1. A set is *nowhere dense* if its closure has an empty interior. For example, the Cantor set \(C = \bigcap_{n=1}^{\infty} C_n \) is nowhere dense, where \(C_0 = [0,1] \) and
\[
C_n = \frac{1}{3} C_{n-1} \cup \left(\frac{2}{3} + \frac{C_{n-1}}{3} \right)
\]
for \(n \in \mathbb{N} \).

(a) Show that \(C \) has Lebesgue measure zero.

Consider ternary representations that avoid using the digit 1 where possible (e.g. \(1/3 \) is represented as \(0.0\overline{2} \) rather than \(0.1\overline{0} \)). Using induction, we observe that \(C_n \) is the set of numbers whose ternary representations have only 0 or 2 in the first \(n \) places. This implies that \(C_{n+1} \subset C_n \) and \(m(C_n) = 2^n/3^n \). On applying downward monotone convergence, noting that \(m(C_0) = 1 \) is finite, we see that \(m(C) = \lim_{n \to \infty} m(C_n) = 0 \).

Alternative solution: We claim that \(C_{n+1} \subset C_n \) and \(m(C_n) = 2^n/3^n \) for all \(n \in \mathbb{N} \). Since \(C_1 = [0,1/3] \cup [1/3,1] \subset C_0 \) and \(m(C_0) = 1 \) we see that this holds for \(n = 0 \). Assuming that it holds for all \(n = 0, \ldots, k-1 \), we know that \(\frac{1}{3} C_k \subset \frac{1}{3} C_{k-1} \) and hence
\[
C_{k+1} = \frac{1}{3} C_k \cup \left(\frac{2}{3} + \frac{C_k}{3} \right) \subset \frac{1}{3} C_{k-1} \cup \left(\frac{2}{3} + \frac{C_{k-1}}{3} \right) = C_k.
\]
Also, since \(C_{k-1}/3 \) is a subset of \([0,1/3]\), it is disjoint from \(2/3 + C_{k-1}/3 \) and has measure \(2^{k-1}/3^k \). Thus by finite additivity, \(m(C_k) = 2^k/3^k \). The claim then follow by induction. On applying downward monotone convergence, noting that \(m(C_0) = 1 \) is finite, we see that \(m(C) = \lim_{n \to \infty} m(C_n) = 0 \).

Alternative solution: We have seen that \(C \) can be constructed by removing from \([0,1]\) a countable union of intervals \(I_n \) with measure \(m([0,1] \setminus C) = \sum_{n=1}^{\infty} |I_n| = 1 \). Since this countable union of intervals is Lebesgue measurable, so is its complement \(C \) in \([0,1]\). By finite additivity \(m(C) + m([0,1] \setminus C) = m([0,1]) = 1 \). Thus \(m(C) = 0 \).

(b) For arbitrary \(\epsilon \in (0,1) \), construct a nowhere dense subset of \([0,1]\) with Lebesgue measure at least \(1 - \epsilon \).

Hint: first try to remove a dense set from \([0,1]\) that has measure \(\leq 1/2 \).

Let \(\{q_1, q_2, \ldots\} \) be an enumeration of \(\mathbb{Q} \cap [0,1] \) and
\[
S = \bigcup_{k=1}^{\infty} \left[q_k - 2^{-k-1} \epsilon, q_k + 2^{-k-1} \epsilon \right],
\]
which has measure at most
\[
2 \cdot 2^{-1} \sum_{k=1}^{\infty} 2^{-k} = \epsilon.
\]
Then from disjoint additivity we see that the set \([0, 1] \setminus S\) has measure at least \(1 - \epsilon\). This set is nowhere dense because its closure contains no rationals (and therefore has an empty interior).

Alternative solution: Consider the so-called fat Cantor (Smith–Volterra–Cantor) set \(C = \cap_{n=1}^{\infty} C_n\), where \(C_0 = [0, 1]\) and \(C_n = \epsilon C_{n-1} \cup (1 - \epsilon + \epsilon C_{n-1})\) for \(n \in \mathbb{N}\), where \(\epsilon = \min(\epsilon/2, 1/4)\). This set is nowhere dense and has measure at least \(1 - \epsilon/(1 - 2\epsilon) \geq 1 - 2\epsilon \geq 1 - \epsilon\).

