence theorem): Let \((X, \mathcal{B}, \mu)\) be a measure space and \(f_1, f_2, \ldots\) be a sequence of complex-valued measurable functions on \(X\) that converge pointwise \(\mu\)-almost everywhere on \(X\). If there exists an unsigned absolutely integrable function \(G : X \to [0, \infty]\) such that \(|f_n| \leq G\ \mu\)-almost everywhere, then

\[
\int_X \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu.
\]

Proof: Without loss of generality, by considering real and imaginary parts, we may assume that the functions \(f_n\) are real and modify them on null sets so that \(\mu\)-almost “everywhere” becomes “everywhere”. Then \(-G \leq f_n \leq G\). Let \(f = \lim_{n \to \infty} f_n\).

On applying Fatou’s lemma to \(f_n + G\) and \(G - f_n\), we find

\[
\int_X (f + G) \, d\mu \leq \liminf_{n \to \infty} \int_X (f_n + G) \, d\mu
\]

and

\[
\int_X (G - f) \, d\mu \leq \liminf_{n \to \infty} \int_X (G - f_n) \, d\mu.
\]

Since \(G\) is absolutely integrable, we may subtract the finite quantity \(\int_X G \, d\mu\) from both sides of these equations to obtain

\[
\limsup_{n \to \infty} \int_X f_n \, d\mu \leq \int_X f \, d\mu \leq \liminf_{n \to \infty} \int_X f_n \, d\mu.
\]

The desired result then follows from the fact that \(\liminf_{n \to \infty} \int_X f_n \, d\mu \leq \limsup_{n \to \infty} \int_X f_n \, d\mu\).

1.G Modes of convergence
1.G. MODES OF CONVERGENCE

Definition: A sequence of functions \(f_n : X \to \mathbb{C} \) converges pointwise almost everywhere to \(f : X \to \mathbb{C} \) if for every \(\epsilon > 0 \) and almost every \(x \in X \) there exists \(N = N(\epsilon, x) \) such that \(|f_n(x) - f(x)| < \epsilon \) whenever \(n \geq N \).

Definition: A sequence of functions \(f_n : X \to \mathbb{C} \) converges uniformly almost everywhere (or in \(L^\infty \) norm) to \(f : X \to \mathbb{C} \) if for every \(\epsilon > 0 \) there exists \(N = N(\epsilon) \) such that \(|f_n(x) - f(x)| < \epsilon \) for almost every \(x \in X \) whenever \(n \geq N \).

Definition: A sequence of functions \(f_n : X \to \mathbb{C} \) converges almost uniformly to \(f : X \to \mathbb{C} \) if for every \(\epsilon > 0 \) there exists \(N = N(\epsilon) \) and an exceptional set \(E_\epsilon \) of measure less than \(\epsilon \) such that \(|f_n(x) - f(x)| < \epsilon \) for every \(x \in X \setminus E_\epsilon \) whenever \(n \geq N \).

Definition: A sequence of functions \(f_n : X \to \mathbb{C} \) converges in the \(L^1 \) norm if \(|f_n - f|_{L^1} \) converges to 0 as \(n \to \infty \).

Definition: A sequence of functions \(f_n : X \to \mathbb{C} \) converges in measure \(\mu \) if for every \(\epsilon > 0 \), the measures \(\mu(\{x \in X : |f_n(x) - f(x)| \geq \epsilon \}) \) converge to 0 as \(n \to \infty \).

- In \((\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], \mu)\), we see that \(f_n = 1_{[n,n+1]} \) converges pointwise to 0 but not uniformly, in the \(L^\infty \) or \(L^1 \) norms, almost uniformly, or in measure.

- In \((\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], \mu)\), we see that \(f_n = \frac{1}{n^2} 1_{[0,n]} \) converges uniformly to 0 (and hence pointwise, in the \(L^\infty \) norm, almost uniformly, and in measure) but not in the \(L^1 \) norm.

- In \((\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], \mu)\), we see that \(f_n = n 1_{[\frac{1}{n}, \frac{2}{n}]} \) converges to 0 pointwise and almost uniformly (and hence in measure), but not uniformly or in the \(L^\infty \) or \(L^1 \) norms.

- In \((\mathbb{R}^d, \mathcal{L}[\mathbb{R}^d], \mu)\), the typewriter sequence
 \[
 f_n = 1_{\left[\frac{n-2^k}{2^k}, \frac{n-2^{k+1}}{2^k} \right]} \quad \text{for} \ k \geq 0 \ \text{and} \ n \in [2^k, 2^{k+1} - 1]
 \]
 converges to zero in measure and in the \(L^1 \) norm, but not pointwise almost everywhere, almost uniformly, or in the \(L^\infty \) norm.

