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Chapter 1

Real Numbers

1.A Elementary Concepts from Set Theory

Definition: A set is a collection of distinct objects.

• Here are some examples of sets:
{1, 2, 3},
{1, 2},
{1},
{book, pen},
N = {1, 2, 3, . . .}, the set of natural (counting) numbers,
∅ = {}, the empty set.

Remark: Not all sets can be enumerated like this, as a (finite or infinite) list of
elements. The set of real numbers is one such example.1

Remark: If we can write the elements of a set in a list, the order in which we list
them is not important.

Definition: We say that a set A is a subset of a set B if every element of A is also
an element of B. We write A ⊂ B.2

Definition: We say that a set A contains a set B if every element of B is also an
element of A. We write A ⊃ B. Note that this definition implies that B ⊂ A.

1See the excellent article on countability, “How do I love thee? Let me count the ways!” by L.
Marcoux, http://www.pims.math.ca/pi/issue1/page10-14.pdf, 2000.

2Some authors write this as A ⊆ B and reserve the notation A ⊂ B for the case where A is a
subset of B but is not identical to B, that is, where A is a proper subset of B. In our notation, if
we want to emphasize that A must be a proper subset of B, we explicitly write A ( B.

7



8 CHAPTER 1. REAL NUMBERS

Definition: We say that two sets A and B are equal if A ⊂ B and B ⊂ A, that is,
if every element in A is also in B and vice-versa, so that A and B contain exactly
the same elements. We write A = B.

• {1, 2} = {2, 1}.
Definition: The set containing all elements of A and all elements of B (but no

additional elements) is called the union of A and B and is denoted A ∪B.

Definition: The set containing exactly those elements common to both A and B is
called the intersection of A and B and is denoted A ∩B.

These definitions are illustrated in Figure 1.1.

• {1} ∪ {2} = {1, 2}.
• {1, 2, 3} ∩ {1, 4} = {1}.
• {1, 2} ∪ {2} = {1, 2}.

A B

A ∩B

A ∪B

Figure 1.1: Venn Diagram

1.B Hierarchy of Sets of Numbers

We will find it useful to consider the following sets (∈ means is an element of ):

∅ = {} the empty set,

N = {1, 2, 3, . . .}, the set of natural (counting) numbers,

Z = {−n : n ∈ N} ∪ {0} ∪ N, the set of integers,

Q = {p
q

: p, q ∈ Z, q 6= 0}, the set of rational numbers,

R, the set of all real numbers.

Notice that ∅ ⊂ N ⊂ Z ⊂ Q ⊂ R.
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Q. Why do we need the set R of real numbers to develop calculus? Why can’t we just
use the set Q of rational numbers? One might try to argue, for example, that
every number representable on a (finite-precision) digital computer is rational.
If a subset of Q is good enough for computers, shouldn’t it be good enough for
mathematicians, too?

To answer this question, it will be helpful to recall Pythagoras’ Theorem, which
states that the square of the length c of the hypotenuse of a right-angle triangle
equals the sum of the squares of the lengths a and b of the other two sides. A simple
geometric proof of this important result is illustrated in Figure 1.2. Four identical

a b

c
a

b

Figure 1.2: Pythagoras’ Theorem

copies of the triangle, each with area ab/2, are placed around a square of side c, so as
to form a larger square with side a + b. The area c2 of the inner square is then just
the area (a + b)2 = a2 + 2ab + b2 of the large square minus the total area 2ab of the
four triangles. That is, c2 = a2 + b2.

Consider now the following problem. Suppose you draw a right-angle triangle
having two sides of length one.

1

x
1

The Greek mathematicians of antiquity noticed that the length of the hypotenuse of
such a triangle cannot possibly be a rational number; that is, it cannot be expressed
as the ratio of two integers. Let us denote the length of the hypotenuse by x. From
Pythagoras’ Theorem, we know that x2 = 12 + 12 = 2. Suppose that we could indeed
write x = P/Q, where P and Q are integers (with Q 6= 0). By cancelling out any



10 CHAPTER 1. REAL NUMBERS

common integer factors greater than one, it would then always be possible to find
new integers p and q that are relatively prime (have no common factors) such that
x = p/q. Then

2 = x2 =
p2

q2
⇒ p2 = 2q2 ⇒ p2 is even.

If p were an odd integer, say 2n+ 1, then p2 = (2n+ 1)2 = 4n2 + 4n+ 1 could not be
even. Thus, p must be even: that is, p = 2n for some integer n. Then

(2n)2 = 2q2 ⇒ 4n2 = 2q2 ⇒ 2n2 = q2.

This last result says that q2 (and hence q) is also even, so now we know that both p
and q are divisible by 2. But this contradicts the fact that p and q are relatively
prime! Hence our original assumption that x = P/Q must be false; that is, x cannot
be represented as a rational number.

Remark: This style of mathematical proof is known as a proof by contradiction. By
assuming that there are integers p and q such that (p/q)2 = 2 we have produced
two contradictory statements: p and q are relatively prime and p and q are both
even.

Remark: If A and B are two statements, the notation A⇒B says that if A holds,
then B must also hold; that is, “A only if B.” The notation A⇐B says that if B
holds, then A must also hold; that is, “A if B.” If A and B are equivalent to each
other, we write A⇐⇒ B, which means “A if and only if B.”

Thus, the length of the hypotenuse of a right-angle triangle with unit sides cannot
be expressed as a rational number. Mathematicians have invented a new number
system, the real numbers, precisely to circumvent this kind of deficiency with the
rational numbers Q. The real numbers, denoted by R, include all rational numbers
plus the curious “missing” irrational numbers (like

√
2). In particular, the length of

any line segment is contained in the set of real numbers. This means that there are
no “holes” in the real line. Mathematicians express this fact by saying that the real
numbers are complete.

Another important property of real numbers is that they can be written in a
prescribed order on a horizontal number line, in such a way that every nonzero number
is either to the right of the position occupied by the real number 0 (so that its negative
is to the left of 0), or to the left of 0 (so that its negative is to the right of 0), and
such that the sum and product of two numbers to the right of zero will also appear to
the right of zero. Mathematicians express this particular property of the set of real
numbers by saying that it can be ordered .
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Remark: It is easy to see that the decimal expansion of a rational number must
end in a repeating pattern (which could be all zeros, in which case the rational
number can be represented exactly as a decimal number with a finite number of
digits). When we divide the integer p by the natural number q, the remainder can
only take on one of q different values, namely 0, 1, . . . (q − 1). If the number can
be represented exactly with finitely many digits, then the decimal expansion will
end with the repeating pattern 000 . . . (which we represent using the notation 0).
Otherwise, we can never obtain the remainder 0, and only q − 1 values of the
remainder are possible. Upon doing q steps of long division, we will therefore
encounter a repeated remainder, by the Pigeon-Hole Principle.3 At the second
occurrence of the repeated remainder, the pattern of digits in the quotient will
then begin to repeat itself. For q > 1, there will never be more than q− 1 digits in
this pattern.

For example, when computing 1/7 by long division, the pattern of quotient digits
will start repeating at the second occurrence of the remainder 1. In this example, the
maximum possible number of digits in the pattern, q − 1 = 6, is actually achieved.

Problem 1.1: Show that the converse of the above remark holds; that is, if the
decimal expansion of a number eventually ends in a repeating pattern of digits, the
number must be rational.

Problem 1.2: Show that every real number may be approximated by a rational
number as accurately as desired. This shows that the rationals densely cover the
real line. We say that the rationals are dense in R.

Problem 1.3: Prove that
√

3 is an irrational number.

Problem 1.4: Prove that 3
√

2 is an irrational number.

Suppose that there existed integers p and q such that p3 = 2q3. Without loss of gen-
erality we may assume that p and q are not both even (otherwise we could cancel out the
common factor of 2). We note that p3 is even.

Express p = 2n + r where r = 0 or 1. Then p3 = 8n3 + 12n2r + 6nr2 + r3. This is
even only if r = 0, that is, if p is even. (Alternatively, consider the prime factorization of p.
Since 2 is prime, the only way it can be a factor of p2 is if it is also a factor of p.)

Hence 8n3 = 2q3, or 4n3 = q3, so that q3 is even. Replacing p by q in the above

argument, we see that q is also even. This contradicts the fact that p and q are not both

even.

3The Pigeon-Hole Principle [Fomin et al. 1996, pp. 31–37] (also known as Dirichlet’s Box Prin-
ciple) states that if you try to stuff more than n pigeons into n holes, at least one hole must contain
two (or more) pigeons!
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1.C Algebraic Properties of the Real Numbers

[Spivak 1994, pp. 3–10]
We now list the algebraic properties of the real numbers that we will use in our

development of calculus.

(P1) If a, b, and c are any real numbers, then

a+ (b+ c) = (a+ b) + c. (associative)

(P2) There is a real number 0 (the additive identity) such that for any real number a,

a+ 0 = 0 + a = a. (identity)

Problem 1.5: Show that the additive identity is unique, that is, if a+ θ = θ+ a = a
for all a, then θ = 0. Hint: set a = θ in one pair of equalities, set a = 0 in the
other.

(P3) Every real number a has an additive inverse −a such that

a+ (−a) = (−a) + a = 0. (inverse)

Problem 1.6: Show that postulates (P1–P3) imply that every number has a unique
additive inverse. That is, if a+ b = 0, show that b = −a.

Definition: We define a − b
.
= a + (−b). (We use the symbol

.
= to emphasize a

definition, although the notation := is more common.)

Problem 1.7: If a− b = 0, show that a = b.

(P4) If a and b are real numbers, then

a+ b = b+ a. (commutative)

Remark: Not all operations have this property. Can you give an example of an
noncommutative operation?



1.C. ALGEBRAIC PROPERTIES OF THE REAL NUMBERS 13

(P5) If a, b, and c are any real numbers, then

a · (b · c) = (a · b) · c. (associative)

(P6) There is a real number 1 6= 0 (the multiplicative identity) such that if a is any
real number,

a · 1 = 1 · a = a. (identity)

(P7) If a, b, and c are any real numbers, then

a · (b+ c) = a · b+ a · c. (distributive)

Remark: a · 0 = 0 for all real a.

Proof:

a+ a · 0 = a · 1 + a · 0
= a · (1 + 0)

= a · 1
= a.

∴ a · 0 = 0.

Note: the symbol ∴ means therefore.

(P8) For any real number a 6= 0, there is a real number a−1 such that

a · a−1 = a−1 · a = 1. (inverse)

Q. Why do we restrict a 6= 0 here?

Problem 1.8: Show that both the multiplicative identity 1 and the multiplicative
inverse a−1 of any real number a is unique.

(P9) If a and b are real numbers, then

a · b = b · a. (commutative)

Definition: If a− b > 0, we write a > b. Similarly, if a− b < 0, we write a < b.
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(P10) Given two real numbers a and b, exactly one of the following relationships
holds:

a < b, a = b, a > b. (Trichotomy Law)

(P11)
a > 0 and b > 0 ⇒ a+ b > 0. (closure under +)

(P12)
a > 0 and b > 0 ⇒ a · b > 0. (closure under ·)

Definition: If a < b or a = b we write a ≤ b. If a > b or a = b we write a ≥ b.

Q. Is it correct to write 1 ≤ 2? Why or why not?

Q. Let x = 1, y = 2. Is it correct to write x ≤ y?

Remark: All the elementary rules of algebra and inequalities follow from these twelve
properties.

• To see that −ab = (−a)b, we use the distributive property:

(−a)b+ ab = (−a+ a) · b = 0 · b = 0.

