1. Use complementary slackness to determine the set \(\{c_1, c_2, c_3\} \) for which \((1, 1, 0)\) is an optimal solution to the linear programming problem

\[
\begin{align*}
\text{minimize} & \quad c_1 x_1 + c_2 x_2 + c_3 x_3 \\
\text{subject to} & \quad x_1 - x_2 + x_3 \leq 0, \\
& \quad 2x_1 + x_2 - x_3 = 3, \\
& \quad x_1 - x_2 - x_3 \leq 1, \\
& \quad [x_1, x_2, x_3] \geq 0.
\end{align*}
\]

The dual problem is

\[
\begin{align*}
\text{maximize} & \quad 3p_2 + p_3 \\
\text{subject to} & \quad p_1 + 2p_2 + p_3 \leq c_1, \\
& \quad -p_1 + p_2 - p_3 \leq c_2, \\
& \quad p_1 - p_2 - p_3 \leq c_3, \\
& \quad p_1 \leq 0, \quad p_3 \leq 0.
\end{align*}
\]

Since only the first two constraints of the primal problem are active at \(x = (1, 1, 0) \), we require \(p_3 = 0 \). Moreover, since \(x_1 \) and \(x_2 \) are nonzero, the first two dual constraints must also be active:

\[
\begin{align*}
p_1 + 2p_2 &= c_1, \\
-p_1 + p_2 &= c_2.
\end{align*}
\]

On adding these equations, we find that \(p_2 = (c_1 + c_2)/3 \). We require that

\[
0 \geq p_1 = p_2 - c_2 = c_1/3 - 2c_2/3,
\]

which implies that \(c_1 \leq 2c_2 \). We also require that \(x \) and \(p \) be feasible solutions. The given solution \((1, 1, 0)\) satisfies all six primal constraints (including the sign conditions). For the dual solution \((p_1, p_2, 0)\) to satisfy all six dual constraints, we require in addition that \(p_1 - p_2 \leq c_3 \), which reduces to \(-c_2 \leq c_3 \). The complementary slackness theorem then guarantees that the solution set of cost coefficients such that \((1, 1, 0)\) is an optimal solution to the primal problem is

\[
\{(c_1, c_2, c_3) : c_1 \leq 2c_2, c_3 \geq -c_2\}.
\]
2. If a linear programming problem in standard form has a non-degenerate basic feasible solution that is optimal, prove that the dual problem has a unique optimal solution. Hint: consider complementary slackness.

Let \(x^* \) be a non-degenerate basic optimal solution to the primal problem. Since the primal problem has an optimal solution, the dual has an optimal solution \(p \). Let \(j_1, \ldots, j_m \) be a set of basic indices corresponding to \(x^* \) and consider the complementary slackness condition

\[
(c_j - p^T A_j) x^*_j = 0, \quad j = j_1, \ldots, j_m.
\]

Since \(x^* \) is nondegenerate, we know that \(x^*_j > 0 \) for each basic variable \(x_j \), so that

\[
c_j = p^T A_j, \quad j = j_1, \ldots, j_m.
\]

This is just the system of equations

\[
c^T_B = p^T B,
\]

which has a unique solution \(p^T = c^T_B B^{-1} \) since the basis \(B = \{ A_j : j = j_1, \ldots, j_m \} \) is invertible.