Remark: The \(L^\infty \) norm \(|f|_{L^\infty} \) of a measurable function is the infimum of all \(M \in [0, \infty] \) such that \(|f| \leq M \) for almost all \(x \).
Remark: The five modes of convergence are all compatible in the sense that, outside of a set of measure zero, they never disagree about which function a sequence of functions converges to.

Remark: If a sequence of absolutely integrable functions f_n converges to f in the L^1 norm, the triangle inequality implies that

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$

Definition: We say that a sequence $f_n : X \to \mathbb{C}$ is dominated if there exists an absolutely integrable function $g : X \to [0, \infty]$ such that $|f_n(x)| \leq g(x)$ for all n and almost every $x \in X$.

Problem 1.40: If a dominated sequence $f_n : X \to \mathbb{C}$ converges pointwise almost everywhere, show that it converges in the L^1 norm.

Definition: A sequence $f_n : X \to \mathbb{C}$ of absolutely integrable functions is said to be uniformly integrable if the following three statements all hold:

(i) (Uniform bound on L^1 norm) One has $\sup_n |f_n|_{L^1} < \infty$.

(ii) (No escape to vertical infinity) One has $\sup_n \int_{|f_n| \geq M} |f_n| \, d\mu \to 0$ as $M \to \infty$.

(iii) (No escape to width infinity) One has $\sup_n \int_{|f_n| \leq \delta} |f_n| \, d\mu \to 0$ as $\delta \to 0$.

Theorem 1.15 (Uniformly integrable convergence in measure): Let $f_n : X \to \mathbb{C}$ be a uniformly integrable sequence of functions, and let $f : X \to \mathbb{C}$ be another function. Then f_n converges in L^1 norm iff f_n converges to f in measure.

Proof: See Tao, Theorem 1.5.13.

1.1 Differentiation theorems

Definition: Let $[a, b]$ be a compact interval of positive length. A function $F : [a, b] \to \mathbb{R}$ is almost-everywhere differentiable if the limit

$$F'(x) \equiv \lim_{y \to x, y \neq x} \frac{F(y) - F(x)}{y - x}$$

exists for almost all $x \in [a, b]$.
1.H. DIFFERENTIATION THEOREMS

Problem 1.41: Provide an example that illustrates that an almost-everywhere differentiable function need not be continuous everywhere.

Problem 1.42: If \(F : [a, b] \to \mathbb{R} \) is almost-everywhere differentiable, show that \(F \) is continuous almost everywhere.

Problem 1.43: If \(F : [a, b] \to \mathbb{R} \) is almost-everywhere differentiable, show that (the almost-everywhere defined derivative) \(F' \) is measurable.

Hint: \(F'(x) = \lim_{n \to \infty} n(F(x + 1/n) - F(x)) \).

Definition: If \(F \) is differentiable and its derivative \(F' \) is continuous, we say that \(F \) is continuously differentiable.

Problem 1.44: Let \(f : \mathbb{R} \to \mathbb{C} \) be an absolutely integrable function. Show that the indefinite integral \(F(x) = \int_{[-\infty, x]} f(t) \, dt \) is a continuous function on \(\mathbb{R} \).

Remark: In order to extend the fundamental theorem of calculus to the Lebesgue integral, we first need to establish some preliminary results.

Lemma 1.17 (Rising sun lemma): Let \(F \) be a real-valued continuous function on \([a, b]\) and \(S = \{ x \in [a, b] : F(x) < F(y) \text{ for some } y \in (x, b) \} \). Define \(U = S \cap (a, b) \).

Then \(U \) is open and may be written as a countable union of disjoint intervals \(U = \bigcup_k (a_k, b_k) \) such that \(F(a_k) = F(b_k) \), unless \(a_k = a \in S \) for some \(k \), in which case \(F(a) < F(b_k) \) for that one \(k \). Furthermore, if \(x \in (a_k, b_k) \), then \(F(x) < F(b_k) \).

Remark: If we imagine the graph of the function \(F \) as a hilly landscape, with the sun shining horizontally from the right (rising from the east), the set \(U \) consist of those points that are in shadow.

Proof:

Claim: If \([c, d] \subset S \), with \(d \not\in S \), then \(F(c) < F(d) \). Otherwise, suppose \(F(c) \geq F(d) \). Then \(F \) achieves its maximum on \([c, d]\) at some point \(x < d \). Since \(x \in S \), we know that \(F(x) < F(y) \) for some \(y \in (x, b] \). But \(F(x) < F(y) \) implies that \(y \not\in [c, d] \).

