Theorem 5.1.6. Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, $N \geq M$, and $f \in \mathcal{C}^1(U, \mathbb{R}^M)$ with rank $J_f(x) = M$ for $x \in U$. Then f(U) is open.

Theorem 5.2.5 (Inverse Function Theorem). Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, let $f \in C^1(U, \mathbb{R}^N)$, and let $x_0 \in U$ be such that $\det J_f(x_0) \neq 0$. Then there exists an open neighborhood $V \subset U$ of x_0 such that f is injective on V, f(V) is open, and $f^{-1}: f(V) \to \mathbb{R}^N$ is a C^1 -function such that $J_{f^{-1}} = J_f^{-1}$.

Theorem 5.2.6 (Implicit Function Theorem). Let $\emptyset \neq U \subset \mathbb{R}^{M+N}$ be open, let $f \in \mathcal{C}^1(U, \mathbb{R}^N)$, and let $(x_0, y_0) \in U$ be such that $f(x_0, y_0) = 0$ and det $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Then there exist neighborhoods $V \subset \mathbb{R}^M$ of x_0 and $W \subset \mathbb{R}^N$ of y_0 with $V \times W \subset U$ and a unique $\phi \in \mathcal{C}^1(V, \mathbb{R}^N)$ such that:

- (i) $\phi(x_0) = y_0;$
- (ii) f(x,y) = 0 if and only if $\phi(x) = y$ for all $(x,y) \in V \times W$.

Moreover, we have

$$J_{\phi} = -\left(\frac{\partial f}{\partial y}\right)^{-1} \frac{\partial f}{\partial x}.$$

Theorem 5.3.2 (Lagrange Multiplier Theorem). Let $N \ge 2$, let $\emptyset \ne U \subset \mathbb{R}^N$ be open, let $f, \phi \in C^1(U, \mathbb{R})$, and let $x_0 \in U$ be such that f has a local extremum at x_0 under the constraint $\phi(x) = 0$ and such that $\nabla \phi(x_0) \ne 0$. Then there exists $\lambda \in \mathbb{R}$, a Lagrange multiplier, such that

$$\nabla f(x_0) = \lambda \, \nabla \phi(x_0).$$

Theorem 5.4.1 (Change of Variables). Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, let $\emptyset \neq K \subset U$ be compact with content, let $\phi \in C^1(U, \mathbb{R}^N)$, and suppose that there exists a set $Z \subset K$ with content zero such that $\phi|_{K\setminus Z}$ is injective and det $J_{\phi}(x) \neq 0$ for all $x \in K \setminus Z$. Then $\phi(K)$ has content and

$$\int_{\phi(K)} f = \int_{K} (f \circ \phi) |\det J_{\phi}|$$

holds for all continuous functions $f: \phi(U) \to \mathbb{R}^M$.

Theorem 6.2.7 (Fundamental Theorem for Curve Integrals). Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, let $f: U \to \mathbb{R}^N$ be a continuous, conservative vector field with potential function $F: U \to \mathbb{R}$ and let $\gamma: [a, b] \to U$ be a piecewise \mathcal{C}^1 curve. Then

$$\int_{\gamma} f \cdot dx = F(\gamma(b)) - F(\gamma(a))$$

Theorem 6.2.10. Let $\emptyset \neq U \subset \mathbb{R}^N$ be open and convex, and let $f : U \to \mathbb{R}^N$ be continuous. Then the following are equivalent:

- (i) f is conservative;
- (ii) $\int_{\gamma} f \cdot dx = 0$ for each closed, piecewise \mathcal{C}^1 curve γ in U.

Theorem 6.2.14. Let $f: [a,b] \times [c,d] \to \mathbb{R}$ be continuous, and suppose further that $\frac{\partial f}{\partial x}$ exists and is continuous on $[a,b] \times [c,d]$. Define

$$F: [a,b] \to \mathbb{R}, \quad x \mapsto \int_c^d f(x,y) \, dy.$$

Then F is continuously differentiable, with

$$F'(x) = \int_{c}^{d} \frac{\partial f}{\partial x}(x, y) \, dy$$

for $x \in [a, b]$.