• Likewise, we see that (−a)(−b) = ab

(−a)(−b)− ab = (−a) · (−b+ b) = (−a) · 0 = 0,
so (−a)(−b) = ab.

• If a < 0 and b < 0, then

−a > 0 and −b > 0
⇒ ab = (−a)(−b) > 0.

Remark: By setting a = b in the above example and in (P12), we see that the square
of any nonzero number is positive.

• If a > b and b > c, then

a− b > 0 and b− c > 0 ⇒ a− c > 0 by (P11)

⇒ a > c. (transitive)
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• If a > b and c > 0, then

a− b > 0 and c > 0 ⇒ ac− bc > 0 by (P12) and (P7)
i.e. ac > bc.

• If a > b and c < 0, then

a− b > 0 and −c > 0 ⇒ −ac+ bc > 0 by (P12)
i.e. ac < bc.

• If a > b, c ∈ R, then

(a+ c)− (b+ c) = a− b > 0
⇒ a+ c > b+ c.

• ab > 0⇒
{
a > 0 and b > 0,

or
a < 0 and b < 0.

Proof: a = 0 or b = 0 ⇒ ab = 0 contradicts ab > 0.
Also a > 0, b < 0 ⇒ a > 0, −b > 0 ⇒ −ab > 0 contradicts ab > 0.
Likewise, a < 0, b > 0 contradicts ab > 0.

Problem 1.9: If a < b and c < d, show that a+ c < b+ d.

Problem 1.10: If 0 < a < b and 0 < c < d, show that ac < bd.

Definition: If a < x and x < b, we write a < x < b and say x is between a and b.

Lemma 1.1 (Midpoint Lemma):

a < b ⇒ a <
a+ b

2
< b.

Proof:

a < b ⇒ a+ a < a+ b < b+ b

⇒ a =
a+ a

2
<

a+ b

2
<
b+ b

2
= b.

Remark: This lemma (small theorem) establishes that there is no least positive
number. Moreover, between any two distinct numbers there exists another one.

Q. What about 1− 0.9?
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1.D Absolute Value

[Muldowney 1990, pp. 11–13]
The fact that for any nonzero real number either x > 0 or −x > 0 makes it

convenient to define an absolute value function:

|x| =
{

x if x ≥ 0,
−x if x < 0.

Properties: Let x and y be any real numbers.

(A1) |x| ≥ 0.

(A2) |x| = 0 ⇐⇒ x = 0.

(A3) |−x| = |x|.

(A4) |xy| = |x| |y|.

(A5) If c ≥ 0, then

|x| ≤ c⇐⇒ −c ≤ x ≤ c.

Proof:

|x| ≤ c ⇐⇒ 0 ≤ x ≤ c or 0 < −x ≤ c

⇐⇒ −c ≤ x ≤ c.

(A6) − |x| ≤ x ≤ |x|.
Proof: Apply (A5) with c = |x|.

(A7) ∣∣∣∣ |x| − |y|
∣∣∣∣ ≤ |x± y| ≤ |x|+ |y| . (Triangle Inequality)

Proof:

RHS: (A6) ⇒
{
− |x| ≤ x ≤ |x|
− |y| ≤ y ≤ |y|

⇒ −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y| = c

(A5)⇒ |x+ y| ≤ |x|+ |y| .
Let y → −y : |x− y| ≤ |x|+ |y| .

Thus |x± y| ≤ |x|+ |y| .
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LHS: |x| = |(x+ y)− y| ≤ |x+ y|+ |y|

⇒ |x| − |y| ≤ |x+ y|
x↔ y : |y| − |x| ≤ |y + x| = |x+ y|

⇒ − |x+ y| ≤ |x| − |y|

∴ (A5)⇒
∣∣∣∣ |x| − |y|

∣∣∣∣ ≤ |x+ y| .

Let y → −y :

∣∣∣∣ |x| − |y|
∣∣∣∣ ≤ |x− y| .

1.E Induction

[Muldowney 1990, pp. 2–7]
Suppose that in a certain city located on the west coast of Canada, the weather

office makes a long-term forecast consisting of two statements:

(A) If it rains on any given day, then it will also rain on the following day.

(B) It will rain today.

What would we conclude from these two statements? We would conclude that it
will rain every single day from now on!

Or, consider a secret passed along an infinite line of people, P1P2 . . . PnPn+1 . . .,
each of whom enjoys gossiping. If we know for every n ∈ N that Pn will always pass
on a secret to Pn+1, then the mere act of telling a secret to the first person in line
will result in everyone in the line eventually knowing the secret!

These amusing examples encapsulate the axiom of Mathematical Induction:

If a subset S ⊂ N satisfies

(i) 1 ∈ S,

(ii) k ∈ S ⇒ k + 1 ∈ S,

then S = N.

For example, suppose we wish to find the sum of the first n natural numbers.
For small values of n, we could just compute the total of these n numbers directly.
But for large values of n, this task could become quite time consuming! The great
mathematician and physicist Carl Friedrich Gauss (1777–1855) at age 10 noticed that
the rate of increase of the terms in the sum

1 + 2 + . . .+ n
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could be exactly compensated by first writing the sum backwards, as

n+ (n− 1) + . . .+ 1,

and then averaging the two equal expressions term-by-term to obtain a sum of n
identical terms:

n+ 1

2
+
n+ 1

2
+ . . .+

n+ 1

2︸ ︷︷ ︸
n terms

= n

(
n+ 1

2

)
.

We will use mathematical induction to verify Gauss’ claim that

1 + 2 + . . .+ n ≡
n∑

i=1

i =
n(n+ 1)

2
. (1.1)

Let S be the set of numbers n for which Eq. (1.1) holds.

Step 1: Check 1 ∈ S:

1 =
1(1 + 1)

2
= 1.

Step 2: Suppose k ∈ S, i.e.

k∑

i=1

i =
k(k + 1)

2
.

Then

k+1∑

i=1

i =

(
k∑

i=1

i

)
+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

= (k + 1)

(
k

2
+ 1

)

=
(k + 1)(k + 2)

2
.

Hence k + 1 ∈ S.

That is, k ∈ S ⇒ k + 1 ∈ S.

By the Axiom of Mathematical Induction, we know that S = N.
In other words,

n∑

i=1

i =
n(n+ 1)

2
, ∀n ∈ N.

Here, the symbol ∀ means for all .
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• Prove that for all natural numbers n,

n∑

i=1

i3 =

(
n∑

i=1

i

)2

.

We have just seen that
n∑

i=1

i =
n(n+ 1)

2
.

Hence what we really want to show is that

(1.2)
n∑

i =1

i3 =
n2(n+ 1)2

4
.

Step 1: We see for n = 1 that 1 = 12(1 + 1)2/4.

Step 2: Suppose
n∑

i=1

i3 =
n2(n+ 1)2

4
.
= Sn.

Then
n+1∑

i=1

i3 =

(
n∑

i=1

i3

)
+ (n+ 1)3

=
n2(n+ 1)2

4
+ (n+ 1)3 =

(n+ 1)2

4
(n2 + 4n+ 4)

=
(n+ 1)2(n+ 2)2

4
= Sn+1.

Hence by induction, Eq. (1.2) holds.

• If 0 < a < b, show that
0 < an < bn (1.3)

for all n ∈ N.

Step 1: For n = 1 we know that 0 < a < b.

Step 2: Assume 0 < ak < bk. On multiplying this inequality by a > 0
and the inequality a < b by bk > 0, we obtain

0 < ak+1 < bk · a < bk · b = bk+1,

from which we see that the case n = k + 1 also holds.

∴ by induction, Eq. (1.3) holds for all n.

• (Bernoulli Inequality) If a ≥ −1 then

(1 + a)n ≥ 1 + na ∀n ∈ N.
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Step 1: When n = 1, we see that

1 + a ≥ 1 + a.

Step 2: Assume that the case n = k holds: (1 + a)k ≥ 1 + ka. Then

(1 + a)k+1 ≥ (1 + ka)(1 + a) = 1 + ka+ a+ ka2

︸︷︷︸
≥0

≥ 1 + ka+ a = 1 + (k + 1)a,

so that the case n = k + 1 also holds.

• All students are geniuses!
We claim that all students in any group of n students must be geniuses, for each
n = 1, 2, . . . .

Assume that the case n = k holds. Given a group of k + 1 students,
remove one of the students from the group. We know that each of the
remaining k students are geniuses. Now swap one of these geniuses
with the removed student. Since every student in this new group
of k students are also geniuses, we deduce that all k+ 1 students are
geniuses.

By induction, the claim holds.

Problem 1.11: Is there an error in the above “proof”? If so, where is the flaw?

• All girls have the same hair colour.
We claim that all girls in any group of n girls have the same hair colour, for each
n = 1, 2, . . . .

Step 1: When n = 1, there is only one girl in the group, so all girls within
the group certainly have the same hair colour.

Step 2: Assume that the case n = k holds. Given a group of k + 1 girls,
remove one of them from the group. By assumption, the remaining k
girls all have the same hair colour. Now swap one of these girls with
the girl we removed. Since the girls in this new group of k girls also
have the same hair colour, we now know that all k+ 1 girls have the
same hair colour!

By induction, the claim holds.

Problem 1.12: Is there an error in the above “proof”? If so, where is the flaw?
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Remark: For simplicity, instead of specifying “the case n = k” and “the case n =
k + 1” in our induction arguments, we can simply say “for some particular n” and
for “the case n+ 1”. This frees up the variable k for other purposes.

Problem 1.13: Use induction to prove that 22n − 15 is a multiple of 7 for every
natural number n.

Step 1: We see for n = 1 that 22− 15 = 7 is a multiple of 7.
Step 2: Assume for some particular n that 22n− 15 is a multiple of 7, say 7m. We need

only show that 22n+1 − 15 is also a multiple of 7:

22n+1 − 15 = 22n · 22− 15 = (7m+ 15) · 22− 15 = 7m · 22 + 15 · 21 = 7(m · 22 + 15 · 3),

which is indeed a multiple of 7. By mathematical induction, we see that 22n−15 is multiple

of 7 for every n ∈ N.

• Use induction to show that one can extract 2n distinct subsets from any set of n
elements. For example:

set subsets
{ } { }
{a} { } {a}
{a, b} { } {a} {b} {a, b}
{a, b, c} { } {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

Step 1: Let n = 1. There are 2 = 21 subsets of any such singleton set, namely the
empty set and the set itself.

Step 2: Suppose the claim holds for some particular n.

Given any set Sn+1 with n + 1 elements, denote the collection of its subsets
by S ′n+1. Now remove one element from Sn+1, leaving a set Sn containing n
elements. Denote the collection of subsets of Sn by S ′n. Notice that S ′n ⊂ S ′n+1.
The remaining members of S ′n+1 are obtained by adding the removed element
to each of the sets in S ′n.

Hence the number of sets in S ′n+1 is exactly twice the number of sets in S ′n. Given
that there are 2n members in S ′n, we deduce that S ′n+1 has 2n+1 members.

By induction, we see for every n that exactly 2n distinct subsets can be formed
from a set containing n elements.

Q. Can you think of a more direct way to establish this result?
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Summation Notation

Recall
k=n∑

k=1

k = 1 + 2 + . . .+ n =
n(n+ 1)

2
.

Q. What is
k=n∑

k=0

k?

A.
k=n∑

k=0

k = 0 +
k=n∑

k=1

k = 0 +
n(n+ 1)

2
=
n(n+ 1)

2
.

Q. How about
k=n+1∑

k=1

k?

A.
k=n+1∑

k=1

k =

(
k=n∑

k=1

k

)
+ (n+ 1) =

n(n+ 1)

2
+ n+ 1 =

(n+ 1)(n+ 2)

2
.

