1. Let \((X, \mathcal{B}, \mu)\) be a measure space and for each \(n \in \mathbb{N}\) let \(f_n : X \to \mathbb{C}\) and \(f : X \to \mathbb{C}\) be measurable functions.

 (i) If \(f_n\) converges to \(f\) uniformly, then \(f_n\) converges to \(f\) pointwise.

 We are given that for every \(\epsilon > 0\) there exists \(N = N(\epsilon)\) such that \(|f_n(x) - f(x)| < \epsilon\) for all \(x \in X\) whenever \(n \geq N\). In particular, this implies that each \(x \in X\), \(f_n\) converges pointwise to \(f\).

 (ii) If \(f_n\) converges to \(f\) uniformly, then \(f_n\) converges to \(f\) in the \(L^\infty\) norm. Conversely, if \(f_n\) converges to \(f\) in the \(L^\infty\) norm, then \(f_n\) converges to \(f\) uniformly outside of a null set (i.e. there exists a null set \(E\) such that the restriction \(f_n|_{X \setminus E}\) of \(f_n\) to the complement of \(E\) converges to the restriction \(f|_{X \setminus E}\) of \(f\)).

 We are given that for every \(\epsilon > 0\) there exists \(N = N(\epsilon)\) such that \(|f_n(x) - f(x)| < \epsilon\) for all \((\text{and hence for almost all})\) \(x \in X\) whenever \(n \geq N\). Thus \(f_n\) converges to \(f\) in the \(L^\infty\) norm (uniformly almost everywhere).

 By definition, if \(f_n\) converges to \(f\) in the \(L^\infty\) norm, there is a subset \(E\) of \(X\) with \(\mu(E) = 0\) such that for every \(\epsilon > 0\), we have \(|f_n(x) - f(x)| < \epsilon\) whenever \(n\) is larger than some threshold \(N(\epsilon)\) and \(x \in X \setminus E\). That is, \(f_n\) converges uniformly to \(f\) outside of a null set \(E\).

 (iii) If \(f_n\) converges to \(f\) in the \(L^\infty\) norm, then \(f_n\) converges to \(f\) almost uniformly.

 Given \(\epsilon > 0\), we know from (ii) that \(f_n\) converges uniformly to \(f\) outside of a set \(E\) such that \(\mu(E) = 0 < \epsilon\).

 (iv) If \(f_n\) converges to \(f\) almost uniformly, then \(f_n\) converges to \(f\) pointwise almost everywhere.

 For each \(k \in \mathbb{N}\) there exists a set \(E_k\) such that \(\mu(E_k) < 1/k\) and \(f_n\) converges uniformly to \(f\) on \(X \setminus E_k\). Consider \(E = \bigcap_{k=1}^\infty E_k\). By monotonicity, \(\mu(E) \leq \mu(E_k) < 1/k\) for every \(k \in \mathbb{N}\). Hence \(\mu(E) = 0\). Let \(x \in X \setminus E\). Then \(x \in X \setminus E_k\) for some \(k \in \mathbb{N}\). Since \(f_n\) converges uniformly to \(f\) on \(X \setminus E_k\), it converges pointwise to \(f\) at \(x\). That is, \(f_n\) converges pointwise to \(f\) on \(X \setminus E\).

 (v) If \(f_n\) converges to \(f\) pointwise, then \(f_n\) converges to \(f\) pointwise almost everywhere.

 This follows from the fact that “everywhere” implies “almost everywhere.”

 (vi) If \(f_n\) converges to \(f\) in the \(L^1\) norm, then \(f_n\) converges to \(f\) in measure.

 From Markov’s inequality, we know for each \(\epsilon > 0\) that

 \[
 \mu(\{x \in \mathbb{R}^d : |f_n(x) - f(x)| \geq \epsilon\}) \leq \frac{1}{\epsilon} \int_X |f_n - f| \, d\mu \to 0
 \]
as \(n \to \infty \).

Alternative solution: Given \(\epsilon \geq 0 \). Let \(S_{\epsilon,n} = \{ x \in X : |f_n(x) - f(x)| \geq \epsilon \} \) for \(n \in \mathbb{N} \). If \(\lim_{n \to \infty} \mu(S_{\epsilon,n}) \neq 0 \), then for every \(\epsilon' > 0 \) there would exist a subsequence \(\{n_k\}_{k=1}^{\infty} \) such that \(\mu(S_{\epsilon,n_k}) \geq \epsilon' \) for every \(k \in \mathbb{N} \). Choose \(N \) such that \(k > N \Rightarrow \int_X |f - f_{n_k}| \, d\mu < \epsilon \epsilon' \). This would contradict \(\int_X |f - f_{n_k}| \, d\mu \geq \epsilon \mu(S_{\epsilon,n_k}) \geq \epsilon \epsilon' \).