2. Let \(S \subseteq \mathbb{R}\) be Lebesgue measurable. Prove that there exists a subset \(H\) of \(S\) such that \(m(H) = m(S)/2\). Hint: Consider the function \(f : [0, \infty) \to [0, \infty]: x \mapsto m(S \cap [-x, x])\).

 If \(m(S) = \infty\), we can choose \(H = S\): \(m(H) = \infty/2 = \infty\).

 Otherwise \(m(S)\) is finite and we can let \(f : [0, \infty) \to [0, \infty): x \mapsto m(S \cap [-x, x])\). For \(0 \leq x < y\), we know from monotonicity and disjoint additivity that

 \[
 f(x) \leq f(y) = m((S \cap [-x, x]) \cup (S \cap [-y, -x]) \cup (S \cap [x, y])) = m(S \cap [-x, x]) + m(S \cap [-y, -x]) + m(S \cap [x, y]) \leq f(x) + 2(y - x).
 \]

 Thus \(|f(y) - f(x)| \leq 2|y - x|\) for all \(x, y \in \mathbb{R}\); that is, \(f\) is continuous on \([0, \infty)\). Since \(f(0) = 0\) and \(\lim_{x \to \infty} f(x) = m(S)\), we can then apply the intermediate value theorem to find an \(x\) such that \(m(S \cap [-x, x]) = m(S)/2\).

3. Suppose \(S_n \subseteq \mathbb{R}^d\), \(n = 1, 2, \ldots\) are Lebesgue measurable sets that converge pointwise to a set \(S\).

 \(\text{(a)}\) Show that \(S\) is Lebesgue measurable. Hint: use the fact that \(1_S(x) = \liminf_{n \to \infty} 1_{S_n}(x) = \limsup_{n \to \infty} 1_{S_n}(x)\) to write \(S\) in terms of countable unions and intersections of \(S_n\).

 By definition, we are given that \(\liminf_{n \to \infty} 1_{S_n}(x) = \limsup_{n \to \infty} 1_{S_n}(x) = 1_S(x)\). This implies

 \[
 \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} S_n = S.
 \]

 Being a countable intersection of a countable union of Lebesgue measurable sets, \(S\) is also a Lebesgue measurable set.

 \(\text{(b)}\) (Dominated convergence theorem) Suppose that the \(S_n\) are all contained in another Lebesgue measurable set \(F\) of finite measure. Show that \(m(S_n)\) converges to \(m(S)\). Hint: use the upward and downward monotone convergence theorems.
Consider the increasing sequence of sets \(U_k = \bigcap_{n=k}^{\infty} S_n \). By the upward monotone convergence theorem,

\[
m(S) = m\left(\bigcup_{k=1}^{\infty} U_k\right) = \lim_{n \to \infty} m(U_n).
\]

Now consider the decreasing sequence of sets \(T_k = \bigcup_{n=k}^{\infty} S_n \subset F \). By monotonicity, each of the sets \(T_k \) has finite measure. By the downward monotone convergence theorem,

\[
m(S) = m\left(\bigcap_{k=1}^{\infty} T_k\right) = \lim_{n \to \infty} m(T_n).
\]

For each \(n \in \mathbb{N} \), we also know that \(U_n \subset S_n \subset T_n \) and so by monotonicity, we have \(m(U_n) \leq m(S_n) \leq m(T_n) \). The desired result then follows from the squeeze principle.

(c) Give a counterexample to show that the dominated convergence theorem fails if the \(S_n \) are not contained in a set of finite measure, even if we assume that the \(m(S_n) \) are all uniformly bounded.

Consider \(S_n = [n, n+1] \) for \(n \in \mathbb{N} \). Note that \(S_n \) converge pointwise to \(\emptyset \), yet

\[
\lim_{n \to \infty} m(S_n) = \lim_{n \to \infty} 1 = 1 \neq 0 = m(\emptyset).
\]

4. Let \(f : \mathbb{R}^d \to \mathbb{C} \). Show that

(a) if \(f \) is continuous, it is measurable;

If \(f \) is continuous, the preimage \(f^{-1}(V) \) of every open set \(V \subset \mathbb{C} \) is itself open.

We then deduce from Lemma 2.3 (iv) that \(f \) is measurable.

(b) if \(f \) is almost everywhere equal to a measurable function, it is itself measurable

If \(f \) is almost everywhere equal to a measurable function, at almost every point, it is the pointwise limit of a sequence of unsigned simple functions. Lemma 2.3 (ii) then implies that \(f \) is measurable.