Q. How about
k=n∑

k=1

(k + 1)?

A.

Method 1:

k=n∑

k=1

(k + 1) =
k=n∑

k=1

k +
k=n∑

k=1

1 =
n(n+ 1)

2
+ n =

n(n+ 3)

2
.

Method 2: First, let k′ = k + 1:

k=n∑

k=1

(k + 1) =
k′=n+1∑

k′=2

k′.

Next, it is convenient to replace the symbol k′ with k (since it is only
a dummy index anyway):

k′=n+1∑

k′=2

k′ =
k=n+1∑

k=2

k =

(
k=n+1∑

k=1

k

)
−1 =

(n+ 1)(n+ 2)

2
−1 =

n(n+ 3)

2
.



1.F. BINOMIAL THEOREM 23

In general,

k=U∑

k=L

ak+m =
k=U+m∑

k=L+m

ak.

Verify this by writing out both sides explicitly.

Problem 1.14: For any real numbers a1, a2, . . ., an, b1, b2, . . ., bn, and c prove that

n∑

k=1

c(ak + bk) = c
n∑

k=1

ak + c
n∑

k=1

bk.

• Telescoping sum:

n∑

k=1

(ak+1 − ak) =
n∑

k=1

ak+1 −
n∑

k=1

ak

=
n+1∑

k=2

ak −
n∑

k=1

ak

=
n∑

k=2

/
ak + an+1 −

(
a1 +

n∑

k=2

/
ak

)

= an+1 − a1.

1.F Binomial Theorem

[Muldowney 1990, pp. 8–11]

Definition:

n! = 1 · 2 · . . . · (n− 1) · n if n ∈ N,
0! = 1.

Equivalently, 0! = 1 and (k + 1)! = (k + 1)k! for k = 0, 1, 2, . . ..

• 0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24.
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Definition: We introduce the binomial coefficient

(
n

k

)
=

n!

k! (n− k)!
=





1 if k = 0,

n(n− 1) . . . (n− k + 1)

1 · 2 · . . . · k if 1 ≤ k ≤ n.

• We find(
3

0

)
= 1,

(
3

1

)
=

3

1
= 3,

(
3

2

)
=

3 · 2
1 · 2 = 3,

(
3

3

)
=

3 · 2 · 1
1 · 2 · 3 = 1.

• Also,

(
7

3

)
=

7 · 6 · 5
1 · 2 · 3 = 35.

Remark:

(
n

k

)
=

(
n

n− k

)
.

Remark:

(
n

0

)
=

(
n

n

)
= 1.

Remark:

(
n

1

)
=

(
n

n− 1

)
= n.

Remark: If n, k ∈ N, with 1 ≤ k ≤ n, then
(

n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
. (Pascal’s Triangle Law)

Proof:
(

n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)! (n− k + 1)!
+

n!

k! (n− k)!

=
n!

(k − 1)! (n− k)!

[
1

n− k + 1
+

1

k

]

=
n!

(k − 1)! (n− k)!

[ 6k +(n− 6k +1)

(n− k + 1)k

]

=
(n+ 1)!

k! (n− k + 1)!
=

(
n+ 1

k

)
.
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n\k 0 1 2 3 4 sum

0 1 1 1
1 1 1 1 1 2
2 1 2 1 or 1 2 1 4
3 1 3 3 1 1 3 3 1 8
4 1 4 6 4 1 1 4 6 4 1 16

Problem 1.15: Show that
(
n
k

)
is an integer for all integers k and n satisfying 0 ≤

k ≤ n. Hint: use induction on n and Pascal’s Triangle Law. Alternatively, one can
make use of the fact that

(
n
k

)
is the number of distinct ways of choosing k objects

from a set of n objects.

Claim:
n∑

k=0

(
n

k

)
= 2n, ∀n ∈ N ∪ {0}.

Proof (by induction):

Step 1: Case n = 0: (
0

0

)
= 1 = 20.

Step 2: Suppose the claim holds for some particular n:

n∑

k=0

(
n

k

)
= 2n.

Then
n+1∑

k=0

(
n+ 1

k

)
=

(
n+ 1

0

)
+

n∑

k=1

(
n+ 1

k

)
+

(
n+ 1

n+ 1

)

= 1 +
n∑

k=1

[(
n

k − 1

)
+

(
n

k

)]
+ 1

= 1 +
n−1∑

k=0

(
n

k

)
+

n∑

k=1

(
n

k

)
+ 1.

Now
n−1∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
−
(
n

n

)
= 2n − 1,

n∑

k=1

(
n

k

)
=

n∑

k=0

(
n

k

)
−
(
n

0

)
= 2n − 1.
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Thus
n+1∑

k=0

(
n+ 1

k

)
= 1 + (2n − 1) + (2n − 1) + 1

= 2 · 2n = 2n+1.

∴ the claim holds for n+ 1 as well.

Theorem 1.1 (Binomial Theorem): For all n ∈ N,

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

=

(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn.

(1.4)

Proof (by induction):

Step 1: Case n = 1:

(a+ b)1 =

(
1

0

)
a+

(
1

1

)
b = a+ b.

Step 2: Suppose Eq. (1.4) holds for some n. Then

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)
n∑

k=0

(
n

k

)
an−kbk

=
n∑

k=0

(
n

k

)
an+1−kbk +

n∑

k=0

(
n

k

)
an−kbk+1

=
n∑

k=0

(
n

k

)
an+1−kbk +

n+1∑

k=1

(
n

k − 1

)
an−(k−1)bk

=

(
n

0

)
an+1 +

n∑

k=1

(
n

k

)
an+1−kbk +

n∑

k=1

(
n

k − 1

)
an−k+1bk +

(
n

n

)
bn+1

= an+1 +
n∑

k=1

[(
n

k

)
+

(
n

k − 1

)]
an+1−kbk + bn+1

= an+1 +
n∑

k=1

(
n+ 1

k

)
an+1−kbk + bn+1

=
n+1∑

k=0

(
n+ 1

k

)
an+1−kbk.

Thus, by induction, Eq. (1.4) holds for all n ∈ N.



1.F. BINOMIAL THEOREM 27

Remark: Alternative form of Binomial Theorem:

(a+ b)n = an + nan−1b+
n(n− 1)

2
an−2b2 + . . .+ nabn−1 + bn.

Remark: When a = 1 and b = x, we find

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 + . . .+ nxn−1 + xn

≥ 1 + nx if x ≥ 0 and n ≥ 1.

In fact, Bernoulli’s Inequality shows this is true even for x ≥ −1.

Remark: Let a = 1. Then
n∑

k=0

(
n

k

)
bk = (1 + b)n.

• Set b = 1:
n∑

k=0

(
n

k

)
= (1 + 1)n = 2n.

• Set b = −1:
n∑

k=0

(
n

k

)
(−1)k = (1− 1)n = 0.

• Set b = 1
2
:

n∑

k=0

(
n

k

)
1

2k
=

(
1 +

1

2

)n
=

3n

2n
.

• Set b = −1
2
:

n∑

k=0

(
n

k

)(
−1

2

)k
=

(
1− 1

2

)n
=

1

2n
.

• Set b = x− 1:
n∑

k=0

(
n

k

)
(x− 1)k = (1 + x− 1)n = xn.
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Problem 1.16: Let x be a real number. Consider the real numbers a1, a2, . . ., an
defined by

a1 = x,

ak+1 =

(
x− k
k + 1

)
ak, k = 1, 2, 3 . . . .

(a) If x is a natural number, use induction on k to prove that

ak =





(
x

k

)
if 1 ≤ k ≤ x,

0 if k > x.

We are given that a1 = x =
(
x
1

)
. Suppose the statement holds for a particular value, k.

If k < x then

ak+1 =

(
x− k
k + 1

)(
x

k

)
=

(
x− k
k + 1

)
x!

k! (x− k)!
=

x!

(k + 1)! (x− k − 1)!
=

(
x

k + 1

)
.

If k = x then ak+1 =
(
x−k
k+1

)
ak = 0 and if k > x then ak+1 =

(
x−k
k+1

)
· 0 = 0. By induction,

the desired result holds.

(b) In view of part (a), we can use ak to provide a sensible definition for

(
x

k

)

when x is not a natural number. Compute

(
1
2

2

)
,

(
1
2

3

)
, and

( −1

2005

)
.

Given a1 = x = 1
2 , we find

(1
2

2

)
= a2 =

(
1
2 − 1

2

)
a1 = −1

8
,

and (1
2

3

)
= a3 =

(
1
2 − 2

3

)
a2 = −1

2
a2 =

1

16
,

When x = −1 we have a1 = −1 and ak+1 = −ak, so that ak = (−1)k. Thus

( −1

2005

)
= (−1)2005 = −1.

1.G Open and Closed Intervals

[Muldowney 1990, pp. 13–14]
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Let a, b ∈ R and a < b. There are 4 types of intervals:

[a, b] = {x : a ≤ x ≤ b},← closed (contains both endpoints)

(a, b) = {x : a < x < b},← open (excludes both endpoints)

[a, b) = {x : a ≤ x < b},
(a, b] = {x : a < x ≤ b}.

It will be convenient to define also:

(−∞,∞) = R,
[a,∞) = {x : x ≥ a},
(a,∞) = {x : x > a},
(−∞, a] = {x : x ≤ a},
(−∞, a) = {x : x < a}.

However, these are not (finite) intervals.

1.H Lower and Upper Bounds

[Muldowney 1990, pp. 14–15]

Definition: Given S ⊂ R, we say that a real number b is an upper bound of S if

x ≤ b for each x ∈ S.

Q. Do all sets S have an upper bound?

Definition: If S has an upper bound we say S is bounded above. Otherwise we say
S is unbounded above.

Remark: An upper bound of S may, or may not, be an element of S.

Definition: Given S ⊂ R we say that a real number a is a lower bound of S if

x ≥ a for each x ∈ S.

Definition: If S has a lower bound we say that S is bounded below . Otherwise we
say that S is unbounded below .
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Definition: If S is bounded above and below we say S is bounded . Otherwise, we
say that S is unbounded . That is,

S ⊂ R is bounded ⇐⇒ S ⊂ [a, b] for some a, b ∈ R.

Q. Consider the intervals [0, 1] and [0, 1). Do these sets have (i) an upper bound,
(ii) a lower bound, (iii) an upper bound in the set itself, (iv) a lower bound in
the set itself?

1.I Supremum and Infimum

[Muldowney 1990, pp. 15]

Definition: Let S ⊂ R. Suppose there exists a real number b such that

(i) x ≤ b for each x ∈ S (b is an upper bound for S),

(ii) If u is an upper bound of S, then b ≤ u.

Then b is called the least upper bound , or supremum, of S. We write

b = l.u.b. S or b = supS.

Definition: If b = supS and b ∈ S, we say b is the maximum of S. We write
b = maxS.

Remark: A finite set of elements {a1, a2, . . . , an} always has a maximum element
max(a1, a2, . . . , an). Note that max(a1, a2, . . . , an) ≥ ai for i = 1, 2, . . . , n.

• Note that [0, 1] has maximum element 1, but [0, 1) has no maximum element.

Definition: Let S ⊂ R. Suppose there exists a real number a such that

(i) x ≥ a for each x ∈ S (a is a lower bound for S),

(ii) If ` is a lower bound of S, then a ≥ `.

Then a is called the greatest lower bound , or infimum, of S. We write

a = g.l.b. S or a = inf S.
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Definition: If a = inf S and a ∈ S, we say a is the minimum of S. We write
a = minS.

