1. (Cantor Function) Define the functions $F_0, F_1, F_2, \ldots : [0, 1] \to \mathbb{R}$ recursively: let $F_0(x) = x$ for $x \in [0, 1]$ and for $n \in \mathbb{N}$ define

$$F_n(x) = \begin{cases} \frac{1}{2} F_{n-1}(3x) & \text{if } x \in [0, \frac{1}{3}]; \\ \frac{1}{2} & \text{if } x \in (\frac{1}{3}, \frac{2}{3}); \\ \frac{1}{2} + \frac{1}{2} F_{n-1}(3x - 2) & \text{if } x \in [\frac{2}{3}, 1]. \end{cases}$$

(i) Graph $F_0, F_1, F_2,$ and F_3 on a single graph.

(ii) Using induction, show for each $n = 0, 1, \ldots$ that F_n is a continuous monotone increasing function with $F_n(0) = 0$ and $F_n(1) = 1$.

We note that $F_0(x) = x$ is continuous and increasing, with $F_0(0) = 0$ and $F_0(1) = 1$. For $n \in \mathbb{N}$, assume that $F_{n-1}(x)$ is continuous and increasing, with $F_{n-1}(0) = 0$ and $F_{n-1}(1) = 1$. Since the composition of continuous increasing functions is also continuous and increasing, F_n is continuous and increasing on all three intervals $[0, 1/3]$, $(1/3, 2/3)$, and $[2/3, 1]$. Moreover, $F_n(0) = \frac{1}{2} F_{n-1}(0) = 0$ and $F_n(1) = \frac{1}{2} + \frac{1}{2} F_{n-1}(1) = 1$. The desired result then follows by induction.

(iii) Show for each $n = 0, 1, \ldots$ and $x \in [0, 1]$ that $|F_{n+1}(x) - F_n(x)| \leq 2^{-n}$. Conclude that $\{F_n\}_{n=1}^\infty$ converges uniformly to a limit $F : [0; 1] \to \mathbb{R}$. The limit $F(x)$, known as the Cantor function, expresses the fraction of the “mass” of the Cantor set in $[0, x]$.
We note that

\[
|F_1(x) - F_0(x)| = \begin{cases}
\frac{1}{2}|x| & \text{if } x \in [0, \frac{1}{3}]; \\
\frac{1}{2} - x & \text{if } x \in \left(\frac{1}{3}, \frac{2}{3}\right); \\
\frac{1}{2}|x - 1| & \text{if } x \in \left[\frac{2}{3}, 1\right].
\end{cases}
\]

(1)

Assume that \(|F_n(x) - F_{n-1}(x)| \leq 2^{-n}\) for some \(n \in \mathbb{N} \cup \{0\}\). Then

\[
|F_{n+1}(x) - F_n(x)| = \begin{cases}
\frac{1}{2}|F_n(3x) - F_{n-1}(3x)| & \text{if } x \in [0, \frac{1}{3}]; \\
0 & \text{if } x \in \left(\frac{1}{3}, \frac{2}{3}\right); \\
\frac{1}{2}|F_n(3x - 2) - F_{n-1}(3x - 2)| & \text{if } x \in \left[\frac{2}{3}, 1\right],
\end{cases}
\]

so that \(|F_{n+1}(x) - F_n(x)| \leq 2^{-(n+1)}\). By induction, we conclude that \(|F_n(x) - F_{n-1}(x)| \leq 2^{-n}\) for all \(n \in \mathbb{N}\).

Observe for \(n > m\) that

\[
|F_n(x) - F_m(x)| = \left| \sum_{k=m+1}^{n} [F_k(x) - F_{k-1}(x)] \right|
\leq \sum_{k=m+1}^{n} |F_k(x) - F_{k-1}(x)|
\leq \sum_{k=m+1}^{n} 2^{-k} \leq 2^{-m} \sum_{k=1}^{\infty} 2^{-k} = 2^{-m}
\]

uniformly on \([0, 1]\) as \(m \to \infty\). We thus see on \([0, 1]\) that \(\{F_n\}_{n=1}^{\infty}\) is a uniform Cauchy sequence that converges uniformly to some limit \(F : [0, 1] \to \mathbb{R}\).

(iv) Show that the Cantor function \(F\) is continuous and monotone increasing, with \(F(0) = 0\) and \(F(1) = 1\).

Since \(F\) is the uniform limit of a sequence of continuous functions, it is also continuous:

\[
|F(x) - F(a)| \leq |F(x) - F_n(x)| + |F_n(x) - F_n(a)| + |F_n(a) - F(a)|.
\]

To show that \(F\) is increasing, fix \(x < y\) and consider

\[
F(y) - F(x) = \lim_{n \to \infty} F_n(y) - F_n(x) \geq 0.
\]

Finally \(F(0) = \lim_{n \to \infty} F_n(0) = 0\) and \(F(1) = \lim_{n \to \infty} F_n(1) = 1\).
(v) Show that if \(x \in [0, 1] \) lies outside the Cantor set \(C \), then \(F \) is constant in a neighbourhood of \(x \), so that \(F'(x) = 0 \). Conclude that \(\int_{[0,1]} F'(x) \, dx = 0 \neq 1 = F(1) - F(0) \) and hence the fundamental theorem of calculus fails.

