
Theorem 5.1.6. Let ∅ ̸= U ⊂ RN be open, N ≥ M , and f ∈ C1(U,RM ) with rank

Jf (x) = M for x ∈ U . Then f(U) is open.

Theorem 5.2.5 (Inverse Function Theorem). Let ∅ ̸= U ⊂ RN be open, let f ∈
C1(U,RN ), and let x0 ∈ U be such that det Jf (x0) ̸= 0. Then there exists an open

neighborhood V ⊂ U of x0 such that f is injective on V , f(V ) is open, and f−1 : f(V ) →
RN is a C1-function such that Jf−1 = J−1

f .

Theorem 5.2.6 (Implicit Function Theorem). Let ∅ ̸= U ⊂ RM+N be open, let f ∈
C1(U,RN ), and let (x0, y0) ∈ U be such that f(x0, y0) = 0 and det ∂f

∂y (x0, y0) ̸= 0. Then

there exist neighborhoods V ⊂ RM of x0 and W ⊂ RN of y0 with V ×W ⊂ U and a unique

ϕ ∈ C1(V,RN ) such that:

(i) ϕ(x0) = y0;

(ii) f(x, y) = 0 if and only if ϕ(x) = y for all (x, y) ∈ V ×W .

Moreover, we have

Jϕ = −
(
∂f

∂y

)−1 ∂f

∂x
.

Theorem 5.3.2 (Lagrange Multiplier Theorem). Let N ≥ 2, let ∅ ̸= U ⊂ RN be open,

let f, ϕ ∈ C1(U,R), and let x0 ∈ U be such that f has a local extremum at x0 under the

constraint ϕ(x) = 0 and such that ∇ϕ(x0) ̸= 0. Then there exists λ ∈ R, a Lagrange

multiplier, such that

∇f(x0) = λ∇ϕ(x0).

Theorem 5.4.1 (Change of Variables). Let ∅ ̸= U ⊂ RN be open, let ∅ ̸= K ⊂ U be

compact with content, let ϕ ∈ C1(U,RN ), and suppose that there exists a set Z ⊂ K with

content zero such that ϕ|K\Z is injective and det Jϕ(x) ̸= 0 for all x ∈ K \Z. Then ϕ(K)

has content and ∫
ϕ(K)

f =

∫
K
(f ◦ ϕ)| det Jϕ|

holds for all continuous functions f : ϕ(U) → RM .

Theorem 6.2.7 (Fundamental Theorem for Curve Integrals). Let ∅ ̸= U ⊂ RN be open,

let f : U → RN be a continuous, conservative vector field with potential function F : U → R
and let γ : [a, b] → U be a piecewise C1 curve. Then∫

γ
f · dx = F (γ(b))− F (γ(a)).
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Theorem 6.2.10. Let ∅ ̸= U ⊂ RN be open and convex, and let f : U → RN be

continuous. Then the following are equivalent:

(i) f is conservative;

(ii)
∫
γ f · dx = 0 for each closed, piecewise C1 curve γ in U .

Theorem 6.2.14. Let f : [a, b] × [c, d] → R be continuous, and suppose further that
∂f

∂x
exists and is continuous on [a, b]× [c, d]. Define

F : [a, b] → R, x 7→
∫ d

c
f(x, y) dy.

Then F is continuously differentiable, with

F ′(x) =

∫ d

c

∂f

∂x
(x, y) dy

for x ∈ [a, b].

Theorem 6.2.15. Let ∅ ̸= U ⊂ RN be open, and let f : U → RN be a C1 vector field.

Consider the following statements:

(i) f is conservative;

(ii) f satisfies
∂fj
∂xk

=
∂fk
∂xj

Then (i) =⇒ (ii), and (ii) =⇒ (i) if there exists x0 ∈ U such that [x0, x] ⊂ U for all

x ∈ U .

Theorem 6.3.6 (Green’s Theorem). Let ∅ ̸= U ⊂ R2 be open, let K ⊂ U be a normal

domain, and let P,Q ∈ C1(U,R). Then∫
K

(
∂Q

∂x
− ∂P

∂y

)
=

∫
∂K

P dx+Qdy.

2



Theorem 6.6.5 (Stokes’ Theorem). Suppose that the following hypotheses are given:

(a) Φ is a C2 surface for which the parameter domain K is a normal domain (with respect

to both axes);

(b) the positively oriented boundary ∂K of K is parametrized by a piecewise C1 curve

γ : [a, b] → R2;

(c) P , Q, and R are C1-functions defined on an open set containing {Φ}.

Then ∫
Φ◦γ

P dx+Qdy +Rdz

=

∫
Φ

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

=

∫
Φ
(curl f) · ndσ,

where f = (P,Q,R).

Theorem 6.7.4 (Gauß’ Theorem). Let U ⊂ R3 be open, let V ⊂ U be a normal domain

with boundary S, and let f ∈ C1(U,R3). Then∫
S
f · ndσ =

∫
V
div f.