Remark: A finite set of elements {a1, a2, . . . , an} always has a minimum element
min(a1, a2, . . . , an). Note that min(a1, a2, . . . , an) ≤ ai for i = 1, 2, . . . , n.

• Consider S =

{
p

q
: p2 ≤ 2q2, p ∈ Z, q ∈ N

}
. The least upper bound of S is the real

number
√

2, so S has a supremum in R. However,
√

2 /∈ Q, so the supremum of S
is not itself in S; that is, S has no maximum element.

1.J Completeness Axiom

[Muldowney 1990, pp. 16]
The completeness axiom states that every nonempty subset of R with an upper

bound has a least upper bound in R.

•
{
p

q
: p2 ≤ 2q2, p ∈ Z, q ∈ N

}
has a least upper bound in R.

• [0, 1] has the supremum 1.

• [0, 1) has the supremum 1.

Remark: ∅ = {} has no supremum. Any real number is an upper bound of the
empty set, so the empty set cannot have a least upper bound.

Lemma 1.2 (Archimedean Property): No real number is an upper bound for N.

Note: here N is the subset of R defined inductively by

(A) 1 ∈ N,

(B) k ∈ N⇒ k + 1 ∈ N.

Proof (by contradiction):

Suppose that N had an upper bound. Then

N ⊂ R, N 6= ∅ ⇒ ∃ b = supN,

where b is some real number. Here the symbol ∃ means there exists .

By definition, b = supN means

(i) b ≥ k ∀k ∈ N,

(ii) b− 1 6≥ k ∀k ∈ N. That is, b− 1 < k for some k ∈ N ⇒ b < k + 1.

But k ∈ N⇒ k + 1 ∈ N, so (ii) contradicts (i)!
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Sequences

[Muldowney 1990, Chapter 2]
[Spivak 1994, Chapter 22]

2.A Limit of a Sequence

Definition: A (real-valued) function f is a rule that associates a real number f(x)
to every number x in some subset D ⊂ R. The set D is called the domain of f .

Definition: The range f(D) of f is the set {f(x) : x ∈ D}.

• f(x) = x2 on domain D = [0, 2):

f(D) = {x2 : x ∈ [0, 2)} = [0, 4).

Definition: A sequence is a function on the domain N. The value of a function f at
n ∈ N is often denoted by an,

an = f(n).

The consecutive function values are often written in a list:

{an}∞n=1 = {a1, a2, . . .} ← Repeated values are allowed.

• an = f(n) = n2,
{an}∞n=1 = {1, 4, 9, 16 . . .}.

•
{

(−1)n

n

}∞

n=1

=

{
−1,

1

2
,−1

3
,
1

4
, . . .

}
.

Notice that as n gets large, the terms of this sequence get closer and closer to
zero. We say that they converge to 0. However, an is not equal to 0 for any n ∈ N.

We can formalize this observation with the following concept:

32
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Definition: The sequence {an}∞n=1 is convergent with limit L if, for each ε > 0, there
exist a number N such that

n > N ⇒ |an − L| < ε.

We abbreviate this as: lim
n→∞

an = L.

If no such number L exists, we say {an}∞n=1 diverges .

Remark: The statement lim
n→∞

an = L means that |an − L| can be made as small as

we please, simply by choosing n large enough.

Remark: Equivalently, as illustrated in Fig. 2.1, lim
n→∞

an = L means that any open

interval about L contains all but a finite number of terms of {an}∞n=1.

Remark: If a sequence {an}∞n=1 converges to L, the previous remark implies that
every open interval (L − ε, L + ε) will contain an infinite number of terms of the
sequence (there cannot be only a finite number of terms inside the interval since a
sequence has infinitely many terms and only finitely many of them are allowed to
lie outside the interval).

an

n2

3
2

2

L

L+ ε

L− ε

N = 1
ε

an = 1 + 1
n
, ε = 1

4

Figure 2.1: Limit of a sequence

• Let an = 1, ∀n ∈ N
i.e. {1, 1, 1, . . .}.
Let ε > 0. Choose N = 1.

n > 1⇒ |an − 1| = |1− 1| = 0 < ε.

That is, L = 1. Write lim
n→∞

an = 1.
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Remark: Here N does not depend on ε, but normally it will.

• an =
(−1)n

n
.

lim
n→∞

an = 0 since |an − 0| =
∣∣∣∣
(−1)n

n

∣∣∣∣ =
1

n
<

1

N
if n > N .

So, given ε > 0, we may force |an − 0| < ε for n > N simply by picking N ≥ 1

ε
:

n > N ⇒ |an − 0| < 1

N
≤ ε.

Proposition 2.1 (Uniqueness of Limits): If lim
n→∞

an = L1 and lim
n→∞

an = L2, then

L1 = L2.

Proof: Given ε > 0, ∃N1, N2 ∈ N such that

n > N1 ⇒ |an − L1| < ε,

n > N2 ⇒ |an − L2| < ε.

Let N = max(N1, N2). Then

n > N ⇒ n > N1 and n > N2

⇒ |an − L1| < ε and |an − L2| < ε

⇒ |L1 − L2| = |L1 − an + an − L2| ≤ |L1 − an|+ |an − L2| < ε+ ε = 2ε.

That is, given any number a = 2ε > 0, then |L1 − L2| < a,
i.e. |L1 − L2| is smaller than any positive number!

But we have already established from Lemma 1.1 that there is no smallest positive
number, and since an absolute value can never be negative, the only choice left is

|L1 − L2| = 0⇒ L1 = L2.

Problem 2.1: Suppose an ≥ 0 and {an}∞n=1 is convergent with limit a. Show that
{√an}∞n=1 converges with limit

√
a. Hints: Do the case a = 0 separately. When

a > 0, note that
√
an −

√
a =

an − a√
an +

√
a
.

Problem 2.2: Suppose that {an} and {bn} are convergent sequences such that an <
bn for all n ∈ N. Use a proof by contradiction to show that lim

n→∞
an ≤ lim

n→∞
bn. Can

we conclude lim
n→∞

an < lim
n→∞

bn?

Problem 2.3 (Squeeze Principle): Suppose xn ≤ zn ≤ yn for all n ∈ N. If the
sequences {xn} and {yn} both converge to the same number c, show that {zn} is
also convergent and has limit c.
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Definition: A sequence is bounded if there exists a number B such that

|an| ≤ B ∀n ∈ N.

Theorem 2.1 (Convergent ⇒ Bounded): A convergent sequence is bounded.

Proof: Suppose lim
n→∞

an = L.

Let ε = 1.
Then ∃N 3 (the symbol 3 means “such that”)

n > N ⇒ |an − L| < 1

⇒ |an| − |L| ≤
∣∣∣∣ |an| − |L|

∣∣∣∣ ≤ |an − L| < 1

⇒ |an| < 1 + |L| , ∀n > N.

Hence |an| ≤ max{|a1| , |a2| , . . . , |aN | , 1 + |L| } .= B for all n ∈ N.

Remark: A bounded sequence need not be convergent.

• {(−1)n} is bounded since |(−1)n| = 1 ≤ B, if we take B = 1. However, the
sequence is not convergent:
Suppose lim

n→∞
an = L where an = (−1)n.

Given ε = 1, then for n sufficiently large, |a2n − L| = |1− L| < 1 and |a2n+1 − L| =
|−1− L| = |1 + L| < 1

⇒ 2 = |1− L+ L+ 1| ≤ |1− L|+ |L+ 1| < 1 + 1,

i.e. 2 < 2, a contradiction.

• lim
n→∞

(√
n+ 1−√n

)
= 0.

Given ε > 0, we can make

∣∣∣
√
n+ 1−√n− 0

∣∣∣ =
∣∣∣
√
n+ 1−√n

∣∣∣
∣∣∣∣
√
n+ 1 +

√
n√

n+ 1 +
√
n

∣∣∣∣

=
|n+ 1− n|∣∣√n+ 1 +

√
n
∣∣ ≤

1√
n
< ε

if n > N , as long as
1√
N
≤ ε, i.e. N ≥ 1

ε2
.

Remark: By Theorem 2.1, we see that {
√
n+ 1−√n}∞n=1 is bounded.

Corollary 2.1.1 (Unbounded ⇒ Divergent): An unbounded sequence is divergent.
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Remark: We say that Corollary 2.1.1 is the contrapositive of Theorem 2.1.

• Consider {n}∞n=1. We know from the Archimedean Property that this sequence is
unbounded, and hence divergent.

Problem 2.4: Suppose that {an}∞n=1 is a bounded sequence and {bn}∞n=1 is a sequence
that converges to 0. Prove that lim

n→∞
anbn = 0.

We are given that |an| < B for some positive real number B. Given any ε > 0, we know
from the fact that {bn}∞n=1 converges to 0 that there exists a number N such that

n > N ⇒ |bn| <
ε

B
.

Then
n > N ⇒ |anbn| < B

ε

B
= ε.

That is, lim
n→∞

anbn = 0.

Theorem 2.2 (Properties of Limits): Let {an} and {bn} be convergent sequences.
Let L = lim

n→∞
an and M = lim

n→∞
bn. Then

(a) lim
n→∞

(an + bn) = L+M ;

(b) lim
n→∞

anbn = LM ;

(c) lim
n→∞

an
bn

=
L

M
if M 6= 0.

Proof of (a): We want to show, given ε > 0, that

|an + bn − L−M | < ε (2.1)

for all sufficiently large n. Since the Triangle Inequality tells us that

|an + bn − L−M | ≤ |an − L|+ |bn −M | ,

it is enough to show that
|an − L|+ |bn −M | < ε (2.2)

for all sufficiently large n.
We know ∃N1, N2 3

n > N1 ⇒ |an − L| <
ε

2
,

n > N2 ⇒ |bn −M | <
ε

2
.
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When n > max(N1, N2) then Eq. (2.2) will hold, which in turn implies Eq. (2.1).
Hence

lim
n→∞

(an + bn) = L+M.

Proof of (b): Note that

|anbn − LM | = |anbn − Lbn + Lbn − LM |
≤ |anbn − Lbn|+ |Lbn − LM |
≤ |an − L| |bn|+ |bn −M | |L| .

Theorem 2.1 ⇒ {bn} is bounded ⇒ ∃B > 0 3 |bn| ≤ B ∀n.

∴ |anbn − LM | ≤ |an − L|B + |bn −M | |L| .

Given ε > 0, let ε0 =
ε

B + |L| > 0. There exists N1, N2 such that

n > N1 ⇒ |an − L| < ε0,

n > N2 ⇒ |bn −M | < ε0.

So n > max(N1, N2)⇒
|anbn − LM | ≤ ε0B + ε0 |L| = ε0(B + |L|) = ε.

That is,
lim
n→∞

anbn = LM.

Proof of (c): We only need to prove the special case

lim
n→∞

bn = M ⇒ lim
n→∞

1

bn
=

1

M
if M 6= 0, (2.3)

for (c) would then follow from (b):

lim
n→∞

an
bn

= lim
n→∞

(
an ·

1

bn

)
= lim

n→∞
an lim

n→∞
1

bn
=

L

M
if M 6= 0.

To prove Eq. (2.3), consider
∣∣∣∣

1

bn
− 1

M

∣∣∣∣ =

∣∣∣∣
M − bn
bnM

∣∣∣∣ =
1

|bn|
· |bn −M ||M | .

We know that there exists a number N1 such that

n > N1 ⇒ |bn −M | <
|M |

2

⇒ |M | − |bn| ≤ |bn −M | <
|M |

2

⇒ 0 <
|M |

2
< |bn| ⇒

1

|bn|
<

2

|M | .
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Thus

n > N1 ⇒
∣∣∣∣

1

bn
− 1

M

∣∣∣∣ <
2

|M |2
|bn −M | .