Thus \(\lim_{n \to \infty} \mu(S_{\epsilon,n}) = 0 \).

(vii) If \(f_n \) converges to \(f \) almost uniformly, then \(f_n \) converges to \(f \) in measure.

Given \(\epsilon > 0 \), there exists \(N \in \mathbb{N} \) and an exceptional set \(E_\epsilon \) with measure less than \(\epsilon \) such that \(|f_n(x) - f(x)| < \epsilon \) whenever \(n > N \) for all \(x \in X \setminus E_\epsilon \). Then \(\{ x \in X : |f_n(x) - f(x)| \geq \epsilon \} \subset E_\epsilon \) has measure less than \(\epsilon \).

2. (i) Show that every function \(F : \mathbb{R} \to \mathbb{R} \) of bounded variation is bounded and that \(\lim_{x \to \infty} F(x) \) and \(\lim_{x \to -\infty} F(x) \) exist.

Let \(a \) and \(b \) be distinct real numbers. From the triangle inequality we know that
\[
|F(b)| \leq |F(a)| + |F(b) - F(a)| \leq |F|_{TV(\mathbb{R})} < \infty.
\]

On holding \(a \) fixed and varying \(b \), we see that \(F \) is bounded on \(\mathbb{R} \).

Furthermore, in view of Theorem 1.19, we can express \(F \) as the difference of two bounded monotone functions. Since the limit of each bounded monotone function exists as \(x \to \infty \) (or \(x \to -\infty \)), the same holds true for their difference.

(ii) Provide a counterexample of a bounded, continuous function \(F : \mathbb{R} \to \mathbb{R} \) with bounded support that does not have bounded variation.

The bounded continuous function
\[
F(x) = \begin{cases}
 x \sin \frac{1}{x} & \text{if } x \in [-\frac{1}{\pi},0) \cup (0, \frac{1}{\pi}], \\
 0 & \text{otherwise}
\end{cases}
\]

has infinite total variation since the sum
\[
\sum_{i=1}^{n} \left| F\left(\frac{2}{(2i+1)\pi} \right) - F\left(\frac{2}{(2i-1)\pi} \right) \right| = \sum_{i=1}^{n} \left[\frac{2}{(2i+1)\pi} + \frac{2}{(2i-1)\pi} \right]
\]
diverges as \(n \to \infty \) (being the sum of two positive divergent series).

3. Show that every convex function \(f : \mathbb{R} \to \mathbb{R} \) is continuous and almost everywhere differentiable, with derivative almost everywhere equal to an increasing function.

Recall that the convexity condition can be re-expressed in terms of the slope of a secant:
\[
\frac{f(x) - f(a)}{x - a} \leq \frac{f(b) - f(a)}{b - a} \leq \frac{f(b) - f(x)}{b - x} \quad \forall x \in (a,b), \quad \forall a \neq b \in \mathbb{R}.
\]
Applying this criterion repeatedly, we see for all real numbers $A < a < x < y < b < B$ that

$$\frac{f(a) - f(A)}{a - A} \leq \frac{f(y) - f(x)}{y - x} \leq \frac{f(B) - f(b)}{B - b}.$$

On letting

$$C = \max \left(\left| \frac{f(a) - f(A)}{a - A} \right|, \left| \frac{f(B) - f(b)}{B - b} \right| \right),$$

we thus see that f is locally Lipschitz, and therefore continuous, on every compact interval $[a, b] \subset \mathbb{R}$:

$$|f(x) - f(y)| \leq C|x - y| \quad \forall x, y \in [a, b].$$

Moreover, f is locally of bounded variation and hence differentiable almost everywhere.

Let

$$m(x) = \frac{f(x) - f(a)}{x - a} \quad (x \neq a), \quad M(x) = \frac{f(b) - f(x)}{b - x} \quad (x \neq b).$$

From convexity, we know that

$$m(x) \leq m(b) = M(a) \leq M(x)$$

whenever $a < x < b$. At points a and b where f is differentiable we then see that

$$f'(a) = \lim_{x \to a} m(x) \leq m(b) = M(a) \leq \lim_{x \to b} M(x) = f'(b).$$