(c) if a sequence \(f_n \) of complex-valued measurable functions converges pointwise almost everywhere to \(f \), then \(f \) is measurable.

Given \(\epsilon > 0 \), for almost all \(x \in \mathbb{R}^d \) there exists \(N \in \mathbb{N} \) such that

\[
|f_n(x) - f(x)| < \epsilon
\]

whenever \(n > N \). Being measurable, each \(f_n \) is the pointwise limit of a sequence of simple functions \(\{f_{n,m}\}_{m=1}^{\infty} \); that is, there exists \(M_n \in \mathbb{N} \) such that

\[
|f_{n,m}(x) - f_n(x)| < \epsilon
\]

3
whenever $m > M_n$. Choose $m_n = M_n + 1$. From the triangle inequality, we then see that

$$|f_{n,m_n}(x) - f(x)| \leq |f_{n,m_n}(x) - f_n(x)| + |f_n(x) - f(x)| < 2\epsilon$$

whenever $n > N$. Thus, $\lim_{n \to \infty} f_{n,m_n}(x) = f(x)$ for almost all $x \in \mathbb{R}^d$ and hence by Lemma 2.3 (ii), f is measurable.

(d) if f is measurable, the composition $\phi \circ f$ of a continuous function $\phi : \mathbb{C} \to \mathbb{C}$ and f is measurable.

Let V be an open subset of \mathbb{C}. Since ϕ is continuous, function, the preimage $\phi^{-1}(V)$ is also open. Since f is measurable, we see from Lemma 2.3 (iv) that $f^{-1}(\phi^{-1}(V)) = (\phi \circ f)^{-1}(V)$ is open. Using Lemma 2.3 (iv) once more, we thus see that $\phi \circ f$ is measurable.
5. If \(f : \mathbb{R}^d \to [0, \infty] \) is Lebesgue measurable, show that the Lebesgue measure of \(\{(x, y) \in \mathbb{R}^d \times \mathbb{R} : 0 \leq y \leq f(x)\} \) exists and equals \(\int_{\mathbb{R}^d} f \).

Let \(G = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : y = f(x)\} \). We claim that \(m(G) = 0 \) in \(\mathbb{R}^{d+1} \).

To see this, let \(B_k \) be a box of side \(k \in \mathbb{N} \) centered on the origin and let \(f_k \) be the restriction of \(f \) to \(B_k \). Let \(j, n \in \mathbb{N} \). The sets \(I_i = [j + \frac{j}{n}, j + \frac{j+1}{n}) \), \(i = 0, \ldots, n - 1 \) form a pairwise disjoint cover of \([j, j + 1) \). By Lemma 2.2 (ix), the inverse images \(f_k^{-1}([j, j + 1]) \) and \(f_k^{-1}(I_i) \) are Lebesgue measurable. We then use subadditivity and Problem 1.21 (a) and (b):

\[
m^*(G \cap (B_k \times [j, j + 1))) \leq \sum_{i=0}^{n-1} m^*(G \cap (B_k \times I_i))
\leq \sum_{i=0}^{n-1} m(f_k^{-1}(I_i) \times I_i) = \frac{1}{n} \sum_{i=0}^{n-1} m(f_k^{-1}(I_i))
= \frac{1}{n} m(f_k^{-1}([j, j + 1])) \leq \frac{1}{n} m(B_k) \to 0
\]

as \(n \to \infty \) and hence

\[
m^*(G) \leq \sum_{k=1}^{\infty} \sum_{j=0}^{\infty} m^*(G \cap (B_k \times [j, j + 1))) = 0.
\]

Thus \(m(G) = 0 \), as claimed, and it therefore suffices to show that \(m(S) = \int_{\mathbb{R}^d} f \), where

\[
S = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : 0 \leq y < f(x)\}.
\]

Since \(f \) is Lebesgue measurable, we know from Lemma 2.2 (iv) that \(f = \sup_n f_n \) for some increasing sequence \(f_n \) of bounded unsigned simple functions. Consider one such simple function \(f_n \), which may be assumed to take on \(N \) values \(c_i \), \(i = 1, \ldots, N \) on disjoint measurable sets \(T_i \). Let \(S_n = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : 0 \leq y < f_n(x)\} \). From Problem 1.21 (b) we know that \(S_n = \bigcup_{i=1}^{N} T_i \times [0, c_i] \) is measurable, with

\[
m(S_n) = \sum_{i=1}^{N} c_i m(T_i) = \int_{\mathbb{R}^d} f_n,
\]

using finite additivity. Since the sequence \(\{f_n\}_{n=1}^{\infty} \) is increasing, so is the corresponding sequence of sets \(S_n \). Also, we see that \(S = \bigcup_{n=1}^{\infty} S_n \). Upward monotone convergence then implies

\[
\lim_{n \to \infty} m(S_n) = m\left(\bigcup_{n=1}^{\infty} S_n \right) = m(S).
\]