Theorem 6.2.15. Let $\emptyset \neq U \subset \mathbb{R}^N$ be open, and let $f: U \to \mathbb{R}^N$ be a \mathcal{C}^1 vector field. Consider the following statements:

- (i) f is conservative;
- (ii) f satisfies

$$\frac{\partial f_j}{\partial x_k} = \frac{\partial f_k}{\partial x_j}$$

Then (i) \implies (ii), and (ii) \implies (i) if there exists $x_0 \in U$ such that $[x_0, x] \subset U$ for all $x \in U$.

Theorem 6.3.6 (Green's Theorem). Let $\emptyset \neq U \subset \mathbb{R}^2$ be open, let $K \subset U$ be a normal domain, and let $P, Q \in \mathcal{C}^1(U, \mathbb{R})$. Then

$$\int_{K} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \int_{\partial K} P \, dx + Q \, dy.$$

Theorem 6.6.5 (Stokes' Theorem). Suppose that the following hypotheses are given:

- (a) Φ is a C^2 surface for which the parameter domain K is a normal domain (with respect to both axes);
- (b) the positively oriented boundary ∂K of K is parametrized by a piecewise C^1 curve $\gamma: [a, b] \to \mathbb{R}^2;$
- (c) P, Q, and R are \mathcal{C}^1 -functions defined on an open set containing $\{\Phi\}$.

Then

$$\int_{\Phi \circ \gamma} P \, dx + Q \, dy + R \, dz$$

= $\int_{\Phi} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy$
= $\int_{\Phi} (\operatorname{curl} f) \cdot n \, d\sigma,$

where f = (P, Q, R).

Theorem 6.7.4 (Gauß' Theorem). Let $U \subset \mathbb{R}^3$ be open, let $V \subset U$ be a normal domain with boundary S, and let $f \in \mathcal{C}^1(U, \mathbb{R}^3)$. Then

$$\int_S f \cdot n \, d\sigma = \int_V \operatorname{div} \, f.$$

Theorem 7.5.2 (Stokes' Theorem for Differential Forms over r-Chains). Let Φ be an r-chain, and let ω be an (r-1)-form of class \mathcal{C}^1 on an open neighborhood of $\{\Phi\}$. Then

$$\int_{\Phi} d\omega = \int_{\partial \Phi} \omega$$

Theorem 8.1.22 (Riemann's Rearrangement Theorem). Let $\sum_{k=1}^{\infty} a_k$ be convergent, but not absolutely convergent, and let $x \in \mathbb{R}$. Then there exists a bijective map $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{k=1}^{\infty} a_{\sigma(k)} = x$.

Theorem 8.1.23 (Cauchy Product Formula). Suppose that $\sum_{k=0}^{\infty} a_k$ and $\sum_{k=0}^{\infty} b_k$ converge absolutely. Then $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$ converges absolutely such that

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_n b_{n-k} = \left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right).$$

Theorem 9.1.3. Let $\emptyset \neq D \subset \mathbb{R}^N$, and let f, f_1, f_2, \ldots be functions on D such that $f_n \to f$ uniformly on D and such that f_1, f_2, \ldots are continuous. Then f is continuous.

Corollary 9.1.4. Let $\emptyset \neq D \subset \mathbb{R}^N$ have content, and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous functions on D that converges uniformly on D to $f: D \to \mathbb{R}$. Then

$$\int_D f = \lim_{n \to \infty} \int_D f_n$$

Theorem 9.1.5. Let a < b, and let $(f_n)_{n=1}^{\infty}$ be a sequence of continuously differentiable functions on [a, b] such that:

- (a) $(f_n(x_0))_{n=1}^{\infty}$ converges at some $x_0 \in [a, b]$;
- (b) $(f'_n)_{n=1}^{\infty}$ is uniformly convergent.

