1. Let \(x \) be an element of the polyhedron \(P = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \} \). Prove that a vector \(d \in \mathbb{R}^n \) is a feasible direction at \(x \) if and only if \(Ad = 0 \) and \(d_i \geq 0 \) for every \(i \) such that \(x_i = 0 \).

If \(x \) is a feasible direction, then \(x + td \in P \) for some positive scalar \(t \). That is, \(A(x + td) = b \) and \(x + td \geq 0 \). Then \(tAd = A(x + td) - Ax = b - b = 0 \), so that \(Ad = 0 \). Moreover, for each zero component \(x_i \), the condition \(x_i + td_i \geq 0 \) reduces to \(d_i \geq 0 \).

Conversely, if there exists a direction such that \(Ad = 0 \) and \(d_i \geq 0 \) for every \(i \) such that \(x_i = 0 \), then \(A(x + td) = Ax + tAd = b + 0 = b \) for every real \(t \). On choosing \(t^* = \min_{x_i > 0, d_i \neq 0} x_i/|d_i| > 0 \), we thus see that \(x + t^*d \geq 0 \). Hence \(d \) is a feasible direction at \(x \).

2. Let \(x \) be a basic feasible solution of a linear programming problem \(\Pi \) written in standard form, with associated basis matrix \(B \) and set of nonbasic indices \(N \). Let \(y \) be any feasible solution to \(\Pi \) and consider the difference vector \(d = y - x \).

(a) Prove that \(d_j \geq 0 \) for every \(j \in N \).

For any feasible solution \(y \) we have \(y \geq 0 \). Since \(x \) is a basic feasible solution, we know for each \(j \in N \) that \(x_j = 0 \) and hence \(d_j = y_j - x_j \geq 0 \).

(b) If \(d_j = 0 \) for every \(j \in N \), prove that \(y = x \).

This would imply that
\[
0 = Ay - Ax = Ad = Bd_B + \sum_{j \in N} A_j d_j = Bd_B.
\]

The linear independence of the columns of \(B \) then implies that \(d_B = 0 \) and hence \(d = 0 \), so that \(y = x \).

(c) If the reduced cost \(c_j \) of every nonbasic variable \(x_j \) is positive, use parts (a) and (b) to prove that \(x \) is the unique optimal solution to \(\Pi \).

Recall that \(c_j \) is the rate of change along the \(j \)th simplex direction. That is, the change in cost on moving from \(x \) to \(y \) is
\[
c^\top y - c^\top x = c^\top d = c^\top_B d_B + \sum_{j \in N} c_j d_j = \sum_{j \in N} (c_j - c^\top_B B^{-1} A_j) d_j = \sum_{j \in N} c_j d_j.
\]
We know from part (a) that \(d_j \geq 0 \). Moreover, if \(y \neq x \), we know from part (b) that \(d_j > 0 \) for some \(j \in N \). Given \(\tilde{c}_j > 0 \) for each \(j \in N \), we see that

\[
c^\top y - c^\top x = \sum_{j \in N} \tilde{c}_j d_j > 0.
\]

Since this holds for every feasible vector \(y \neq x \), we see that \(x \) is the unique optimal solution.

(d) Suppose that \(\Pi \) is nondegenerate and that \(x \) is an optimal solution to \(\Pi \). If the reduced cost \(\tilde{c}_j \) of some nonbasic variable \(x_j \) is zero, prove that \(\Pi \) does not have a unique optimal solution.

Let \(d' \) be the \(j \)th simplex direction. Since the problem is nondegenerate, we know that the solution \(y = x + td' \) is feasible for some \(t > 0 \). From the definition of the \(j \)th simplex direction, we see that

\[
c^\top y - c^\top x = t\tilde{c}_j d'_j = 0.
\]

That is, \(y \) is a distinct feasible solution with the same optimal cost as \(x \).