4. (Cantor Function) Define the functions $F_0, F_1, F_2, \ldots : [0, 1] \to \mathbb{R}$ recursively: let $F_0(x) \equiv x$ for $x \in [0, 1]$ and for $n \in \mathbb{N}$ define

$$F_n(x) \equiv \begin{cases}
\frac{1}{2} F_{n-1}(3x) & \text{if } x \in [0, \frac{1}{3}]; \\
\frac{1}{2} & \text{if } x \in (\frac{1}{3}, \frac{2}{3}); \\
\frac{1}{2} + \frac{1}{2} F_{n-1}(3x - 2) & \text{if } x \in [\frac{2}{3}, 1].
\end{cases}$$

(i) Graph $F_0, F_1, F_2,$ and F_3 on a single graph.
(ii) Using induction, show for each \(n = 0, 1, \ldots \) that \(F_n \) is a continuous monotone increasing function with \(F_n(0) = 0 \) and \(F_n(1) = 1 \).

We note that \(F_0(x) = x \) is continuous and increasing, with \(F_0(0) = 0 \) and \(F_0(1) = 1 \). For \(n \in \mathbb{N} \), assume that \(F_{n-1}(x) \) is continuous and increasing, with \(F_{n-1}(0) = 0 \) and \(F_{n-1}(1) = 1 \). Since the composition of continuous increasing functions is also continuous and increasing, \(F_n \) is continuous and increasing on all three intervals \([0, 1/3], (1/3, 2/3), \text{ and } [1/3, 1]\). Moreover, \(F_n(0) = \frac{1}{2}F_{n-1}(0) = 0 \) and \(F_n(1) = \frac{1}{2} + \frac{1}{2}F_{n-1}(1) = 1 \). The desired result then follows by induction.

(iii) Show for each \(n = 0, 1, \ldots \) and \(x \in [0, 1] \) that \(|F_{n+1}(x) - F_n(x)| \leq 2^{-n} \). Conclude that \(\{F_n\}_{n=1}^{\infty} \) converges uniformly to a limit \(F : [0; 1] \to \mathbb{R} \). The limit \(F(x) \), known as the Cantor function, expresses the fraction of the “mass” of the Cantor set in \([0, x]\).

We note that

\[
|F_1(x) - F_0(x)| = \begin{cases}
\frac{1}{2}|x| & \text{ if } x \in [0, \frac{1}{3}] ; \\
\frac{1}{2} - x & \text{ if } x \in (\frac{1}{3}, \frac{2}{3}) ; \\
\frac{1}{2}|x - 1| & \text{ if } x \in [\frac{2}{3}, 1] .
\end{cases}
\]

(1)

Assume that \(|F_n(x) - F_{n-1}(x)| \leq 2^{-n} \) for some \(n \in \mathbb{N} \cup \{0\} \). Then

\[
|F_{n+1}(x) - F_n(x)| = \begin{cases}
\frac{1}{2}|F_n(3x) - F_{n-1}(3x)| & \text{ if } x \in [0, \frac{1}{3}] ; \\
0 & \text{ if } x \in (\frac{1}{3}, \frac{2}{3}) ; \\
\frac{1}{2}|F_n(3x - 2) - F_{n-1}(3x - 2)| & \text{ if } x \in [\frac{2}{3}, 1] ,
\end{cases}
\]

so that \(|F_{n+1}(x) - F_n(x)| \leq 2^{-(n+1)} \). By induction, we conclude that \(|F_n(x) - F_{n-1}(x)| \leq 2^{-n} \) for all \(n \in \mathbb{N} \).

Observe for \(n > m \) that

\[
|F_n(x) - F_m(x)| = \sum_{k=m+1}^{n} |F_k(x) - F_{k-1}(x)|
\leq \sum_{k=m+1}^{n} |F_k(x) - F_{k-1}(x)|
\leq \sum_{k=m+1}^{n} 2^{-k} < 2^{-m} \sum_{k=1}^{\infty} 2^{-k} = 2^{-m} \sum_{k=1}^{\infty} 2^{-k} = 2^{-m}
\]

uniformly on \([0, 1]\) as \(m \to \infty \). We thus see on \([0, 1]\) that \(\{F_n\}_{n=1}^{\infty} \) is a uniform Cauchy sequence that converges uniformly to some limit \(F : [0, 1] \to \mathbb{R} \).
(iv) Show that the Cantor function F is continuous and monotone increasing, with $F(0) = 0$ and $F(1) = 1$.

Since F is the uniform limit of a sequence of continuous functions, it is also continuous:

$$|F(x) - F(a)| \leq |F(x) - F_n(x)| + |F_n(x) - F_n(a)| + |F_n(a) - F(a)|.$$

To show that F is increasing, fix $x < y$ and consider

$$F(y) - F(x) = \lim_{n \to \infty} F_n(y) - F_n(x) \geq 0.$$

Finally $F(0) = \lim_{n \to \infty} F_n(0) = 0$ and $F(1) = \lim_{n \to \infty} F_n(1) = 1$.