Now given ε > 0, there exists a number N2 3

n > N2 ⇒ |bn −M | <
|M |2

2
ε since M 6= 0.

Hence n > max(N1, N2)⇒
∣∣∣∣

1

bn
− 1

M

∣∣∣∣ <
2

|M |2
|M |2

2
ε = ε.

Thus

lim
n→∞

1

bn
=

1

M
.

•
lim
n→∞

n+ 1

n
= lim

n→∞

(
1 +

1

n

)
= lim

n→∞
1 + lim

n→∞
1

n
.

•
lim
n→∞

n

n+ 1
= lim

n→∞
1

1 + 1
n

= 1.

•

lim
n→∞

2n2 + 1

3n2 + 100n+ 2
= lim

n→∞

2 + 1
n2

3 + 100
n

+ 2
n2

=
limn→∞(2 + 1

n2 )

limn→∞(3 + 100
n

+ 2
n2 )

=
2

3
.

•

lim
n→∞

amn
m + am−1n

m−1 + . . .+ a0

bmnm + bm−1nm−1 + . . .+ b0

=

lim
n→∞

am + am−1
1
n

+ am−2
1
n2 + . . .+ a0

nm

bm + bm−1
1
n

+ bm−2
1
n2 + . . .+ b0

nm

=
am
bm
.

•
lim
n→∞

n2 + 1

n3 + 3
= lim

n→∞

1
n

+ 1
n3

1 + 3
n3

=
limn→∞( 1

n
+ 1

n3 )

limn→∞(1 + 3
n3 )

=
0

1
= 0.
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•
lim
n→∞

n3 + 3

n2 + 1
= lim

n→∞

1 + 3
n3

1
n

+ 1
n3

6= limn→∞(1 + 3
n3 )→ 1

limn→∞( 1
n

+ 1
n3 )→ 0

.

Corollary 2.2.1 (Case L 6= 0, M = 0): Let {an} and {bn} be convergent sequences.

If lim
n→∞

an 6= 0 and lim
n→∞

bn = 0, then lim
n→∞

an
bn

does not exist.

Proof: Suppose lim
n→∞

an
bn

= K.

Then Theorem 2.2 (b) ⇒ lim
n→∞

an = lim
n→∞

bn · lim
n→∞

an
bn

= 0 ·K = 0.

This contradicts the fact that lim
n→∞

an 6= 0.

• Returning to the previous example, we see that

lim
n→∞

1 + 3
n3

1
n

+ 1
n3

∃/.

•
lim
n→∞

n4 + 8n3 + 6n+ 1

1000n3 + 3n2 + 2
= lim

n→∞

1 + 8
n

+ 6
n3 + 1

n4

1000
n

+ 3
n2 + 2

n4

∃/.

In general, if am 6= 0 and bk 6= 0, then

lim
n→∞

amn
m + . . .+ a0

bknk + . . .+ b0

=





0 if m < k,
am
bm

if m = k,

∃/ if m > k.

Remark: We cannot use Theorem 2.2 to say

1 = lim
n→∞

n+ 1

n
= lim

n→∞
1

n
· lim
n→∞

(n+ 1) = 0 · lim
n→∞

(n+ 1)

because limn→∞(n + 1) does not exist. Whenever we use a theorem, we must be
very careful to check that the conditions of the theorem apply!

Problem 2.5: Determine which of the following limits exist. For those that exist,
compute the limit. Show your calculations.

(a)

lim
n→∞

−7n4 − n2 + 6

2n4 + n+ 12

= lim
n→∞

−7− 1
n2 + 6

n4

2 + 1
n3 + 12

n4

=

lim
n→∞

(
−7− 1

n2
+

6

n4

)

lim
n→∞

(
2 +

1

n3
+

12

n4

) = −7

2
.
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(b)

lim
n→∞

3n3 + 1
n

2n4

= lim
n→∞

3
n4 + 1

n5

2
= 0.

(c)

lim
n→∞

3n3 + 1
n

2n2

The limit does not exist by Corollary 2.2.1 since

lim
n→∞

(
3 +

1

n4

)
= 3 6= 0

and

lim
n→∞

2

n
= 0.

2.B Monotone Sequences

Definition: A sequence {an}∞n=1 is increasing if

a1 ≤ a2 ≤ a3 ≤ . . . , i.e. an ≤ an+1 ∀n ∈ N

and decreasing if

a1 ≥ a2 ≥ a3 ≥ . . . , i.e. an ≥ an+1 ∀n ∈ N.

Q. By the above definition, is it possible for a sequence to be both increasing and
decreasing?

Definition: A sequence is monotone if it is either (i) an increasing sequence or (ii) a
decreasing sequence.

Definition: A sequence {an}∞n=1 is strictly increasing (strictly decreasing) if

a1 < a2 < a3 < . . .

(a1 > a2 > a3 > . . .).
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• {n}, the sequence of all natural numbers, is strictly increasing.

• {2n}, {2n+ 1}, {n2}, and {100, 101, . . .} are all strictly increasing sequences.

Recall convergent ⇒ bounded. When does bounded ⇒ convergent? The next
theorem addresses this question in the special case of monotone sequences.

Theorem 2.3 (Monotone Sequences: Convergent ⇐⇒ Bounded): Let {an} be a
monotone sequence. Then {an} is convergent ⇐⇒ {an} is bounded.

Proof:

“⇒” Let {an} be convergent. Then {an} is bounded by Theorem 2.1.

“⇐” Suppose {an} is increasing and bounded. Let L = sup{an : n =
1, 2, . . .} (why does this always exist?) We show that lim

n→∞
an = L. Given

ε > 0, then L − ε is not an upper bound of {an : n = 1, 2, . . .} by the
definition of a supremum. That is, ∃ element aN 3

L− ε < aN .

Now n > N ⇒ an ≥ aN (why?). Thus

n > N ⇒ L− ε < aN ≤ an ≤ L⇒ L− ε < an < L+ ε

⇒ |an − L| < ε.

Hence lim
n→∞

an = L.

The proof for the case where {an} is decreasing and bounded is similar.

Problem 2.6: Complete the above proof for the case of a decreasing bounded se-
quence {an}. Suggestion: consider the sequence {−an}.

Remark: We see from the proof of Theorem 2.3 that an increasing bounded sequence
converges to its supremum, whereas a decreasing bounded sequence converges to
its infimum.

•
{

1− 1

n
: n = 1, 2, . . .

}
is increasing and bounded.

∴ lim
n→∞

(
1− 1

n

)
∃.

Of course, we already knew from Theorem 2.2 (a) that

lim
n→∞

(
1− 1

n

)
= lim

n→∞
1− lim

n→∞
1

n
= 1− 0 = 1.
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• If

an =

(
1 +

1

n

)n
,

show that {an}∞n=1 is a convergent sequence.
In the Binomial Theorem (x + y)n =

∑n
k=0

(
n
k

)
xn−kyk, set x = 1 and y = 1/n.

Then

an =

(
1 +

1

n

)n
= 1 +

n

1!

(
1

n

)1

+
n(n− 1)

2!

(
1

n

)2

+
n(n− 1)(n− 2)

3!

(
1

n

)3

+ . . .+
n(n− 1) . . . 3 · 2

(n− 1)!

(
1

n

)n−1

+
n!

n!

(
1

n

)n

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)

+ . . .+
1

(n− 1)!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− n− 2

n

)

+
1

n!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− n− 1

n

)
.

This expression for an can be used to establish two key properties.
Claim: {an} is (strictly) increasing.

an+1 = 1 + 1 +
1

2!

(
1− 1

n+ 1

)
+

1

3!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)

+ . . .+
1

n!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
. . .

(
1− n− 1

n+ 1

)

+
1

(n+ 1)!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
. . .

(
1− n

n+ 1

)

︸ ︷︷ ︸
positive

> an.

Claim: {an} is bounded.

2 ≤ an ≤ 1 + 1 +
1

2!
+

1

3!
+

(
1

4!
+ . . .+

1

n!

)

≤ 1 + 1 +
1

2
+

1

22
+

(
1

24
+ . . .+

1

2n

)
since n!≥ 2n for n ≥ 4 (induction)

≤ 1 + 1 +
1

2
+

1

22
+

1

23
+

(
1

24
+ . . .+

1

2n

)

≤ 1 +
1− (1

2
)n+1

1− 1
2

< 1 +
1
1
2

= 3.

Thus, by Theorem 2.3, {an} converges. We define

e
.
= lim

n→∞

(
1 +

1

n

)n
.
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The above argument shows that 2 ≤ e ≤ 3. In fact e ≈ 2.718281828459 . . ..

2.C Subsequences

Definition: Given a sequence {an}∞n=1 and a strictly increasing sequence of natural
numbers {nk}∞k=1, we can form the subsequence {ank}∞k=1 of {an}∞n=1.

• {(2k − 1)2}∞k=1 = {1, 9, 25, . . .} is a subsequence of {n2}∞n=1 = {1, 4, 9, 16, 25, . . .}.

Remark: Note that nk ≥ k for all k. This is easily proven by induction: n1 ≥ 1 and
if nk ≥ k then nk+1 > nk ≥ k, so that nk+1 ≥ k + 1.

• { 1
100
, 1

101
, . . .} is a subsequence of { 1

n
}∞n=1.

So is { 1
100
, 1

102
, . . .}.

So is { 1
n
}∞n=1 itself (here nk = k).

Theorem 2.4 (Convergent ⇐⇒ All Subsequences Convergent): A sequence {an}∞n=1

is convergent with limit L ⇐⇒ each subsequence {ank}∞k=1 of {an}∞n=1 is conver-
gent with limit L.

Proof:

“⇒” Suppose {an} is convergent with limit L. Given ε > 0, ∃N 3

n > N ⇒ |an − L| < ε. (2.4)

Let {ank} be a subsequence of {an}. Then

k > N ⇒ nk ≥ k > N.

Considering only the indices n = nk in Eq. (2.4) ⇒ |ank − L| < ε.

∴ lim
k→∞

ank = L.

“⇐” Suppose each subsequence of {an} is convergent with limit L. Note
that {an} is a subsequence of itself. Hence {an} is convergent with limit L.

• {(−1)n} is not convergent since
{(−1)2n} = {1, 1, 1, . . .} → 1
{(−1)2n+1} = {−1,−1,−1, . . .} → −1

and −1 6= 1.

In the examples to follow, we will make use of a lemma.

Lemma 2.1: For all n ∈ N,
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(a) 0 ≤ c < 1⇒ cn ≤ c < 1,

(b) c > 1⇒ cn ≥ c > 1.

Proof:

(a) Holds for n = 1; cn < 1⇒ cn+1 = ccn ≤ c · 1 < 1.

(b) Holds for n = 1; cn > 1⇒ cn+1 = ccn > c · 1 > 1.

• lim
n→∞

cn =





0 if 0 ≤ c < 1,
1 if c = 1,
∃/ if c > 1 (divergent; in fact, unbounded (exercise))

.

Case 0 ≤ c < 1: We have 0 ≤ cn+1 ≤ cn ≤ c < 1, ∀n ≥ 1.

⇒ {cn}∞n=1 is a decreasing, bounded sequence.

∴ L = lim
n→∞

cn ∃ and 0 ≤ L ≤ c < 1.

{cn+1}∞n=1 is a subsequence of {cn}∞n=1, so lim
n→∞

cn+1 = L. But cn+1 = c cn, so

Theorem 2.2 (b) implies

L = lim
n→∞

cn+1 = c lim
n→∞

cn = c L

⇒ L(1− c) = 0⇒ L = 0 (why?)