Hence \(x \in [d, b] \) and \(F(d) \leq F(x) < F(y) \), contradicting \(d \not\in S \).

Since \(F \) is continuous, \(U \) is open and can be expressed as a countable union of disjoint intervals \((a_k, b_k)\).

Since \(b_k \not\in S \), the claim establishes that \(x \in (a_k, b_k) \Rightarrow F(x) < F(b_k) \). Since \(F \) is continuous, \(F(a_k) \leq F(b_k) \).

If \(a_k = a \in S \), the claim tells us that \(F(a) < F(b_k) \).

Otherwise if \(a \not\in S \), then \(a_k \not\in S \), so \(F(a_k) \geq F(b_k) \). Thus, \(F(a_k) = F(b_k) \).
Lemma 1.18 (One-sided Hardy-Littlewood maximal inequality): Let \(f : \mathbb{R} \to \mathbb{C} \) be an absolutely integrable function and let \(\lambda > 0 \). Then

\[
m\left(\left\{ x \in \mathbb{R} : \sup_{h>0} \frac{1}{h} \int_{[x,x+h]} |f(t)| \, dt \geq \lambda \right\} \right) \leq \frac{1}{\lambda} \int_{\mathbb{R}} |f(t)| \, dt.
\]

Proof: Let \([a, b]\) be any compact interval and define

\[
S_\lambda \doteq \left\{ x \in [a, b] : \sup_{h>0 \atop [x,x+h] \subset [a,b]} \frac{1}{h} \int_{[x,x+h]} |f(t)| \, dt > \lambda \right\}.
\]

We first establish for any \(\epsilon \in (0, \lambda) \) that

\[
m(S_{\lambda-\epsilon}) \leq \frac{1}{\lambda - \epsilon} \int_{\mathbb{R}} |f(t)| \, dt.
\]

Consider the continuous function

\[
F(x) = \int_{[a,x]} |f(t)| \, dt - x(\lambda - \epsilon)
\]

and note that the inequality \(\frac{1}{h} \int_{[x,x+h]} |f(t)| \, dt > \lambda - \epsilon \) reduces to \(F(x + h) > F(x) \).

On applying the rising sun lemma to \(F \), we see that there exists a countable sequence of disjoint intervals \(\{(a_k, b_k)\}_{k=1}^{\infty} \) such that

\[
S_{\lambda-\epsilon} \subset \bigcup_{k=1}^{\infty} (a_k, b_k).
\]

By countable additivity and monotonicity, we then find that

\[
m(S_{\lambda-\epsilon}) \leq \sum_{k=1}^{\infty} (b_k - a_k).
\]

The rising sun lemma also tells us that

\[
0 \leq F(b_k) - F(a_k) = \int_{[a_k,b_k]} |f(t)| \, dt - (b_k - a_k)(\lambda - \epsilon),
\]

so

\[
m(S_{\lambda-\epsilon}) \leq \sum_{k=1}^{\infty} (b_k - a_k) \leq \frac{1}{\lambda - \epsilon} \sum_{k=1}^{\infty} \int_{[a_k,b_k]} |f(t)| \, dt \leq \frac{1}{\lambda - \epsilon} \int_{[a,b]} |f(t)| \, dt,
\]

where we have exploited additivity and monotonicity.

Finally, since

\[
\left\{ x \in [a, b] : \sup_{h>0 \atop [x,x+h] \subset [a,b]} \frac{1}{h} \int_{[x,x+h]} |f(t)| \, dt \geq \lambda \right\} \subset S_{\lambda-\epsilon},
\]

the desired result then follows on letting \(\epsilon \to 0 \) and then applying upward monotonicity.
Theorem 1.16 (Lebesgue differentiation theorem on \mathbb{R}): Let $f : \mathbb{R} \to \mathbb{C}$ be an absolutely integrable function. Then

\[
\lim_{h \to 0^+} \frac{1}{h} \int_{[x,x+h]} f(t) \, dt = f(x)
\]

and

\[
\lim_{h \to 0^+} \frac{1}{h} \int_{[x-h,x]} f(t) \, dt = f(x)
\]

for almost every $x \in \mathbb{R}$.