For \(n \in \mathbb{N} \) consider the auxiliary function

\[
F_n(x) = \begin{cases}
F_{n-1}(3x) & \text{if } x \in \left[0, \frac{1}{3}\right]; \\
\frac{1}{2} & \text{if } x \in \left(\frac{1}{3}, \frac{2}{3}\right); \\
F_{n-1}(3x - 2) & \text{if } x \in \left[\frac{2}{3}, 1\right],
\end{cases}
\]

with \(F_0(x) = x \). If \(x \in [0, 1] \setminus C \), then it has at least one 1 in its ternary representation, where we adopt the convention that we always write ternary expansions so as to avoid using the digit 1 where possible (e.g. 1/3 is represented as 0.02 rather than 0.1); this corresponds to the convention in constructing the Cantor set that only the interior of each middle third is removed. Let \(n \in \mathbb{N} \) be the position (after the ternary point) of the first such digit 1. Since each map \(x \to 3x \) shifts the ternary digits in the representation of \(x \) by one place to the left and the map \(x \to x - 2 \) removes each leading digit 2, we see that \(F_n(x) = 1/2 \). Moreover, since each \(x \in [0, 1] \setminus C \) lies in the interior of some middle-third subinterval, \(F_n(x) = 1/2 \) throughout a neighbourhood of \(x \). We thus see that \(F_n \), and hence the original function \(F \), is locally constant at each \(x \in [0, 1] \setminus C \) and therefore differentiable at \(x \), with derivative 0. Since \(m(C) = 0 \), we see that \(F \) is differentiable almost everywhere, with \(\int_{[0,1]} F'(x) \, dx = 0 \) even though \(F(1) - F(0) = 1 - 0 = 0 \).

(vi) Show that \(F\left(\sum_{k=1}^{\infty} a_k 3^{-k}\right) = \sum_{k=1}^{\infty} \frac{a_k}{2} 2^{-k} \) for any digits \(a_1, a_2, \ldots \in \{0, 2\} \).

This follows from the ternary representation of \(x \in C \) (which consists of only the ternary digits 0 and 2), noting that whenever \(a_k = 2 \) (so that \(a_k/2 = 1 \)), we get a contribution of \(2^{-k} \) from the third case in the definition of \(F_n \).

(vii) Let \(I_n = [\sum_{k=1}^{n} a_k 3^{-k}, 3^{-n} + \sum_{k=1}^{n} a_k 3^{-k}] \) for \(n \geq 0 \) and \(a_1, \ldots, a_n \in \{0, 2\} \). Show that \(I_n \) is an interval of length \(3^{-n} \), but \(F(I_n) \) is an interval of length \(2^{-n} \).

Motivated by the fact that \(3^{-n} = 2 \sum_{k=n+1}^{\infty} 3^{-k} \), we define \(a_k = 2 \) for \(k \geq n+1 \), so that \(I_n = [\sum_{k=1}^{n} a_k 3^{-k}, \sum_{k=1}^{\infty} a_k 3^{-k}] \). Since \(F \) is monotonic we know from part (vi) that \(F(I_n) \) is an interval of length

\[
F\left(\sum_{k=1}^{\infty} a_k 3^{-k}\right) - F\left(\sum_{k=1}^{n} a_k 3^{-k}\right) = \sum_{k=1}^{\infty} \frac{a_k}{2} 2^{-k} - \sum_{k=1}^{n} \frac{a_k}{2} 2^{-k} = \sum_{k=n+1}^{\infty} 2^{-k} = 2^{-n}.
\]
(viii) Show that F is not differentiable at any element of the Cantor set C.

Let $x \in C$. Then x belongs to every interval $I_n = [c_n, d_n]$ in part (vii). If F were differentiable at x, then given $\epsilon > 0$ there would exist $N \in \mathbb{N}$ such that

$$|F(d_n) - F(x) - F'(x)(d_n - x)| \leq \epsilon (d_n - x)$$

and

$$|F(x) - F(c_n) - F'(x)(x - c_n)| \leq \epsilon (x - c_n)$$

whenever $n > N$, so that

$$|F(d_n) - F(c_n) - F'(x)(d_n - c_n)| \leq |F(d_n) - F(x) - F'(x)(d_n - x)|$$

$$+ |F(x) - F(c_n) - F'(x)(x - c_n)| \leq \epsilon (d_n - c_n).$$

Part (vii) would then imply that

$$|2^{-n} - F'(x)3^{-n}| \leq \epsilon 3^{-n},$$

or equivalently,

$$|(3/2)^n - F'(x)| \leq \epsilon,$$

whenever $n > N$, which would contradict the fact that $\lim_{n \to \infty} (3/2)^n = \infty$. Hence F is not differentiable at any $x \in C$.