.

Case c = 1: lim
n→∞

cn = lim
n→∞

1 = 1.

Case c > 1: If {cn} were convergent, we could let L = lim
n→∞

cn. Then

L = lim
n→∞

cn+1 = c lim
n→∞

cn = c L⇒ L(1− c) = 0⇒ L = 0.

This would contradict cn > 1 for all n ∈ N, which requires that L ≥ 1.

Hence {cn} is divergent.

• lim
n→∞

1

2n
= lim

n→∞

(
1

2

)n
= 0.
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Definition: If c > 0, let c1/n denote the nth positive root of c (which we will soon see
always exists). This real root is unique: consider

xn − yn = (x− y)(xn−1 + xn−2y + xn−3y2 + . . .+ xyn−2 + yn−1)

and observe that, if x and y are both positive, xn − yn = 0 ⇒ x = y. The above
factorization may be established using a Telescoping sum:

(x− y)
n−1∑

k=0

xn−1−kyk =
n−1∑

k=0

xn−kyk −
n−1∑

k=0

xn−1−kyk+1 =
n−1∑

k=0

xn−kyk −
n∑

k=1

xn−kyk

= xn − yn.

An immediate corollary of Lemma 2.1 is

Lemma 2.2: For all n ∈ N,

(a) 0 ≤ c < 1⇒ c ≤ c1/n < 1,

(b) c > 1⇒ c ≥ c1/n > 1.

• We now establish that lim
n→∞

c1/n = 1 for any c > 0.

Case c > 1: Note that 1 < c1/n ⇒ c < cc1/n = c(n+1)/n.

Let an = c1/n. Then

an+1
n+1 =

(
c1/(n+1)

)n+1
= c < c(n+1)/n = an+1

n

⇒
(
an+1

an

)n+1

< 1⇒ an+1

an
< 1

⇒ {an} decreasing and bounded: 1 < an+1 < an ≤ a1 = c.

Hence lim
n→∞

c1/n ∃ = L. But then lim
n→∞

c1/(2n) = L.

Note that c1/n > 1 for all n ∈ N implies that L ≥ 1.

But lim
n→∞

c1/(2n) lim
n→∞

c1/(2n) = lim
n→∞

c1/n

⇒ L · L = L

⇒ L(L− 1) = 0.

Hence L 6= 0⇒ L = 1.

Case c = 1: lim
n→∞

c1/n = lim
n→∞

1 = 1.
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Case 0 < c < 1: Let k = c−1 ⇒ c = k−1

⇒ c1/n = k−1/n =
1

k1/n
.

Then k > 1⇒ lim
n→∞

k1/n = 1.

Theorem 2.2 (c) ⇒ lim
n→∞

c1/n =
1

lim
n→∞

k1/n
=

1

1
= 1.

• The sequence an =
n

2n
converges.

an+1

an
=

(
n+ 1

2n+1

)(
2n

n

)
=
n+ 1

2n

⇒ 0 < an+1 ≤ an since n+ 1 ≤ 2n ∀n ∈ N.
∴ {an} is convergent. Its limit can be found from the observation that

lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

(
n+ 1

2n

)
an =

1

2
lim
n→∞

an.

Hence lim
n→∞

an = 0.

• Consider the sequence

xn+1 =
1

2

(
xn +

A

xn

)
, A > 0, x1 > 0.

Suppose p = lim
n→∞

xn∃. Then p = 1
2
p + A

2p
⇒ p2 = A. This sequence can therefore

be used as an algorithm for computing square roots. To show that it actually
converges, consider

xn > 0⇒ xn+1 > 0 ∀n.
∴ x1 > 0⇒ xn > 0 ∀n.

Consider

xn+1 − xn = −1

2
xn +

A

2xn
=
A− x2

n

2xn
.

Now, for all n ∈ N,

x2
n+1 − A =

1

4

(
x2
n + 2A+

A2

x2
n

)
− A =

1

4

(
xn −

A

xn

)2

≥ 0.

∴ xn ≥
√
A, n = 2, 3, . . .

⇒ xn+1 − xn ≤ 0, n = 2, 3, . . .

Since {xn+1}∞n=1 is decreasing and bounded below by
√
A > 0, we know that

{xn+1}∞n=1, and hence {xn}∞n=1, is convergent.
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Problem 2.7: Consider the sequence {an}∞n=1 defined inductively by a1 = 0, and
an+1 =

√
an + 2 for n ≥ 1.

(a) Prove that {an}∞n=1 is increasing.
Consider

a2
n+1 − a2

n = an + 2− a2
n = −(a2

n − an − 2) = −(an − 2)(an + 1).

Note that an ≥ 0 for all n. For an ∈ [−1, 2] we see that −(an − 2)(an + 1) ≥ 0. The initial
element a1 = 0 belongs to the interval [0, 2]. Therefore, if we can show that subsequent
values of an are less than or equal to 2, then an ∈ [0, 2] for all n, so that

0 ≤ a2
n+1 − a2

n = (an+1 − an)(an+1 + an).

It then follows that an+1 − an ≥ 0; that is, {an}∞n=1 is an increasing sequence.

We now use induction to establish our claim that

an ≤ 2 ∀n.

Step 1:

a1 = 0 ≤ 2.

Step 2: Suppose that the claim holds for some integer n. Then

a2
n+1 = an + 2 ≤ 2 + 2 = 4.

Hence an+1 ≤ 2. By induction, the claim holds for all natural numbers n.

(b) Prove that {an}∞n=1 converges.

Since {an}∞n=1 is an increasing sequence, bounded below by a1 = 0 and above by 2, we

deduce that {an}∞n=1 converges.

(c) Find lim
n→∞

an. Justify each step in your argument.

From part (a) we know that L = lim
n→∞

an exists. Since an ≥ 0 for all n we know that

L ≥ 0 (otherwise, if L < 0, a contradiction would result upon considering the case ε = −L
in the definition of a limit). We know that each subsequence of {an}∞n=1 is convergent to
the same limit L. From the properties of limits we know that

L2 = lim
n→∞

a2
n+1 = lim

n→∞
(an + 2) = L+ 2.

Of the possible solutions to L2−L− 2 = (L− 2)(L+ 1) = 0, which are L = 2 and L = −1,
only the solution L = 2 satisfies L ≥ 0. Hence

lim
n→∞

an = 2.
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Problem 2.8 (Sequence Limit Ratio Test)): Let {an}∞n=1 be a sequence such that

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = r, where r ∈ [0, 1). Let s = (1 + r)/2, so that 0 ≤ r < s < 1.

(a) Show that there exists a number N such that n ≥ N ⇒
∣∣∣an+1

an

∣∣∣ ≤ s. Hint:

Consider ε = s− r > 0.

(b) Use part (a) and induction to show for n ≥ N that

0 ≤ |an| sN ≤ |aN | sn.

(c) Prove that lim
n→∞

an = 0.

(d) Apply this result to prove for any x ∈ R that

lim
n→∞

xn

n!
= 0,

(e) If r > 1, show that {an} is divergent. Hint: consider the sequence {1/an}.
(f) If r = 1, give examples to illustrate that {an} may be either convergent or

divergent.

Problem 2.9: Let r be a real number. Consider the sequence {Sn}∞n=0, where Sn is
the partial sum of the geometric series

Sn =
n∑

k=0

rk.

For what values of r does S = lim
n→∞

Sn exist? Compute S (when the limit exists)

in terms of r. When the limit exists, we say that the infinite series

∞∑

k=0

rk

converges and has limit S. Hint: Consider the telescoping sum rSn − Sn.

Problem 2.10: Compute the sum

∞∑

k=1

9× 10−k.

2.D Bolzano–Weierstrass Theorem

The converse of Theorem 2.1 (convergent ⇒ bounded) does not necessarily hold for
a nonmonotonic sequence. Nevertheless, Theorem 2.1 does have the following partial
converse:
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Theorem 2.5 (Bolzano–Weierstrass Theorem): A bounded sequence has a convergent
subsequence.

Proof: Let {an}∞n=1 be a bounded sequence. Then there exists real numbers A
and B such that

an ∈ [A,B] n = 1, 2, . . .

Split [A,B] into 2 subintervals [A, A+B
2

] and [A+B
2
, B]. At least one of the 2 subinter-

vals must contain infinitely many members of the sequence {an}∞n=1 (why?). Denote
this interval by [A1, B1] and let an1 ∈ [A1, B1] be one such member.

Set i = 1. Having constructed the interval [Ai, Bi], consider the two subintervals
[Ai,

1
2
(Ai + Bi)] and [1

2
(Ai + Bi), Bi], each of length 1

2
(Bi − Ai). Again at least one

of the intervals, call it [Ai+1, Bi+1], contains infinitely many elements of {an}∞n=1. Let
ani+1

∈ [Ai+1, Bi+1] be one such element.
Proceeding inductively, we define a sequence of nested intervals [Ai, Bi] such that

for each i = 1, 2, . . . ,
ani+1

∈ [Ai+1, Bi+1] ⊂ [Ai, Bi],

i.e.
Ai ≤ Ai+1 ≤ ani+1

≤ Bi+1 ≤ Bi, ∀i = 1, 2, . . . .

Note that {Ai}∞i=1 is a bounded increasing sequence⇒ lim
i→∞

Ai∃ = L. Likewise, {Bi}∞i=1

is a bounded decreasing sequence ⇒ lim
i→∞

Bi ∃. Moreover,

lim
i→∞

Bi − lim
i→∞

Ai = lim
i→∞

(Bi − Ai) = lim
i→∞

B − A
2i

= (B − A) lim
i→∞

1

2i
= 0

⇒ lim
i→∞

Bi = lim
i→∞

Ai = L.

Note that Ai ≤ ani ≤ Bi ∀i ∈ N.
Since {Ai}∞i=1 and {Bi}∞i=1 have the same limit L, the Squeeze Principle tells us

lim
i→∞

ani∃ = L.

We have thus constructed a convergent subsequence {ani}∞i=1 of {an}∞n=1.

2.E Cauchy Criterion

[Muldowney 1990, pp. 38]

Q. To prove convergence by the ε,N definition, we need to first know the limit L. For
a monotonic sequence we saw we could prove convergence without knowing L:
all we have to establish is that the sequence is bounded. But what can we do
in the case of nonmonotonic sequences when we don’t know which value of L
we should use in the limit definition?

A. Use the Cauchy Criterion.
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Definition: The sequence {an} is a Cauchy Sequence if for all ε > 0, there exists a
number N such that

m,n > N ⇒ |am − an| < ε.

N.B. This must hold not just for m = n+1 and n, but also for m = n+2, m = n+3,
. . ., deep into the “tail” of the sequence.

• Let an =
1

n
. Given ε > 0, the Triangle Inequality implies

|am − an| =
∣∣∣∣

1

m
− 1

n

∣∣∣∣ ≤
∣∣∣∣

1

m

∣∣∣∣+

∣∣∣∣
1

n

∣∣∣∣ <
2

N
= ε

whenever m,n > N provided we choose N =
2

ε
.

Hence { 1
n
} is a Cauchy Sequence. Notice that { 1

n
} is convergent.

Remark: Without loss of generality we can always take m ≥ n > N .

Remark: If for every N we can find even a single pair of values n,m, both larger
than N , that violates |an − am| < ε, then the sequence is not a Cauchy Sequence.

• {(−1)n} is not a Cauchy Sequence. Notice {(−1)n} is divergent.
Pick m = n+ 1: |(−1)n+1 − (−1)n| = 2 6< ε, had we been given ε = 1 (say).
What we have observed in these two cases was formulated by Cauchy into the

next theorem.

