1. Let \(f : \mathbb{R} \to \mathbb{R} \) be a strictly increasing continuous function. Consider the collection \(\mathcal{B} \) of sets \(S \subset \mathbb{R} \) whose images \(f(S) \) are Borel sets on \(\mathbb{R} \).

(a) Prove that \(\mathcal{B} \) is a \(\sigma \)-algebra on \(\mathbb{R} \).

First, \(f(\emptyset) = \emptyset \) is a Borel set. Moreover, \(f \) is injective, so \(f(S^c) = f(\mathbb{R}) \setminus f(S) \), which is a Borel set since \(f(\mathbb{R}) \) is an interval. Finally, \(f(\bigcup_{k=1}^{\infty} S_k) = \bigcup_{k=1}^{\infty} f(S_k) \in \mathcal{B} \).

(b) Let \(A \subset \mathbb{R} \) be a Borel set. Prove that \(f(A) \) is also a Borel set.

Note that \(f \) has a continuous inverse \(f^{-1} \) that pulls back the open set \(S \) to an open set \(f(S) \) (alternatively, since the continuous strictly increasing function \(f \) maps open intervals to open intervals, it also maps open sets to open sets.) Thus \(\mathcal{B} \) contains all open sets. Part (a) then implies that \(\mathcal{B} \) contains the entire Borel \(\sigma \)-algebra. In particular, since \(A \) is a Borel set, \(A \in \mathcal{B} \); that is, \(f(A) \) is a Borel set.

2. Let \((X, \mathcal{B})\) be a measurable space. Show that an unsigned function \(f \) is measurable \(\Longleftrightarrow \) for every rational \(r \) the set \(\{x \in X : f(x) > r\} \) is \(\mathcal{B} \)-measurable.

\(\Rightarrow \) This follows immediately from Prob 3.8.

\(\Leftarrow \) This also follows from Prob 3.8 since for real \(\lambda \)

\[
\{x \in X : f(x) > \lambda\} = \bigcup_{r \in \mathbb{Q} : r > \lambda} \{x \in X : f(x) > r\}.
\]
3. Consider the Cantor function F.

(a) Show that $F(C^c)$ is countable, where C^c denotes the complement of the Cantor set in $[0, 1]$.

This follows from the fact that C^c is a countable union of intervals on which F is locally constant; F therefore achieves only a countable number of values on C^c.

(b) Show that $m(F(C)) = 1$.

Since F is continuous and $F[0] = 0$ and $F[1] = 1$, we know from the intermediate value theorem that

$$[0, 1] = F([0, 1]) = F(C \cup C^c) = F(C) \cup F(C^c),$$

From part (a) we know that $F(C^c)$ is a Lebesgue null set and hence, using the completeness of the Lebesgue measure, so is $[0, 1] \setminus F(C) \subset F(C^c)$. We thus see that $F(C) \setminus \{0, 1\}$ is Lebesgue measurable and hence so is $F(C)$. Subadditivity and monotonicity then imply that

$$1 = m([0, 1]) \leq m(F(C)) + m(F(C^c)) = m(F(C)) \leq m([0, 1]) = 1.$$

Alternative solution: since C is closed and F is continuous, $F(C)$ contains its limit points, including $F(C^c)$. So $F(C) = [0, 1]$.

(c) Show that $G : x \mapsto F(x) + x$ is strictly monotonic and continuous on $[0, 1]$, so that it has a continuous inverse G^{-1}.

Since G is the sum of two continuous functions, it is continuous. Moreover $x < y \Rightarrow F(x) + x < F(y) + y$, so G is strictly increasing on $[0, 1]$.

(d) Show that $m(G(C)) = 1$.

Since G maps each subinterval of C^c to an interval of the same length, shifted by a constant, we know that $m(G(C^c)) = 1$. Being a countable union of intervals, $G(C^c)$ is Lebesgue measurable. Since G is continuous and $G[0] = 0$ and $G[1] = 2$, we know from the intermediate value theorem that

$$[0, 2] = G([0, 1]) = G(C \cup C^c) = G(C) \cup G(C^c),$$

where $G(C) = [0, 2] \setminus G(C^c)$ and $G(C^c)$ are disjoint. Thus

$$m(G(C)) = 2 - m(G(C^c)) = 2 - 1 = 1.$$

(e) We have learned that one can construct a non-Lebesgue measurable subset of any set with positive Lebesgue measure. Let S be a non-Lebesgue measurable subset of $G(C)$. Is $G^{-1}(S)$ Lebesgue measurable?

Yes, since $G^{-1}(S) \subset C$ and $m(C) = 0$, we know from the completeness of the Lebesgue σ-algebra that $G^{-1}(S)$ is a Lebesgue null set.
(f) Is \(G^{-1}(S) \) in part (e) Borel measurable?

Since \(G \) is strictly increasing and continuous on \([0, 1]\), we know from Question 1 that it maps Borel sets to Borel sets, which are Lebesgue measurable. So \(G^{-1}(S) \) cannot be a Borel set. We have thus constructed a (null and hence Lebesgue measurable) subset \(S \) of the Cantor set \(C \) that is not Borel measurable. Moreover, we see that the preimage \(S \) of the measurable function \(G^{-1} \) of the Lebesgue measurable set \(G^{-1}(S) \) is not Lebesgue measurable!