2. Prove or provide a counterexample (and justify): if F is a monotonic function on $[0, 1]$ with almost-everywhere defined derivative f, then

$$\int_0^1 f(x) \, dx = F(1) - F(0).$$

False: let F be the Cantor function, which is constant almost everywhere (except on the Cantor set) and hence $\int_0^1 f(x) \, dx = 0 \neq 1 = F(1) - F(0)$.

Alternatively, consider $1_{[0,1]}$.

3. (i) Show that every function $F : \mathbb{R} \to \mathbb{R}$ of bounded variation is bounded and that $\lim_{x \to \infty} F(x)$ and $\lim_{x \to -\infty} F(x)$ exist.

Let a and b be distinct real numbers. From the triangle inequality we know that

$$|F(b)| \leq |F(a)| + |F(b) - F(a)| \leq |F(a)| + |F|_{TV(\mathbb{R})} < \infty.$$

On holding a fixed and varying b, we see that F is bounded on \mathbb{R}.

Furthermore, in view of Theorem 5.4, we can express F as the difference of two bounded monotone functions. Since the limit of each bounded monotone function exists as $x \to \infty$ (or $x \to -\infty$), the same holds true for their difference.
(ii) Provide a counterexample of a bounded, continuous function $F : \mathbb{R} \to \mathbb{R}$ with bounded support that does not have bounded variation.

The bounded continuous function

$$F(x) = \begin{cases}
 x \sin \frac{1}{\pi} & \text{if } x \in [-\frac{1}{\pi}, 0) \cup (0, \frac{1}{\pi}], \\
 0 & \text{otherwise}
\end{cases}$$

has infinite total variation since the sum

$$\sum_{i=1}^{n} \left| F\left(\frac{2}{(2i+1)\pi}\right) - F\left(\frac{2}{(2i-1)\pi}\right) \right| = \sum_{i=1}^{n} \left[\frac{2}{(2i+1)\pi} + \frac{2}{(2i-1)\pi} \right]$$

diverges as $n \to \infty$ (being the sum of two positive divergent series).

4. Let $f : [a, b] \to \mathbb{R}$ be continuous, and let $\alpha : [a, b] \to \mathbb{R}$ be a function of bounded variation. Show that the function

$$F_\alpha : [a, b] \to \mathbb{R}, \quad x \mapsto \int_{a}^{x} f(t) \, d\alpha(t)$$

is also of bounded variation. (Hint: Consider first the case where α is increasing.)

Since f is continuous on $[a, b]$, there exists $M > 0$ such that $|f(x)| \leq M$ for all $x \in [a, b]$. Suppose first that α is increasing. On the partition $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ of $[a, b]$,

$$\sum_{i=1}^{n} |F_\alpha(x_i) - F_\alpha(x_{i-1})| = \sum_{i=1}^{n} \left| \int_{a}^{x_i} f(t) \, d\alpha(t) - \int_{a}^{x_{i-1}} f(t) \, d\alpha(t) \right|$$

$$= \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_i} f(t) \, d\alpha'(t) \right|$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |f(t)|\alpha'(t) \, dt \quad \text{since } \alpha \text{ is increasing},$$

$$= \int_{a}^{b} |f(t)|\alpha'(t) \, dt \leq M \int_{a}^{b} \alpha'(t) \, dt \leq M[\alpha(b) - \alpha(a)],$$

on making use of Theorem 5.6. It follows that $|F_\alpha|_{TV([a, b])} < \infty$; that is, F_α is of bounded variation.

Let α now be arbitrary. Then there exists increasing functions $\beta, \gamma : [a, b] \to \mathbb{R}$ such that $\alpha = \beta - \gamma$. Since F_β and F_γ are of bounded variation by the foregoing, the same is true of $F_\alpha = F_\beta - F_\gamma$.

5. Consider the measure spaces $X = Y = (\mathbb{N}, \mathcal{P}(\mathbb{N}), \#)$, where $\#$ is the counting measure and define the function $f : X \times Y \to \mathbb{R}$ by

$$f(i, j) = \begin{cases} 1 & \text{if } j = i, \\ -1 & \text{if } j = i + 1, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Evaluate $\int_X \int_Y f(i, j) \, d\#(j) \, d\#(i)$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f(i, j) = \sum_{i=1}^{\infty} [f(i, i) + f(i, i + 1)] = \sum_{i=1}^{\infty} [1 - 1] = 0.$$

(b) Evaluate $\int_Y \int_X f(i, j) \, d\#(i) \, d\#(j)$

$$= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} f(i, j) = f(1, 1) + \sum_{j=2}^{\infty} [f(j, j) + f(j - 1, j)] = 1 + \sum_{j=2}^{\infty} [1 - 1] = 1.$$

(c) Are your results explained by Tonelli’s theorem? Why or why not?

No, Tonelli’s theorem does not apply since f is not unsigned.

(d) Are your results explained by Fubini’s theorem? Why or why not?

No, Fubini’s theorem does not apply since f is not absolutely integrable with respect to $\# \times \#: \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |f(i, j)| = \infty.$