1. (a) Let $U \subset \mathbb{R}^N$ be open and convex, and let $f \in C^1(U, \mathbb{R}^N)$ be such that
\[
\det \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(p_1), & \cdots, & \frac{\partial f_1}{\partial x_N}(p_1) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_N}{\partial x_1}(p_N), & \cdots, & \frac{\partial f_N}{\partial x_N}(p_N)
\end{bmatrix} \neq 0
\]
for all collections of colinear points $(p_1, \ldots, p_N) \in U$. Prove that f is injective. Where is the convexity condition used?

Let $a = (\alpha_1, \ldots, \alpha_N)$ and $b = (\beta_1, \ldots, \beta_N)$ be points in U. Suppose that $f(b) = f(a)$. By Taylor’s remainder theorem,
\[
0 = f_i(b) - f_i(a) = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(p_i)(\beta_j - \alpha_j),
\]
for each $i = 1, \ldots, N$, where the points p_i all lie on the line segment joining a and b (which is entirely contained in the convex set U). We are given the condition that the determinant of this linear system of equations is nonzero. We may then solve these equations for $\beta_j - \alpha_j$ to deduce that $\beta_j = \alpha_j$ for $j = 1, \ldots, N$.

(b) Prove that $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x^3 - y, e^{x+y})$ is injective.

Since
\[
\begin{vmatrix}
3x_1^2 & -1 \\
e^{x_2+y_2} & e^{x_2+y_2}
\end{vmatrix} = e^{x_2+y_2}(3x_1^2 + 1) > 0
\]
for all points (x_1, y_1) and (x_2, y_2), part (a) implies that f is (globally) injective on \mathbb{R}^2.

2. Let $U := \mathbb{R}^2 \setminus \{(0,0)\}$, and let
\[
f : U \to \mathbb{R}^2, \quad (x, y) \mapsto \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right).
\]

(a) Calculate $\det J_f(x, y)$ for all $(x, y) \in U$.

Let $(x, y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Since
\[
\frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{1}{(x^2 + y^2)^{3/2}}[x^2 + y^2 - x^2],
\]
\[
\frac{\partial}{\partial y} \left(\frac{y}{\sqrt{x^2 + y^2}} \right) = \frac{1}{(x^2 + y^2)^{3/2}}[x^2 + y^2 - y^2],
\]
and
\[\frac{\partial}{\partial x} \frac{y}{\sqrt{x^2 + y^2}} = \frac{\partial}{\partial y} \frac{x}{\sqrt{x^2 + y^2}} = \frac{1}{(x^2 + y^2)^{3/2}} (-xy), \]

we find
\[\det J_f(x, y) = \frac{1}{(x^2 + y^2)^{3/2}} (y^2x^2 - x^2y^2) = 0. \]

(b) Determine \(f(U) \). Does it contain a non-empty open subset of \(\mathbb{R}^2 \)?

As is readily seen (for example, by transforming to polar coordinates), \(f(U) \) is the circle of radius 1 centered at \((0, 0)\). This set does not have interior points and thus contains no nonempty open subset.

3. Is the following “theorem” true?

Let \(U \subset \mathbb{R}^N \) be open and nonempty, let \(x_0 \in U \), and let \(f \in C^1(U, \mathbb{R}^N) \) be such that \(f(V) \) is open for each open neighbourhood \(V \subset U \) of \(x_0 \).

Then \(\det J_f(x_0) \neq 0 \).

Give a proof or provide a counterexample.

No. Let
\[f : \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3, \]

and let \(x_0 = 0 \). For any \(x \in \mathbb{R} \) and \(\epsilon > 0 \), we have \(f((x-\epsilon, x+\epsilon)) = ((x-\epsilon)^3, (x+\epsilon)^3) \), so that \(f(V) \) is open for each open subset of \(V \). On the other hand, \(f'(0) = 0 \).

4. Let \(U \subset \mathbb{R}^N \) be open and nonempty, and let \(f \in C^1(U, \mathbb{R}^N) \) be such that \(\det J_f(x) \neq 0 \) for all \(x \in U \).

(a) Show that
\[g : U \to \mathbb{R}, \ x \mapsto |f(x)| \]

has no local maximum.

Assume that \(g \) attains a local maximum at \(x_0 \in U \), i.e., there exists an open neighbourhood \(V \subset U \) of \(x_0 \) such that
\[|f(x)| \leq |f(x_0)| \quad \forall x \in V. \tag{1} \]

Since \(\det J_f(x) \neq 0 \ \forall x \in U \), it follows that \(f(U) \) is open. Hence, there exists \(\epsilon > 0 \) such that \(B_\epsilon(f(x_0)) \subset f(U) \), contradicting (1).

(b) Suppose that \(U \) is bounded (so that \(\overline{U} \) is compact) and that \(f \) has a continuous extension \(\tilde{f} : \overline{U} \to \mathbb{R}^N \). Show that the continuous map
\[\tilde{g} : \overline{U} \to \mathbb{R}, \ x \mapsto |\tilde{f}(x)| \]

attains its maximum on \(\partial U \).

Since \(\overline{U} \) is compact and \(\tilde{f} \) is continuous, \(\tilde{g} \) attains its maximum at a point \(x_0 \in \overline{U} \). By (a), \(x_0 \notin U \); hence \(x_0 \in \partial U \).