Theorem 5.1.6. Let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open, $N \geq M$, and $f \in \mathcal{C}^{1}\left(U, \mathbb{R}^{M}\right)$ with rank $J_{f}(x)=M$ for $x \in U$. Then $f(U)$ is open.

Theorem 5.2.5 (Inverse Function Theorem). Let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open, let $f \in$ $\mathcal{C}^{1}\left(U, \mathbb{R}^{N}\right)$, and let $x_{0} \in U$ be such that $\operatorname{det} J_{f}\left(x_{0}\right) \neq 0$. Then there exists an open neighborhood $V \subset U$ of x_{0} such that f is injective on $V, f(V)$ is open, and $f^{-1}: f(V) \rightarrow$ \mathbb{R}^{N} is a \mathcal{C}^{1}-function such that $J_{f^{-1}}=J_{f}^{-1}$.

Theorem 5.2.6 (Implicit Function Theorem). Let $\varnothing \neq U \subset \mathbb{R}^{M+N}$ be open, let $f \in$ $\mathcal{C}^{1}\left(U, \mathbb{R}^{N}\right)$, and let $\left(x_{0}, y_{0}\right) \in U$ be such that $f\left(x_{0}, y_{0}\right)=0$ and $\operatorname{det} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$. Then there exist neighborhoods $V \subset \mathbb{R}^{M}$ of x_{0} and $W \subset \mathbb{R}^{N}$ of y_{0} with $V \times W \subset U$ and a unique $\phi \in \mathcal{C}^{1}\left(V, \mathbb{R}^{N}\right)$ such that:
(i) $\phi\left(x_{0}\right)=y_{0}$;
(ii) $f(x, y)=0$ if and only if $\phi(x)=y$ for all $(x, y) \in V \times W$.

Moreover, we have

$$
J_{\phi}=-\left(\frac{\partial f}{\partial y}\right)^{-1} \frac{\partial f}{\partial x}
$$

Theorem 5.3.2 (Lagrange Multiplier Theorem). Let $N \geq 2$, let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open, let $f, \phi \in \mathcal{C}^{1}(U, \mathbb{R})$, and let $x_{0} \in U$ be such that f has a local extremum at x_{0} under the constraint $\phi(x)=0$ and such that $\nabla \phi\left(x_{0}\right) \neq 0$. Then there exists $\lambda \in \mathbb{R}$, a Lagrange multiplier, such that

$$
\nabla f\left(x_{0}\right)=\lambda \nabla \phi\left(x_{0}\right)
$$

Theorem 5.4.1 (Change of Variables). Let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open, let $\varnothing \neq K \subset U$ be compact with content, let $\phi \in \mathcal{C}^{1}\left(U, \mathbb{R}^{N}\right)$, and suppose that there exists a set $Z \subset K$ with content zero such that $\left.\phi\right|_{K \backslash Z}$ is injective and $\operatorname{det} J_{\phi}(x) \neq 0$ for all $x \in K \backslash Z$. Then $\phi(K)$ has content and

$$
\int_{\phi(K)} f=\int_{K}(f \circ \phi)\left|\operatorname{det} J_{\phi}\right|
$$

holds for all continuous functions $f: \phi(U) \rightarrow \mathbb{R}^{M}$.
Theorem 6.2.7 (Fundamental Theorem for Curve Integrals). Let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open, let $f: U \rightarrow \mathbb{R}^{N}$ be a continuous, conservative vector field with potential function $F: U \rightarrow \mathbb{R}$ and let $\gamma:[a, b] \rightarrow U$ be a piecewise \mathcal{C}^{1} curve. Then

$$
\int_{\gamma} f \cdot d x=F(\gamma(b))-F(\gamma(a)) .
$$

Theorem 6.2.10. Let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open and convex, and let $f: U \rightarrow \mathbb{R}^{N}$ be continuous. Then the following are equivalent:
(i) f is conservative;
(ii) $\int_{\gamma} f \cdot d x=0$ for each closed, piecewise \mathcal{C}^{1} curve γ in U.