Finally, since \(f \leq g \) implies \(\int_{\mathbb{R}^d} f \leq \int_{\mathbb{R}^d} g \), we conclude that

\[
\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} f = \sup_{h \text{ simple}} \int_{\mathbb{R}^d} h = \sup_n \int_{\mathbb{R}^d} f_n = \lim_{n \to \infty} \int_{\mathbb{R}^d} f_n = \lim_{n \to \infty} m(S_n) = m(S).
\]
6. Let $D \subset \mathbb{R}$ be measurable, and let $f : D \to [0, \infty]$ be measurable such that $\int_D f = 0$. Show that $f = 0$ a.e.

For $n \in \mathbb{N}$, set

$$D_n = \left\{ x \in D : f(x) \geq \frac{1}{n} \right\}.$$

Since

$$0 = \int_D f \geq \int_{D_n} \frac{1}{n} = \frac{1}{n} m(D_n),$$

we see that $m(D_n) = 0$ for every $n \in \mathbb{N}$. From subadditivity and upward monotonocity we then conclude that

$$0 \leq m(\{x \in D : f(x) \neq 0\}) = m\left(\bigcup_{n=1}^{\infty} D_n\right) \leq \sum_{i=1}^{\infty} m(D_n) = 0.$$

Alternative solution: The result follows directly on taking the limit $\lambda \to 0$ and using upward monotonocity in Markov’s inequality.

7. Recall that a σ-algebra is a Boolean algebra that is closed under countable unions. Let X be a metric space and \mathcal{F} be a collection of subsets of X. Denote the intersection of all σ-algebras that contain \mathcal{F} as $\langle \mathcal{F} \rangle$. The Borel σ-algebra $\mathcal{B}[X]$ is that σ-algebra generated by the collection of open subsets of X. Families \mathcal{F}_1 and \mathcal{F}_2 generate the same σ-algebra if $\langle \mathcal{F}_1 \rangle \supset \langle \mathcal{F}_2 \rangle$ and $\langle \mathcal{F}_2 \rangle \supset \langle \mathcal{F}_1 \rangle$. Show that the collection of subsets of \mathbb{R}^d that are:

- open;
- closed;
- compact;
- open balls;
- boxes;
- elementary

all generate the Borel σ-algebra on \mathbb{R}^d. Use the notation $\langle \text{open} \rangle$, $\langle \text{closed} \rangle$, etc.

- By definition, the Borel σ-algebra is the σ-algebra generated by the collection of open sets.
- Since a σ-algebra is closed under complements, $\langle \text{open} \rangle$ contains $\langle \text{closed} \rangle$ and $\langle \text{closed} \rangle$ contains $\langle \text{open} \rangle$.
- Since every compact set in \mathbb{R}^d is closed, $\langle \text{closed} \rangle$ contains $\langle \text{compact} \rangle$.
- Every open set can be written as a countable union of open balls, so $\langle \text{open balls} \rangle$ contains $\langle \text{open} \rangle$. Since open balls are open, $\langle \text{open} \rangle$ contains $\langle \text{open balls} \rangle$.
• Since every open set can be written as a countable union of almost disjoint closed cubes, \(\langle \text{boxes} \rangle \) contains \(\langle \text{open} \rangle \). Since closed cubes are compact, \(\langle \text{compact} \rangle \) contains \(\langle \text{open} \rangle \) and hence also \(\langle \text{boxes} \rangle \) (finite intersections of open and closed sets).

• Every elementary set is a finite union of boxes, so \(\langle \text{boxes} \rangle \) contains \(\langle \text{elementary} \rangle \). Since boxes are elementary, \(\langle \text{elementary} \rangle \) contains \(\langle \text{boxes} \rangle \).

There are many other possible routes to showing these equivalent representations of the Borel \(\sigma \)-algebra. For example, one can show directly that \(\langle \text{compact} \rangle \) contains \(\langle \text{closed} \rangle \) since every closed set \(F \) can written as a countable union of compact sets \(F \cap B_k[0] \).