Then there exists a continuously differentiable function $f:[a,b] \to \mathbb{R}$ such that $f_n \to f$ and $f'_n \to f'$ uniformly on [a,b].

Theorem 9.1.7. Let $\emptyset \neq D \subset \mathbb{R}^N$, and let $(f_n)_{n=1}^{\infty}$ be a sequence of \mathbb{R} -valued functions on D. Then the following are equivalent:

- (i) there exists a function $f: D \to \mathbb{R}$ such that $f_n \to f$ uniformly on D;
- (ii) $(f_n)_{n=1}^{\infty}$ is a uniform Cauchy sequence on D.

Theorem 9.1.8 (Weierstraß *M*-Test). Let $\emptyset \neq D \subset \mathbb{R}^N$, let $(f_k)_{k=1}^{\infty}$ be a sequence of \mathbb{R} -valued functions on *D*, and suppose that, for each $k \in \mathbb{N}$, there exists $M_k \geq 0$ such that $|f_k(x)| \leq M_k$ for $x \in D$ and such that $\sum_{k=1}^{\infty} M_k < \infty$. Then $\sum_{k=1}^{\infty} f_k$ converges uniformly and absolutely on *D*.

Corollary 9.2.4. Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series with radius of convergence R > 0. Then $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges, for each $r \in (0, R)$, uniformly and absolutely on $[x_0 - r, x_0 + r]$ to a C^1 -function $f: (x_0 - R, x_0 + R) \to \mathbb{R}$ with first derivative

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$$

for $x \in (x_0 - R, x_0 + R)$. Moreover, $F: (x_0 - R, x_0 + R) \to \mathbb{R}$ given by

$$F(x) := \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1}$$

for $x \in (x_0 - R, x_0 + R)$ is an antiderivative of f.

Proposition 9.2.5 (Cauchy–Hadamard Formula). The radius of convergence R of the power series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ is given by

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}},$$

where the convention applies that $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$.

Corollary 9.2.7. Let f be a function with a power series expansion $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ about $x_0 \in \mathbb{R}$. Then f is infinitely often differentiable on an open interval about x_0 such that

$$a_n = \frac{f^{(n)}(x_0)}{n!}$$

for all $n \in \mathbb{N}_0$. In particular, the power series expansion of f about x_0 is unique.

Theorem 9.2.9 (Abel's Theorem). Suppose that the series $\sum_{n=0}^{\infty} a_n$ converges. Then the power series $\sum_{n=0}^{\infty} a_n x^n$ converges pointwise on (-1, 1] to a continuous function.

Lemma 9.3.11 (Riemann–Lebesgue Lemma). For $f \in \mathcal{PC}_{2\pi}(\mathbb{R})$, we have that

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = 0$$

Theorem 9.3.13. Let $f \in \mathcal{PC}_{2\pi}(\mathbb{R})$ and suppose that f has left- and right-hand derivatives at $x \in \mathbb{R}$. Then

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) = \frac{1}{2} (f(x^+) + f(x^-)).$$

Theorem 9.3.15. Let $f \in \mathcal{PC}_{2\pi}(\mathbb{R})$ be continuous and piecewise continuously differentiable on $[-\pi, \pi]$. Then

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

converges uniformly to f(x) on \mathbb{R} .

Theorem 9.3.18. Let $f \in \mathcal{PC}_{2\pi}(\mathbb{R})$. Then $\lim_{n \to \infty} ||f - S_n(f)||_2 \to 0$.

Corollary 9.3.19 (Parseval's Identity). Let $f \in \mathcal{PC}_{2\pi}(\mathbb{R})$ have the Fourier coefficients $a_0, a_1, a_2, \ldots, b_1, b_2, \ldots$ Then

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \|f\|_2^2.$$