Outline of Math 373

1 Linear Programming
 A Variants of the linear programming problem
 B Examples of linear programming problems
 C Piecewise linear convex objective functions
 D Graphical representation and solution
 E Linear algebra background and notation
 F Algorithms and operation counts

2 The Geometry of Linear Programming
 A Polyhedra and convex sets
 B Extreme points, vertices, and basic feasible solutions
 C Polyhedra in standard form
 D Degeneracy
 E Existence of extreme points
 F Optimality of extreme points
 G Representation of bounded polyhedra
 H Projections of polyhedra: Fourier-Motzkin elimination

3 The Simplex Method
 A Optimality conditions
 B Development of the simplex method
 C Implementations of the simplex method
 D Anticycling: lexicography and Bland’s rule
 E Finding an initial basic feasible solution
 F Column geometry and the simplex method
 G Computational efficiency of the simplex method

4 Duality Theory
 A Motivation
 B The dual problem
 C The duality theorem
 D Optimal dual variables as marginal costs
 E Standard form problems and the dual simplex method
 F Farkas’ lemma and linear inequalities
 G From separating hyperplanes to duality
5 Sensitivity Analysis

A Local sensitivity analysis
B Global dependence on the right-hand side vector
C The set of all dual optimal solutions
D Global dependence on the cost vector
E Parametric programming

6 Evolutionary Game Theory