Theorem 6.2.14. Let $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ be continuous, and suppose further that $\frac{\partial f}{\partial x}$ exists and is continuous on $[a, b] \times[c, d]$. Define

$$
F:[a, b] \rightarrow \mathbb{R}, \quad x \mapsto \int_{c}^{d} f(x, y) d y
$$

Then F is continuously differentiable, with

$$
F^{\prime}(x)=\int_{c}^{d} \frac{\partial f}{\partial x}(x, y) d y
$$

for $x \in[a, b]$.
Theorem 6.2.15. Let $\varnothing \neq U \subset \mathbb{R}^{N}$ be open, and let $f: U \rightarrow \mathbb{R}^{N}$ be a \mathcal{C}^{1} vector field. Consider the following statements:
(i) f is conservative;
(ii) f satisfies

$$
\frac{\partial f_{j}}{\partial x_{k}}=\frac{\partial f_{k}}{\partial x_{j}}
$$

Then (i) \Longrightarrow (ii), and (ii) \Longrightarrow (i) if there exists $x_{0} \in U$ such that $\left[x_{0}, x\right] \subset U$ for all $x \in U$.

Theorem 6.3.6 (Green's Theorem). Let $\varnothing \neq U \subset \mathbb{R}^{2}$ be open, let $K \subset U$ be a normal domain, and let $P, Q \in \mathcal{C}^{1}(U, \mathbb{R})$. Then

$$
\int_{K}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=\int_{\partial K} P d x+Q d y
$$

Theorem 6.6.5 (Stokes' Theorem). Suppose that the following hypotheses are given:
(a) Φ is a \mathcal{C}^{2} surface for which the parameter domain K is a normal domain (with respect to both axes);
(b) the positively oriented boundary ∂K of K is parametrized by a piecewise \mathcal{C}^{1} curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2} ;$
(c) P, Q, and R are \mathcal{C}^{1}-functions defined on an open set containing $\{\Phi\}$.

Then

$$
\begin{aligned}
& \int_{\Phi \circ \gamma} P d x+Q d y+R d z \\
& =\int_{\Phi}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y \wedge d z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d z \wedge d x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y \\
& =\int_{\Phi}(\operatorname{curl} f) \cdot n d \sigma
\end{aligned}
$$

where $f=(P, Q, R)$.
Theorem 6.7.4 (Gauß' Theorem). Let $U \subset \mathbb{R}^{3}$ be open, let $V \subset U$ be a normal domain with boundary S, and let $f \in \mathcal{C}^{1}\left(U, \mathbb{R}^{3}\right)$. Then

$$
\int_{S} f \cdot n d \sigma=\int_{V} \operatorname{div} f
$$

Theorem 7.5.2 (Stokes' Theorem for Differential Forms over r-Chains). Let Φ be an r-chain, and let ω be an $(r-1)$-form of class \mathcal{C}^{1} on an open neighborhood of $\{\Phi\}$. Then

$$
\int_{\Phi} d \omega=\int_{\partial \Phi} \omega .
$$

Theorem 8.1.22 (Riemann's Rearrangement Theorem). Let $\sum_{k=1}^{\infty} a_{k}$ be convergent, but not absolutely convergent, and let $x \in \mathbb{R}$. Then there exists a bijective map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that $\sum_{k=1}^{\infty} a_{\sigma(k)}=x$.

Theorem 8.1.23 (Cauchy Product Formula). Suppose that $\sum_{k=0}^{\infty} a_{k}$ and $\sum_{k=0}^{\infty} b_{k}$ converge absolutely. Then $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k}$ converges absolutely such that

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{n} b_{n-k}=\left(\sum_{k=0}^{\infty} a_{k}\right)\left(\sum_{k=0}^{\infty} b_{k}\right) .
$$

Theorem 9.1.3. Let $\varnothing \neq D \subset \mathbb{R}^{N}$, and let f, f_{1}, f_{2}, \ldots be functions on D such that $f_{n} \rightarrow f$ uniformly on D and such that f_{1}, f_{2}, \ldots are continuous. Then f is continuous.

Corollary 9.1.4. Let $\varnothing \neq D \subset \mathbb{R}^{N}$ have content, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuous functions on D that converges uniformly on D to $f: D \rightarrow \mathbb{R}$. Then

$$
\int_{D} f=\lim _{n \rightarrow \infty} \int_{D} f_{n}
$$

Theorem 9.1.5. Let $a<b$, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of continuously differentiable functions on $[a, b]$ such that:
(a) $\left(f_{n}\left(x_{0}\right)\right)_{n=1}^{\infty}$ converges at some $x_{0} \in[a, b]$;
(b) $\left(f_{n}^{\prime}\right)_{n=1}^{\infty}$ is uniformly convergent.