Corollary 1.16.1: Let $f : \mathbb{R} \to \mathbb{C}$ be an absolutely integrable function, and let $F : \mathbb{R} \to \mathbb{C}$ be the indefinite integral $F(x) \doteq \int_{[-\infty,x]} f(t) \, dt$. Then F is continuous and almost everywhere differentiable, with $F'(x) = f(x)$ for almost every $x \in \mathbb{R}$.
Bibliography

Index

- algebra, 30
- linear operator, 40
\(L^1 \) semi-norm, 39
\(L^1(X, \mathcal{B}, \mu) \), 56
\(L^1(\mu) \), 56
\(L^\infty \) norm, 61
Simp\((\mathbb{R}^d)\), 30
Simp\(+\)(\(\mathbb{R}^d\)), 30
\(\delta \)-algebra, 23
\(= \), 10
\(\sigma \)-algebra, 23, 45
countable additivity, 25

- absolutely integrable, 31, 39, 56
- absolutely summable, 29
- agree almost everywhere, 31
- almost disjoint, 19
- almost everywhere, 31
- almost uniformly, 61
- atomic algebra, 44, 51
- atoms, 44
- axiom of choice, 5

- Banach–Tarski, 4
- Boolean algebra, 23, 43
- Boolean closure, 14
- Borel \(\sigma \)-algebra, 46
- Borel measurable, 46
- box, 10

- closed dyadic cube, 20
- closed Euclidean ball, 14
- closed half spaces, 13
- coarser than, 44
- compatibility, 37, 53, 54

- complementarity, 37
- complete, 50
- completion, 50
- continuously differentiable, 63
- converges absolutely, 29
- converges pointwise, 27
- convex polytope, 13
- countable additivity, 48
- countable disjoint additivity, 8
- countable subadditivity, 16, 49
- countably additive measure, 48
- counting measure, 47

- derivative, 63
- diameter, 17
- Dirac measure, 47
- Dirichlet, 5
- discrete algebra, 44
- distance, 17
- Downward monotone convergence, 26
- downward monotone convergence, 49
- dyadic algebra, 45

- elementary Boolean algebra, 44
- elementary measure, 10, 11
- elementary set, 10
- elementary sets, 10
- equivalence, 37, 53

- Fatou’s lemma, 59
- field of sets, 23
- finer than, 44
- finite, 45
- finite additivity, 47, 53
- finite disjoint additivity, 11, 14
- finite subadditivity, 12, 14, 47

67
finitely additive measure, 47
finiteness, 53, 54
first moment method, 40
generated, 44, 46
homogeneity, 53, 54
horizontal truncation, 37, 54

in measure, 61
in the L^1 norm, 61
inclusion–exclusion, 47
indicator function, 5
infinite Jordan inner and outer measure, 13
interval, 10

Jordan algebra, 44
Jordan inner measure, 13
Jordan measure, 5, 13
Jordan outer measure, 13

lacuna, 26
Lebesgue algebra, 44
Lebesgue inner measure, 28, 29
Lebesgue integral, 5
Lebesgue measurable, 22, 35
Lebesgue measure, 5, 22
Lebesgue outer measure, 15
length, 10
locally uniformly, 42
lower superadditivity, 37
lower unsigned Lebesgue integral, 36

Markov’s inequality, 54
maximal, 20
measurable, 32, 35
measurable morphism, 59
measurable sets, 10
measurable space, 46
measure, 4, 8, 10, 48
measure of a box, 8, 11
measure space, 48
mode of convergence, 42

monotonicity, 9, 12, 14, 16, 37, 47, 53
non-negative extended real numbers, 8
non-negativity, 14
null algebra, 44
null set, 22, 50
nullity, 8, 11, 16, 47, 48
open Euclidean ball, 14

pointwise almost everywhere, 61
power set, 8
problem of measure, 4
pushforward, 60
refinement, 52, 53
reflection, 37
relatively closed, 33
relatively open, 33
restriction, 53, 54
Riemann integral, 5
Riemann rearrangement theorem, 16
scaling, 37
semi-norm, 40
separated, 17
simple function, 30
simple integral, 30, 52
sub-null, 50
superadditivity, 54
support, 31

transfinite induction, 46
translational invariance, 8, 11, 14
trivial algebra, 44
typewriter, 61

uniformly almost everywhere, 61
uniformly bounded, 35
uniformly integrable, 62
unsigned integral, 53
unsigned Lebesgue integral, 38
unsigned Lebesgue measurable, 32
unsigned simple function, 30
upper subadditivity, 37
upper unsigned Lebesgue integral, 36
Upward monotone convergence, 26
upward monotone convergence, 49

vanishing, 53, 54
vertical truncation, 37, 54

zero measure, 47