Theorem 7.5.2 (Stokes’ Theorem for Differential Forms over r-Chains). Let Φ be an

r-chain, and let ω be an (r − 1)-form of class C1 on an open neighborhood of {Φ}. Then∫
Φ
dω =

∫
∂Φ

ω.

Theorem 8.1.22 (Riemann’s Rearrangement Theorem). Let
∑∞

k=1 ak be convergent, but

not absolutely convergent, and let x ∈ R. Then there exists a bijective map σ : N → N
such that

∑∞
k=1 aσ(k) = x.

Theorem 8.1.23 (Cauchy Product Formula). Suppose that

∞∑
k=0

ak and

∞∑
k=0

bk converge

absolutely. Then

∞∑
n=0

n∑
k=0

akbn−k converges absolutely such that

∞∑
n=0

n∑
k=0

anbn−k =

( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
.

Theorem 9.1.3. Let ∅ ̸= D ⊂ RN , and let f, f1, f2, . . . be functions on D such that

fn → f uniformly on D and such that f1, f2, . . . are continuous. Then f is continuous.
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Corollary 9.1.4. Let ∅ ̸= D ⊂ RN have content, and let (fn)
∞
n=1 be a sequence of

continuous functions on D that converges uniformly on D to f : D → R. Then∫
D
f = lim

n→∞

∫
D
fn.

Theorem 9.1.5. Let a < b, and let (fn)
∞
n=1 be a sequence of continuously differentiable

functions on [a, b] such that:

(a) (fn(x0))
∞
n=1 converges at some x0 ∈ [a, b];

(b) (f ′
n)

∞
n=1 is uniformly convergent.

Then there exists a continuously differentiable function f : [a, b] → R such that fn → f

and f ′
n → f ′ uniformly on [a, b].

Theorem 9.1.7. Let ∅ ̸= D ⊂ RN , and let (fn)
∞
n=1 be a sequence of R-valued functions

on D. Then the following are equivalent:

(i) there exists a function f : D → R such that fn → f uniformly on D;

(ii) (fn)
∞
n=1 is a uniform Cauchy sequence on D.

Theorem 9.1.8 (Weierstraß M -Test). Let ∅ ̸= D ⊂ RN , let (fk)
∞
k=1 be a sequence of

R-valued functions on D, and suppose that, for each k ∈ N, there exists Mk ≥ 0 such that

|fk(x)| ≤ Mk for x ∈ D and such that
∑∞

k=1Mk < ∞. Then
∑∞

k=1 fk converges uniformly

and absolutely on D.

Corollary 9.2.4. Let
∑∞

n=0 an(x − x0)
n be a power series with radius of convergence

R > 0. Then
∑∞

n=0 an(x − x0)
n converges, for each r ∈ (0, R), uniformly and absolutely

on [x0 − r, x0 + r] to a C1-function f : (x0 −R, x0 +R) → R with first derivative

f ′(x) =

∞∑
n=1

nan(x− x0)
n−1

for x ∈ (x0 −R, x0 +R). Moreover, F : (x0 −R, x0 +R) → R given by

F (x) :=

∞∑
n=0

an
n+ 1

(x− x0)
n+1

for x ∈ (x0 −R, x0 +R) is an antiderivative of f .

Proposition 9.2.5 (Cauchy–Hadamard Formula). The radius of convergence R of the

power series
∑∞

n=0 an(x− x0)
n is given by

R =
1

lim sup
n→∞

n
√
|an|

,

where the convention applies that 1
0 = ∞ and 1

∞ = 0.
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Corollary 9.2.7. Let f be a function with a power series expansion
∑∞

n=0 an(x − x0)
n

about x0 ∈ R. Then f is infinitely often differentiable on an open interval about x0 such

that

an =
f (n)(x0)

n!

for all n ∈ N0. In particular, the power series expansion of f about x0 is unique.

Theorem 9.2.9 (Abel’s Theorem). Suppose that the series

∞∑
n=0

an converges. Then the

power series
∞∑
n=0

anx
n converges pointwise on (−1, 1] to a continuous function.

Lemma 9.3.11 (Riemann–Lebesgue Lemma). For f ∈ PC2π(R), we have that

lim
n→∞

∫ π

−π
f(t) sin

((
n+

1

2

)
t

)
dt = 0.

Theorem 9.3.13. Let f ∈ PC2π(R) and suppose that f has left- and right-hand derivatives

at x ∈ R. Then

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) =
1

2
(f(x+) + f(x−)).

Theorem 9.3.15. Let f ∈ PC2π(R) be continuous and piecewise continuously differentiable

on [−π, π]. Then

a0
2

+

∞∑
n=1

(an cos(nx) + bn sin(nx))

converges uniformly to f(x) on R.

Theorem 9.3.18. Let f ∈ PC2π(R). Then lim
n→∞

∥f − Sn(f)∥2 → 0.

Corollary 9.3.19 (Parseval’s Identity). Let f ∈ PC2π(R) have the Fourier coefficients

a0, a1, a2 . . . , b1, b2, . . .. Then

a20
2

+

∞∑
n=1

(a2n + b2n) =
1

π
∥f∥22.
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