Then there exists a continuously differentiable function $f:[a, b] \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ and $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on $[a, b]$.

Theorem 9.1.7. Let $\varnothing \neq D \subset \mathbb{R}^{N}$, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of \mathbb{R}-valued functions on D. Then the following are equivalent:
(i) there exists a function $f: D \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ uniformly on D;
(ii) $\left(f_{n}\right)_{n=1}^{\infty}$ is a uniform Cauchy sequence on D.

Theorem 9.1.8 (Weierstraß M-Test). Let $\varnothing \neq D \subset \mathbb{R}^{N}$, let $\left(f_{k}\right)_{k=1}^{\infty}$ be a sequence of \mathbb{R}-valued functions on D, and suppose that, for each $k \in \mathbb{N}$, there exists $M_{k} \geq 0$ such that $\left|f_{k}(x)\right| \leq M_{k}$ for $x \in D$ and such that $\sum_{k=1}^{\infty} M_{k}<\infty$. Then $\sum_{k=1}^{\infty} f_{k}$ converges uniformly and absolutely on D.

Corollary 9.2.4. Let $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be a power series with radius of convergence $R>0$. Then $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges, for each $r \in(0, R)$, uniformly and absolutely on $\left[x_{0}-r, x_{0}+r\right]$ to a \mathcal{C}^{1}-function $f:\left(x_{0}-R, x_{0}+R\right) \rightarrow \mathbb{R}$ with first derivative

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}
$$

for $x \in\left(x_{0}-R, x_{0}+R\right)$. Moreover, $F:\left(x_{0}-R, x_{0}+R\right) \rightarrow \mathbb{R}$ given by

$$
F(x):=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}
$$

for $x \in\left(x_{0}-R, x_{0}+R\right)$ is an antiderivative of f.
Proposition 9.2.5 (Cauchy-Hadamard Formula). The radius of convergence R of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is given by

$$
R=\frac{1}{\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}}
$$

where the convention applies that $\frac{1}{0}=\infty$ and $\frac{1}{\infty}=0$.

Corollary 9.2.7. Let f be a function with a power series expansion $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ about $x_{0} \in \mathbb{R}$. Then f is infinitely often differentiable on an open interval about x_{0} such that

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

for all $n \in \mathbb{N}_{0}$. In particular, the power series expansion of f about x_{0} is unique.
Theorem 9.2.9 (Abel's Theorem). Suppose that the series $\sum_{n=0}^{\infty} a_{n}$ converges. Then the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges pointwise on $(-1,1]$ to a continuous function.

Lemma 9.3.11 (Riemann-Lebesgue Lemma). For $f \in \mathcal{P C}_{2 \pi}(\mathbb{R})$, we have that

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(t) \sin \left(\left(n+\frac{1}{2}\right) t\right) d t=0
$$

Theorem 9.3.13. Let $f \in \mathcal{P C}_{2 \pi}(\mathbb{R})$ and suppose that f has left- and right-hand derivatives at $x \in \mathbb{R}$. Then

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)=\frac{1}{2}\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right)
$$

Theorem 9.3.15. Let $f \in \mathcal{P C}_{2 \pi}(\mathbb{R})$ be continuous and piecewise continuously differentiable on $[-\pi, \pi]$. Then

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

converges uniformly to $f(x)$ on \mathbb{R}.
Theorem 9.3.18. Let $f \in \mathcal{P} \mathcal{C}_{2 \pi}(\mathbb{R})$. Then $\lim _{n \rightarrow \infty}\left\|f-S_{n}(f)\right\|_{2} \rightarrow 0$.
Corollary 9.3.19 (Parseval's Identity). Let $f \in \mathcal{P} \mathcal{C}_{2 \pi}(\mathbb{R})$ have the Fourier coefficients $a_{0}, a_{1}, a_{2} \ldots, b_{1}, b_{2}, \ldots$ Then

$$
\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi}\|f\|_{2}^{2}
$$