4. Let \(F : [a, b] \to \mathbb{R} \) be continuous. If \(F'(x) \) exists everywhere in \((a, b)\) and is bounded on \((a, b)\), is it always true that

\[
\int_{[a, b]} F' = F(b) - F(a)?
\]

Prove or provide a counterexample.

There exists \(B > 0 \) such that \(|F'(x)| \leq B \) for all \(x \in (a, b) \). Given \(\epsilon > 0 \), choose \(\delta = \epsilon/B \). Let \((a_1, b_1), \ldots, (a_n, b_n)\) be disjoint intervals with \(\sum_{k=1}^{n} (b_k - a_k) < \delta \). By the mean value theorem, there exists \(c_k \in (a_k, b_k) \) such that

\[
\sum_{k=1}^{n} |F(b_k) - F(a_k)| = \sum_{k=1}^{n} |F'(c_k)|(b_k - a_k) \leq B \sum_{k=1}^{n} (b_k - a_k) < B\delta = \epsilon.
\]

Thus, \(F \) is absolutely continuous and Theorem 5.7 guarantees that

\[
\int_{[a, b]} F' = F(b) - F(a).
\]

5. Define

\[
\mu^* : \mathcal{P}(\mathbb{R}) \to [0, \infty], \quad A \mapsto \begin{cases}
0, & \text{if } A = \emptyset, \\
1, & \text{if } A \neq \emptyset \text{ is bounded}, \\
\infty, & \text{otherwise}.
\end{cases}
\]

(a) Show that \(\mu^* \) is an outer measure.

First, \(\mu^*(\emptyset) = 0 \).

Suppose \(A \subset B \neq \emptyset \). If \(A \) is bounded then \(\mu^*(A) \leq 1 \leq \mu^*(B) \). If \(A \) is unbounded, then so is \(B \): \(\mu^*(A) = \infty = \mu^*(B) \).

Let \(A_1, A_2, \ldots \subset \mathbb{R} \). We need to show

\[
\mu^* \left(\bigcup_{k=1}^{\infty} A_k \right) \leq \sum_{k=1}^{\infty} \mu^*(A_k) \tag{1}
\]

We may assume that each \(A_k \) is bounded as otherwise, both sides evaluate to \(\infty \). If all of the sets \(A_k \) are empty, then both sides evaluate to \(0 \). If exactly \(m \geq 1 \) of these sets are nonempty, the left-hand side is \(1 \) and the right-hand-side is \(m \geq 1 \).

Thus, \(\mu^* \) is an outer measure.
(b) Find all sets that are Carathéodory measurable with respect to μ^*. Let $S \subset \mathbb{R}$ and suppose that S is neither \mathbb{R} nor \emptyset. Choose $x \in S$, $y \in S^c$ and consider $A = \{x, y\}$. Then
\[
\mu^*(A) = 1 < 2 = \mu^*(A \cap S) + \mu^*(A \cap S^c),
\]
so that S is not Carathéodory measurable. We conclude that only \emptyset and \mathbb{R} are Carathéodory measurable with respect to μ^*.

6. Evaluate the Lebesgue–Stieltjes integral
\[
\int_0^\pi \sin x \, d(\cos x).
\]
The integral evaluates to
\[
-\int_0^\pi \sin^2 x \, dx = -\int_0^\pi \frac{1 - \cos 2x}{2} \, dx = -\frac{1}{2} \left[\frac{1 - \sin 2x}{2} \right]_0^\pi = -\frac{\pi}{2}.
\]

7. Let $X = \mathbb{N}$ and μ be the counting measure on X. Let $Y = (0, \infty)$ and ν be a Borel measure on Y satisfying $\nu((t, \infty)) = e^{-t^3}$ for every $t > 0$. Let $g : X \times Y \to \mathbb{R}$ be defined by $g(x, y) = y^3/4^x$. Evaluate
\[
\int_{X \times Y} g \, d(\mu \times \nu).
\]
We first note that the measure space $(X, \mathcal{P}(X), \mu)$ is σ-finite since \mathbb{N} is countable and $(Y, \mathcal{B}[Y], \nu)$ is σ-finite since $\nu(Y) = 1$. Also, being continuous in y, we see that g is measurable with respect to $\mu \times \nu$. By Tonelli’s Theorem,
\[
\int_{X \times Y} g \, d(\mu \times \nu) = \int_X \int_Y \frac{y^3}{4^x} \, d\nu \, d\mu = \sum_{i=1}^{\infty} \frac{1}{4^i} \cdot \int_Y y^3 \, d\nu.
\]
The infinite sum evaluates to $1/3$. In the remaining integral, ν is the Lebesgue-Stieltjes measure induced by the monotonic increasing function $t \mapsto -e^{-t^3}$. Hence,
\[
\int_Y y^3 \, d\nu = \int_0^{\infty} y^3 e^{-y^3} 3y^2 \, dy,
\]
which, on letting $u = y^3$, becomes
\[
\int_0^{\infty} u e^{-u} \, du = [-ue^{-u}]_0^{\infty} + \int_0^{\infty} e^{-u} \, du = 1.
\]
Hence, the integral is $1/3$.

4