Math 225 (Q1) Homework Assignment 1.

1. Let \(u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \ v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \) be two vectors in \(\mathbb{R}^n \). Recall, the dot product of \(u \) and \(v \) is defined as
\[
 u \cdot v = u_1 v_1 + \cdots + u_n v_n.
\]
and the length (also called magnitude or norm) of \(u \) is defined as
\[
 ||u|| = \sqrt{u \cdot u}.
\]
(a) Show that
\[
 u \cdot v = u^T v,
\]
where \(u^T = (u_1, \ldots, u_n) \) is the transpose of \(u \).
(b) Show that \(||u|| = 0 \) if and only if \(u = 0 \), that is, the vector \(u \) has zero length if and only if \(u \) is the zero vector.

2. Let \(A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \) be a \(m \times n \) matrix and let \(B = (b_{jk})_{1 \leq j \leq n, 1 \leq k \leq p} \) be a \(n \times p \) matrix. Recall that the product \(C \) of the matrices \(A \) and \(B \) is a \(m \times p \) matrix, \(C = (c_{ik})_{1 \leq i \leq m, 1 \leq k \leq p} \), where the \((i, k)\)-th entry of \(C \) is given by
\[
 c_{ik} = a_{i1} b_{1k} + a_{i2} b_{2k} + \cdots + a_{in} b_{nk}.
\]
Note that \(c_{ik} \) is the “dot product” of the \(i \)-th row of \(A \) with the \(k \)-th column of \(B \). Also recall that the transpose of \(A \) is the matrix \(A^T \) which is a \(n \times m \) matrix whose \(i \)-th row is the \(i \)-th column of \(A \). That is, if \(D = A^T \) and \(D = (d_{rs})_{1 \leq r \leq n, 1 \leq s \leq m} \), then
\[
 d_{rs} = a_{sr}, \quad \text{for all } 1 \leq r \leq n, 1 \leq s \leq m.
\]
Show that \((AB)^T = B^T A^T \).

3. Let \(T : \mathbb{R}^n \to \mathbb{R}^m \) be a linear transformation, that is, \(T \) is a mapping taking vectors in \(\mathbb{R}^n \) to vectors in \(\mathbb{R}^m \) and \(T \) satisfies the properties
\[
 T(u + v) = T(u) + T(v)
\]
\[
 T(cu) = cT(u)
\]
for all \(u, v \in \mathbb{R}^n \) and all \(c \in \mathbb{R} \).
for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Recall, the kernel of T is the subset of \mathbb{R}^n defined by

$$\text{Ker}(T) = \{ \mathbf{u} \in \mathbb{R}^n : T(\mathbf{u}) = 0 \}.$$

and the range of T is the subset of \mathbb{R}^m defined by

$$\text{Ran}(T) = \{ \mathbf{v} \in \mathbb{R}^m : \mathbf{v} = T(\mathbf{u}) \text{ for some } \mathbf{u} \in \mathbb{R}^n \}.$$

(a) Show that $\text{Ker}(T)$ is a subspace of \mathbb{R}^n.

(b) Show that $\text{Ran}(T)$ is a subspace of \mathbb{R}^m.

4. Let A be a $m \times n$ matrix. Recall that the null space of A is the set

$$\text{Nul}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

Show that $\text{Nul}(A^T A) = \text{Nul}(A)$.

5. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be any three vectors in \mathbb{R}^n. Define the vectors $\mathbf{p} = \mathbf{u} - \mathbf{v}$, $\mathbf{q} = \mathbf{v} - \mathbf{w}$ and $\mathbf{r} = \mathbf{w} - \mathbf{u}$. Show that \mathbf{p}, \mathbf{q} and \mathbf{r} are linearly dependent by expressing one of the vectors as a linear combination of the other two vectors.