1. Consider the function \(f(x) = \frac{1}{1 + x^2} \) on \([0, 1]\).

 (a) Construct a uniform partition \(P \) on \([0, 1]\) with 2 subintervals of equal width.

 \[
P = \left\{0, \frac{1}{2}, 1\right\}.
 \]

 (b) Compute the lower sum \(L(P, f) \).

 Since the partition is uniform,

 \[
 L(P, f) = \frac{1}{2} \left(\frac{4}{5} + \frac{1}{2} \right) = \frac{13}{20}.
 \]

 (c) Compute the upper sum \(U(P, f) \).

 \[
 U(P, f) = \frac{1}{2} \left(1 + \frac{4}{5} \right) = \frac{9}{10}.
 \]

 (d) Use your results from part (b) and (c) to prove that

 \[
 \frac{13}{5} \leq \pi \leq \frac{18}{5}.
 \]

 We see that

 \[
 \frac{13}{20} = L(P, f) \leq \int_0^1 \frac{1}{1 + x^2} \, dx = \tan^{-1} 1 = \frac{\pi}{4} \leq U(P, f) = \frac{9}{10},
 \]

 Thus \(\frac{13}{5} \leq \pi \leq \frac{18}{5} \). Note that the average of these bounds, 31/10, is quite close to the exact value of \(\pi \).
2. (a) Let

\[I_n = \int \sec^n x \, dx. \]

For \(n \geq 2 \), prove that

\[I_n = \frac{\sec^{n-1} x \sin x}{n-1} + \frac{n-2}{n-1} I_{n-2}. \]

Hint: express \(\sec^n x = \sec^{n-2} x \cdot \sec^2 x \).

\[I_n = \int \sec^{n-2} x \sec^2 x \, dx \]

\[= \sec^{n-2} x \tan x - (n-2) \int \sec^{n-3} x \sec x \tan x \tan x \, dx \]

\[= \sec^{n-1} x \sin x - (n-2) \int \sec^{n-3} x \sec x (\sec^2 x - 1) \, dx \]

\[= \sec^{n-1} x \sin x - (n-2)(I_n - I_{n-2}). \]

On solving for \(n \) we obtain the desired result.

(b) Use part (a) to find

\[\int \sec^3 x \, dx. \]

On setting \(n = 3 \) we find from part (a) that

\[\int \sec^3 x \, dx = \frac{\sec^2 x \sin x}{2} + \frac{1}{2} \int \sec x \, dx = \frac{1}{2} (\sec x \tan x + \log |\sec x + \tan x|) + C. \]

(c) Use part (b) to find

\[\int_0^1 \sqrt{1 + u^2} \, du. \]

On letting \(u = \tan x \), we find

\[\int_0^1 \sqrt{1 + u^2} \, du = \int_0^{\pi/4} \sec^3 x \, dx = \frac{1}{2} \left[\sqrt{2} + \log \left(1 + \sqrt{2} \right) \right]. \]
3. Find

\[I = \int \frac{u + 1}{u(u^2 + 9)} \, du. \]

Express

\[\frac{u + 1}{u(u^2 + 9)} = \frac{A}{u} + \frac{Bu + C}{u^2 + 9} \]

and equate coefficients of like powers in

\[u + 1 = A(u^2 + 9) + (Bu + C)u \]

to obtain the system of equations

\[u^2 : 0 = A + B, \]
\[u^1 : 1 = C, \]
\[u^0 : 1 = 9A, \]

which has the unique solution \(A = 1/9, B = -1/9, C = 1. \)

Thus

\[I = \frac{1}{9} \log |u| - \frac{1}{18} \log (u^2 + 9) + \frac{1}{3} \arctan \frac{u}{3} + K, \]

where \(K \) is an arbitrary constant.

4. (a) Let \(f \) be a strictly increasing positive differentiable function on some interval \([a, b]\), with inverse \(f^{-1}. \)

Prove that

\[\int_{f(a)}^{f(b)} \frac{f^{-1}(y)}{y} \, dy = [x \log f(x)]_a^b - \int_{a}^{b} \log f(x) \, dx. \]

Change the integration variable on the left-hand side to \(x = f^{-1}(y) \), so that \(y = f(x) \)
and \(dy = f'(x) \, dx \). Then integrate by parts:

\[\int_{f(a)}^{f(b)} \frac{f^{-1}(y)}{y} \, dy = \int_{a}^{b} x \frac{f'(x)}{f(x)} \, dx = [x \log f(x)]_a^b - \int_{a}^{b} \log f(x) \, dx. \]

(b) Use part (a) to find an antiderivative for \(\log x. \)

On setting \(y = f(x) = x \), so that \(f^{-1}(y) = y \), an indefinite version of part (a) leads to

\[\int 1 \, dx = x \log x - \int \log x \, dx. \]

Hence \(\int \log x \, dx = x \log x - x + C. \)