Theorem 2.6 (Cauchy Criterion): {an} is convergent ⇐⇒ {an} is a Cauchy se-
quence.

Proof:

“⇒” Suppose {an} is convergent. Let L = lim
n→∞

an.

Given ε > 0, ∃N 3
n > N ⇒ |an − L| <

ε

2
.

Also,

m > N ⇒ |am − L| <
ε

2
.

Therefore

m,n > N ⇒ |am − an| ≤ |am − L|+ |L− an| <
ε

2
+
ε

2
= ε.

Thus {an} is a Cauchy sequence.

“⇐” Let {an} be a Cauchy sequence.
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Step 1: {an} is bounded.

There exists a number N such that

m,n > N ⇒ |an − am| < 1 (in particular).

E.g. Let m = N + 1. Then n > N ⇒
|an| − |aN+1| ≤ |an − aN+1| < 1

⇒ |an| ≤ 1 + |aN+1| ,
so |an| ≤ B = max{|a1| , . . . , |aN | , |aN+1|+ 1} for all n ∈ N.

Step 2: {an}∞n=1 has a convergent subsequence {ank}∞k=1.

This follows from Step 1 and the Bolzano–Weierstrass Theorem.

Step 3: {an} converges to the limit L
.
= lim

k→∞
ank .

We are given that {an} is a Cauchy sequence.

∴ Given ε > 0, ∃N 3

m,n > N ⇒ |an − am| <
ε

2
.

Also, from Step 2 we know that there exists a number K, which we
may take to be at least as large as N , such that

k > K ⇒ |ank − L| <
ε

2
.

We then take m = nk and use the fact that subsequence indices
satisfy nk ≥ k:

n > N, nk ≥ k > K ≥ N ⇒ |an − ank | <
ε

2
.

Thus

n > N ⇒ |an − L| ≤ |an − ank |+ |ank − L| <
ε

2
+
ε

2
= ε.

Hence {an} also converges (to the same limit L).

• {n} is not a Cauchy sequence. To see this, just pick m = n + 1 and ε = 1. From
Theorem 2.6, we then know that {n} diverges.

•
{

1 + (−1)n

n

}
is a Cauchy sequence.

Given ε > 0, we can make
∣∣∣∣
(

1 +
(−1)n

n

)
−
(

1 +
(−1)m

m

)∣∣∣∣ =

∣∣∣∣
(−1)n

n
− (−1)m

m

∣∣∣∣ ≤
1

n
+

1

m
<

1

N
+

1

N
=

2

N
= ε,

provided we make the natural numbers n and m both greater than N = 2/ε. Hence
this is a Cauchy sequence and it therefore converges.
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• What about the sequence defined by an = 1 +
1

2
+

1

3
+ . . .+

1

n
?

Pick m = 2n:

|a2n − an| =
1

n+ 1
+

1

n+ 2
+ . . .+

1

2n

≥ 1

2n
+

1

2n
+ . . .+

1

2n︸ ︷︷ ︸
n terms

=
n

2n
=

1

2
.

Then, if we should be given ε = 1
2
, we won’t be able to satisfy |am − an| < ε. So

{an} is not a Cauchy sequence. Hence, by Theorem 2.6 we see that {an} diverges,
i.e. ∞∑

k=1

1

k
.
= lim

n→∞

n∑

k=1

1

k
∃/.

This is known as the harmonic series . It diverges, but only very slowly.

Q. Using the above estimate, how many terms would you want to take to be sure
that the sum is greater than 10?

Problem 2.11 (Infinite limits): Let {an}∞n=1 be a sequence of real numbers. If, given
any natural number M , we can find a number N such that n > N ⇒ an > M , we
say that

lim
n→∞

an =∞.

(a) Suppose {an}∞n=1 and {bn}∞n=1 are sequences of real numbers with lim
n→∞

an =∞
and lim

n→∞
bn =∞. Show that lim

n→∞
(an + bn) =∞ and lim

n→∞
anbn =∞.

(b) Under the conditions of part (a), find examples that demonstrate lim
n→∞

(an−bn)

and lim
n→∞

an/bn may exist as a real number, may have an infinite limit, or may fail

to exist at all.

(c) Show that

lim
n→∞

an =∞⇒ lim
n→∞

1

an
= 0.

(d) Does the converse to (c) hold? That is does,

lim
n→∞

1

an
= 0⇒ lim

n→∞
an =∞?

Problem 2.12 (Limit Superior and Limit Inferior): Let {an}∞n=1 be a bounded se-
quence. Consider the sequence {sn}∞n=1 defined by sn = sup{an, an+1, an+2, . . .} for
n ∈ N.
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(a) Prove that {sn}∞n=1 is a bounded sequence.

(b) Prove that {sn}∞n=1 is a monotone sequence. Is {sn}∞n=1 an increasing or a
decreasing sequence?

(c) Prove that {sn}∞n=1 is convergent.

Note: The limit of the sequence {sn}∞n=1 is known as the limit superior of the
sequence {an}∞n=1 and is written lim sup

n→∞
an. This is just the supremum of the values

in the tail of the sequence. In a similar manner, one can define the limit inferior:
lim inf
n→∞

an = lim
n→∞

in, where in = inf{an, an+1, an+2, . . .}. Note that lim inf
n→∞

an ≤
lim sup
n→∞

an. In fact, a sequence {an}∞n=1 converges ⇐⇒ {an}∞n=1 is bounded and

lim inf
n→∞

an = lim sup
n→∞

an. For example, the bounded sequence {sinn}∞n=1 does not

converge because lim inf
n→∞

sinn = −1 and lim sup
n→∞

sinn = 1.



Chapter 3

Functions

[Spivak 1994, Chapter 3]

3.A Examples of Functions

In the previous chapter, we defined a function f as a rule that associates a number y
to each number x in its domain. An equivalent definition is [Spivak 1994, p. 47]:

Definition: A function is a collection of pairs of numbers (x, y) such that if (x, y1)
and (x, y2) are in the collection, then y1 = y2. That is,

x1 = x2 ⇒ f(x1) = f(x2).

This can be restated as the vertical line test : an set of ordered pairs (x, y) is a
function if every vertical line intersects their graph at most once.

Definition: If a function f has domain A and range B, we write f : A→ B.

Definition: Constant functions are functions of the form f(x) = c, where c is a
constant.

Definition: Polynomials are functions of the form

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0.

When an 6= 0, we say that the degree of f is n and write deg f = n. While a
nonzero constant function has degree 0, it turns out to be convenient to define the
degree of the zero function f(x) = 0 to be −∞.

Note that a polynomial f(x) with only even-degree terms (all the odd-degree coef-
ficients are zero) satisfies the property f(−x) = f(x), while a polynomial f(x) with
only odd-degree terms satisfies f(−x) = −f(x). We generalize this notion with the
following definition.

54
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Definition: A function f is said to be even if f(−x) = f(x) for every x in its domain.

Definition: A function f is said to be odd if f(−x) = −f(x) for every x in its
domain.

Problem 3.1: Show that every function f : R → R can be written as a sum of an
even function and an odd function.

Definition: Rational functions are functions of the form f(x) =
P (x)

Q(x)
, where P (x)

and Q(x) are polynomials. They are defined on the sets of all x for which Q(x) 6= 0.

• x
3 + 3x2 + 1

x2 + 1
and

1

x
are both rational functions.

Composition Once we have defined a few elementary functions, we can create new
functions by combining them together using the arithmetic operations +, −, ·,
÷, or by introducing the composition operator ◦.

Definition: If f : A → B and g : B → C then we define g ◦ f : A → C to be the
function that takes x ∈ A to g(f(x)) ∈ C.

•
f(x) = x2 + 1 f : R→ [1,∞),
g(x) = 2

√
x g : [1,∞)→ [2,∞),

g(f(x)) = 2
√
x2 + 1 g ◦ f : R→ [2,∞).

Note however that f(g(x)) = 4x+ 1, so that f ◦ g : [0,∞)→ [1,∞).

•
f(x) = x2 + 1 f : R→ [1,∞),
g(x) = 1

x
g : [1,∞)→ (0, 1],

g(f(x)) = 1
x2+1

g ◦ f : R→ (0, 1].

One can also build new functions from old ones using cases , or piecewise defini-
tions.

•

f(x) =





0 x < 0,
1
2

x = 0,
1 x > 0.
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•
f(x) = |x| =

{
x x ≥ 0,
−x x < 0.

Notice that cases can sometimes introduce jumps in a function.

3.B Trigonometric Functions

Trigonometric functions are functions relating the shape of a right-angle triangle to
one of its other angles.

Definition: If we label one of the non-right angles by θ, the length of the hypotenuse
by hyp, and the lengths of the sides opposite and adjacent to x by opp and adj,
respectively, then

sin θ =
opp

hyp
,

cos θ =
adj

hyp
,

tan θ =
opp

adj
.

Note here that since θ is one of the nonright angles of a right-angle triangle, these
definitions apply only when 0 < θ < 90◦. Note also that tan θ = sin θ/cos θ.
Sometimes it is convenient to work with the reciprocals of these functions:

csc θ =
1

sin θ
,

sec θ =
1

cos θ
,

cot θ =
1

tan θ
.

Pythagorean Identities: Recall from Pythagoras’ Theorem that

(opp)2 + (adj)2 = (hyp)2.

Dividing by the square of the length of the hypotenuse, we see that

sin2 θ + cos2 θ = 1. (3.1)

Other useful identities result from dividing both sides of this equation either by
sin2 θ:

1 + cot2 θ = csc2 θ,

or by cos2 θ:
tan2 θ + 1 = sec2 θ.

Note that Eq. (3.1) implies both that |sin θ| ≤ 1 and |cos θ| ≤ 1.
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Definition: We define the number π to be the area of a unit circle (a circle with
radius 1).

Problem 3.2: Give a geometrical argument to show that 2 < π < 4.

Definition: Instead of using degrees, in our development of calculus it will be more
convenient to measure angles in terms of the area of the sector they subtend on
the unit circle. Specifically, we define an angle measured in radians to be twice1

the area of the sector that it subtends, as shown in Figure 3.1. For example, our
definition of π says that a full unit circle (360◦) has area π; the corresponding angle
in radians would then be 2π. Thus, we can convert between radians and degrees
with the formula

π radians = 180◦.

(1,0)

(x, y) = (cos θ, sin θ)

area θ
2θ

Figure 3.1: The unit circle

The coordinates x and y of a point P on the unit circle are related to θ as follows:

cos θ =
adj

hyp
=
x

1
= x,

sin θ =
opp

hyp
=
y

1
= y.

1The reason for introducing the factor of two in this definition is to make the angle x expressed in
radians equal to the length of the arc it subtends on the unit circle, as we will see later using integral
calculus, once we have developed the notion of the length of an arc. For example, the circumference
of a full circle of unit radius will be found to be precisely 2π.
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Complementary Angle Identities:

cos θ = sin
(π

2
− θ
)
,

cos
(π

2
− θ
)

= sin θ.

Supplementary Angle Identities:

sin(π − θ) = sin θ,

cos(π − θ) = − cos θ.

Symmetries:

sin(−θ) = − sin θ,

cos(−θ) = cos θ,

sin(θ + 2π) = sin θ,

cos(θ + 2π) = cos θ.

Problem 3.3: We thus see that sin θ is an odd periodic function of θ and cos θ is
an even periodic function of θ, both with period 2π. Use these facts to prove that
tan θ is an odd periodic function of θ with period π.

