1. Show that
\[\gamma: [0, 1] \rightarrow \mathbb{R}^2, \quad t \mapsto \begin{cases} (1, t \cos \left(\frac{\pi}{t} \right)) & \text{if } t \in (0, 1], \\ (1, 0) & \text{if } t = 0 \end{cases} \]
defines a curve that fails to be rectifiable. (*Hint: Consider partitions \(0 < \frac{1}{2^m} < \frac{1}{2^{m-1}} < \cdots < \frac{1}{3} < \frac{1}{2} < 1 \).)

2. Let \(\Phi \) be a surface in \(\mathbb{R}^3 \) with parameter domain \(K \subset \mathbb{R}^2 \), let \(\gamma: [a, b] \rightarrow K \) be a \(C^1 \) curve, and let \(\alpha := \Phi \circ \gamma \). Show that \(\alpha'(t) \) is orthogonal to \(N(\gamma(t)) \) for each \(t \in [a, b] \). Interpret this result geometrically.

3. Let \(\Phi \) and \(\Psi \) be \(C^2 \)-surfaces with parameter domain \(K \), which is a normal region, such that \(\Phi|_{\partial K} = \Psi|_{\partial K} \), and let \(f: V \rightarrow \mathbb{R}^3 \) be continuously differentiable where \(V \subset \mathbb{R}^3 \) is open and contains \(\{\Phi\} \cup \{\Psi\} \). Show that
\[\int_\Phi \text{curl} \cdot \mathbf{n} \, d\sigma = \int_\Psi \text{curl} \cdot \mathbf{n} \, d\sigma. \]

4. Let \(V \) be a normal domain with boundary \(S \) such that \(N \neq 0 \) on \(S \) and let \(f \) and \(g \) be \(\mathbb{R} \)-valued \(C^2 \) functions on an open set containing \(V \).
 (a) Prove Green’s First Formula:
 \[\int_V (\nabla f) \cdot (\nabla g) + \int_V f \Delta g = \int_S f \mathbf{D}_n g \, d\sigma. \]
 Hint: Apply Gauß’ Theorem to the vector field \(f \nabla g \).
 (b) Prove Green’s Second Formula:
 \[\int_V (f \Delta g - g \Delta f) = \int_S (f \mathbf{D}_n g - g \mathbf{D}_n f) \, d\sigma. \]

5. Let \(\emptyset \neq U \subset \mathbb{R}^3 \) be open, and suppose that \(f \in C^2(U, \mathbb{R}) \) is harmonic, i.e., satisfies \(\Delta f = 0 \). Let \(V \subset U \), \(S \), and \(n \) be as in Question 4. Show that
 (a) \[\int_S D_n f \, d\sigma = 0. \]
(b) \[\int_S f D_n f \, d\sigma = \int_V |\nabla f|^2. \]