(v) Show that if $x \in [0, 1]$ lies outside the Cantor set C, then F is constant in a neighbourhood of x, so that $F'(x) = 0$. Conclude that $\int_{[0,1]} F'(x)dx = 0 \neq 1 = F(1) - F(0)$ and hence the fundamental theorem of calculus fails. If $x \in [0,1] \setminus C$, then its has at least one 1 in its ternary representation, where we adopt the convention that we always write ternary expansions so as to avoid using the digit 1 where possible (e.g. $1/3$ is represented as $0.0\overline{2}$ rather than 0.1); this corresponds to the convention in constructing the Cantor set that only the interior of each middle third is removed. Let $n \in \mathbb{N}$ be the position (after the ternary point) of the first such digit 1. Since each map $x \to 3x$ shifts the ternary digits in the representation of x by one place to the left and the map $x \to x - 2$ removes each leading digit 2, we see that $F_n(x) = 1/2$. Moreover, since each $x \in [0,1] \setminus C$ lies in the interior of some middle-third subinterval, $F_n(x) = 1/2$ throughout a neighbourhood of x. Thus F_n is locally constant at each $x \in [0,1] \setminus C$ and therefore differentiable at x, with derivative 0. Since $m(C) = 0$, we see that F is differentiable almost everywhere, with $\int_{[0,1]} F'(x)dx = 0$ even though $F(1) - F(0) = 1 - 0 = 0$.

(vi) Show that $F \left(\sum_{k=1}^{\infty} a_k 3^{-k} \right) = \sum_{k=1}^{\infty} \frac{a_k}{2} 2^{-k}$ for any digits $a_1, a_2, \ldots \in \{0, 2\}$.

This follows from the ternary representation of $x \in C$ (which consists of only the ternary digits 0 and 2), noting that whenever $a_k = 2$ (so that $a_k/2 = 1$), we get a contribution of 2^{-k} from the third case in the definition of F_n.

(vii) Let $I_n = \left[\sum_{k=1}^{n} a_k 3^{-k}, 3^{-n} + \sum_{k=1}^{n} a_k 3^{-k} \right]$ for $n \geq 0$ and $a_1, \ldots, a_n \in \{0, 2\}$. Show that I_n is an interval of length 3^{-n}, but $F(I_n)$ is an interval of length 2^{-n}.

Motivated by the fact that $3^{-n} = 2 \sum_{k=n+1}^{\infty} 3^{-k}$, we define $a_k = 2$ for $k \geq n+1$, so that $I_n = \left[\sum_{k=1}^{n} a_k 3^{-k}, \sum_{k=1}^{\infty} a_k 3^{-k} \right]$ Since F is monotonic we know from part (vi) that $F(I_n)$ is an interval of length

$$F \left(\sum_{k=1}^{\infty} a_k 3^{-k} \right) - F \left(\sum_{k=1}^{n} a_k 3^{-k} \right) = \sum_{k=1}^{\infty} \frac{a_k}{2} 2^{-k} - \sum_{k=1}^{n} \frac{a_k}{2} 2^{-k} = \sum_{k=n+1}^{\infty} 2^{-k} = 2^{-n}.$$
(viii) Show that F is not differentiable at any element of the Cantor set C.

Let $x \in C$. Then x belongs to every interval $I_n = [c_n, d_n]$ in part (vii). If F were differentiable at x, then given $\epsilon > 0$ there would exist $N \in \mathbb{N}$ such that

$$|F(d_n) - F(x) - F'(x)(d_n - x)| < \epsilon(d_n - x)$$

and

$$|F(x) - F(c_n) - F'(x)(x - c_n)| < \epsilon(x - c_n)$$

whenever $n > N$, so that

$$|F(d_n) - F(c_n) - F'(x)(d_n - c_n)| \leq |F(d_n) - F(x) - F'(x)(d_n - x)| + |F(x) - F(c_n) - F'(x)(x - c_n)| < \epsilon(d_n - c_n).$$

Part (vii) would then imply that

$$|2^{-n} - F'(x)3^{-n}| < \epsilon3^{-n},$$

or equivalently,

$$|(3/2)^n - F'(x)| < \epsilon,$$

whenever $n > N$, which would contradict the fact that $\lim_{n \to \infty} (3/2)^n = \infty$. Hence F is not differentiable at any $x \in C$.