Special Values:

sin(0) = cos
(π

2

)
= 0,

sin
(π

2

)
= cos(0) = 1,

sin
(π

4

)
= cos

(π
4

)
=

1√
2
,

sin
(π

6

)
= cos

(π
3

)
=

1

2
,

sin
(π

3

)
= cos

(π
6

)
=

√
3

2
.

Addition Formulae:

Claim:

cos(A−B) = cosA cosB + sinA sinB.
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A
B

R = (1, 0)

P = (cosA, sinA)
Q = (cosB, sinB)

Figure 3.2: The unit circle with points P = (cosA, sinA), Q = (cosB, sinB), and
R = (1, 0)

Proof: Consider the points P = (cosA, sinA), Q = (cosB, sinB), and R =
(1, 0) on the unit circle, as illustrated in Fig. 3.2. We can use Pythagoras’ Theorem
to obtain a formula for the length (squared) of a chord subtended by an angle:

QR
2

= (1− cosB)2 + sin2B = 1− 2 cosB + cos2B + sin2B = 2− 2 cosB.

For example, since the angle subtended by PQ is A−B,

PQ
2

= 2− 2 cos(A−B).

Alternatively, we could compute PQ
2

directly:

PQ
2

= (cosA− cosB)2 + (sinA− sinB)2

= cos2A− 2 cosA cosB + cos2B + sin2A− 2 sinA sinB + sin2B

= 2− 2(cosA cosB + sinA sinB).

On comparing these two results, we conclude that

cos(A−B) = cosA cosB + sinA sinB.

The claim thus holds.
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Other addition formulae then follow easily:

cos(A+B) = cos(A− (−B))

= cosA cos(−B) + sinA sin(−B)

= cosA cosB − sinA sinB.

sin(A+B) = cos
[π

2
− (A+B)

]

= cos
[(π

2
− A

)
−B

]

= cos
(π

2
− A

)
cosB + sin

(π
2
− A

)
sinB

= sinA cosB + cosA sinB.

sin(A−B) = sin(A− (−B))

= sinA cos(−B) + cosA sin(−B)

= sinA cosB − cosA sinB.

tan(A+B) =
sin(A+B)

cos(A+B)
=

sinA cosB + cosA sinB

cosA cosB − sinA sinB

=
(sinA cosB + cosA sinB) · 1

cosA cosB

(cosA cosB − sinA sinB) · 1
cosA cosB

=
tanA+ tanB

1− tanA tanB
, provided A, B, A+B are not odd multiples of π

2 .

Double-Angle Formulae:

sin 2A = sin(A+ A)

= sinA cosA+ sinA cosA

= 2 sinA cosA.

cos 2A = cos(A+ A)

= cosA cosA− sinA sinA

= cos2A− sin2A

= cos2A− (1− cos2A)

= 2 cos2A− 1

= (1− sin2A)− sin2A

= 1− 2 sin2A.
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Also, if A is not an odd multiple of π/4 or π/2,

tan 2A = tan(A+ A)

=
tanA+ tanA

1− tanA tanA

=
2 tanA

1− tan2A
.

Inequalities: We have already seen that |sinx| ≤ 1 and |cosx| ≤ 1. Our develop-
ment of trigonometric calculus will rely on the following additional key result:

sinx ≤ x ≤ tanx ∀x ∈
[
0,
π

2

)
.

We establish this result geometrically, referring to the arc of unit radius in
Fig 3.3. The shaded area of the sector ABC subtended by the angle x (measured
in radians) is x/2. Since BE = sinx and DC = tanx, we deduce

x

A

B

C

D

E

1

Figure 3.3: Geometric proof of sin x ≤ x ≤ tanx

Area4ABC ≤ AreaSectorABC ≤ Area4ADC

⇒ 1

2
(1) sinx ≤ x

2
≤ 1

2
(1) tanx

⇒ sinx ≤ x ≤ tanx ∀x ∈
[
0,
π

2

)
.

For x ≥ π/2 we know that

sinx ≤ 1 <
π

2
≤ x.

Hence sin x ≤ x for all x ≥ 0, from which we see that

|sinx| ≤ |x| ∀x ∈ R.



62 CHAPTER 3. FUNCTIONS

Problem 3.4: Verify that the graphs of the functions y = sinx, y = cosx, and
y = tanx are periodic extensions of the illustrated graphs.

Problem 3.5: Verify that the graphs of the functions y = csc x = 1/sinx, y =
secx = 1/cosx, and y = cotx = 1/tanx are periodic extensions of the illustrated
graphs.

y

x

sinx

−1

1

−π
2

π
2

−π π

y

x

cosx

−1

1

−π
2

π
2

−π π

y

x

tanx

−π
2

π
2
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y

x

cscx

−π π

y

x

secx

−π
2

π
2

y

x

cotx

−π π



64 CHAPTER 3. FUNCTIONS

3.C Limit of a Function

Consider the function f(x) = 1
x

(x 6= 0).
Notice that as x gets large, f(x) gets closer to, but never quite reaches, 0, very

much like the terms of the sequence { 1
n
} as n→∞. In fact, at integer values of x, f

evaluates to a member of the sequence { 1
n
}:

f(n) =
1

n
−→ 0 as n→∞.

Unlike a sequence, f is defined also for nonintegral values of x. We therefore need to
generalize our definition of a limit:

Definition: We say lim
x→∞

f(x) = L if for every ε > 0 we can find a real number N 3

x > N ⇒ |f(x)− L| < ε.

• Let f(x) = 1/x. Given any ε > 0, we can make

|f(x)− 0| =
∣∣∣∣
1

x

∣∣∣∣ <
1

N
= ε

for x > N simply by picking N =
1

ε
.

Hence lim
x→∞

f(x) = 0.

• Here is an interesting function:

g(x) =

{
1 if x ∈ Q,
0 if x 6∈ Q.

This represents a “logical test” for rational numbers.

An even more interesting example is the function

f(x) = xg(x) =

{
x if x ∈ Q,
0 if x 6∈ Q.

Notice for all real numbers near x = 0 that f(x) is very close to 0. That is, if δ
is a small positive number, the value of f(x) is very close to zero for all x ∈ (−δ, δ).
Given ε > 0, we can always find a small region (−δ, δ) about the origin such that

x ∈ (−δ, δ) ⇒ |f(x)| < ε,

i.e. |x| < δ ⇒ |f(x)| < ε.

For example, we could choose δ = ε (or smaller). We express this fact with the
statement lim

x→0
f(x) = 0.
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Definition: We say lim
x→a

f(x) = L if for every ε > 0 we can find a δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)− L| < ε.

Remark: In the previous example we see that a = 0 and the limit L is 0. Notice in
this case that lim

x→0
f(x) = 0 = f(0). However, this is not true for all functions f .

The value of a limit as x→ a might be quite different from the value of the function
at x = a. Sometimes the point a might not even be in the domain of the function,
but the limit may still exist. This is why we restrict 0 < |x− a| (that is, x 6= a) in
the above definition.

Remark: The value of f at a itself is irrelevant to the limit. We don’t need to
evaluate f at x = a any more than we need to evaluate 1/n at n = ∞ to find its
limit.

• Let

f(x) =
{
x if x > 0,
−x if x < 0.

When we say lim
x→0

f(x) = 0 we mean the following. Given ε > 0, we can make

|f(x)| < ε

for all x satisfying 0 < |x| < δ just by choosing δ = ε. That is,

0 < |x| < δ ⇒ |f(x)| = |x| < δ = ε.

• How about

f(x) = |x| =
{
x if x > 0,
0 if x = 0,
−x if x < 0;

is lim
x→0

f(x) = 0? Yes, the value of f at x = 0 does not matter.

• Consider now

f(x) =

{
x if x > 0,
1 if x = 0,
−x if x < 0.

Is lim
x→0

f(x) = 0? Yes, the value of f at x = 0 does not matter.
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• Let

f(x) =

{
0 if x < 0,
1
2

if x = 0,
1 if x > 0.

This function is defined everywhere. Does

lim
x→0

f(x)∃?

No, given ε = 1
2
, there are values of x 6= 0 in every interval (−δ, δ) with very

different values of f :

f

(
δ

2

)
= 1,

f

(
−δ

2

)
= 0.

Thus ∣∣∣∣f
(
δ

2

)
− L

∣∣∣∣ <
1

2
⇒ |1− L| < 1

2
,

∣∣∣∣f
(
−δ

2

)
− L

∣∣∣∣ <
1

2
⇒ |L| < 1

2
.

The first statement implies

−1

2
< L− 1 <

1

2
⇒ 1

2
< L <

3

2

and this contradicts |L| < 1
2
. So we see that no such number L exists; that is,

limx→0 f(x)∃/.
• Let f(x) = 7x− 3. Show that lim

x→1
f(x) = 4.

Let ε > 0. Our task is to produce a δ > 0 such that

0 < |x− 1| < δ ⇒ |f(x)− 4| < ε.

Well, |f(x)− 4| = |7x− 7| = 7 |x− 1| < 7δ.
How can we make |f(x)− 4| < ε?
No matter what ε we are given, we can easily choose δ = ε/7, so that 7δ = ε.

Q. Suppose

f(x) =

{
7x− 3 x 6= 1,

5 x = 1.

What is lim
x→1

f(x)?

A. The limit is still 4; the value of f(x) at x = 1 is completely irrelevant. The
function need not even be defined at x = 1.
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Remark: lim
x→a

describes the behaviour of a function near a, not at a.

• Let f(x) = x2, x ∈ R.
Show lim

x→3
f(x) = 9.

|x− 3| < δ ⇒ |f(x)− 9| =
∣∣x2 − 9

∣∣ = |x− 3| |x+ 3| = |x− 3| |x− 3 + 6|
< δ(δ + 6) from the Triangle Inequality.

We could solve the quadratic equation δ(δ+ 6) = ε, but it is easier to restrict δ ≤ 1
so that

δ(δ + 6) ≤ δ(1 + 6) = 7δ ≤ ε if δ ≤ ε

7
.

Note here that we must allow for the possibility that δ < ε/7 instead of just setting
δ = ε/7, in order to satisfy our simplifying restriction that δ ≤ 1.
Hence

|x− 3| < min
(

1,
ε

7

)
⇒ |f(x)− 9| < ε.

• Let f(x) = 1
x
, x 6= 0.

Show lim
x→2

f(x) =
1

2
.

Given ε > 0, try to find a δ 3

0 < |x− 2| < δ ⇒
∣∣∣∣f(x)− 1

2

∣∣∣∣ < ε.

Note

∣∣∣∣f(x)− 1

2

∣∣∣∣ =

∣∣∣∣
1

x
− 1

2

∣∣∣∣ =

∣∣∣∣
2− x

2x

∣∣∣∣ becomes very large near x = 0.

Is this a problem? No, we are only interested in the behaviour of the function
near x = 2.
Let us restrict δ ≤ 1, to keep the factor 2x in the denominator from getting really

small (and hence the whole expression from getting really large). Then

|x− 2| < 1⇒ −1 < x− 2 < 1⇒ 1 ≤ x ≤ 3⇒ 1

x
≤ 1.

So ∣∣∣∣f(x)− 1

2

∣∣∣∣ =

∣∣∣∣
2− x

2x

∣∣∣∣ ≤
1

2
|x− 2| < 1

2
δ ≤ ε,

if we take δ = min(1, 2ε).

Problem 3.6: Suppose lim
x→a

f(x) > 0. Show that there exists a number δ > 0 such

that f(x) > 0 for all x satisfying 0 < |x− a| < δ. Can one necessarily conclude
that f(a) > 0?
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3.D Properties of Limits

Q. The definition of lim
x→a

f(x) is reminiscent of lim
n→∞

an, for which we proved several

properties, including a Cauchy Criterion. Do there exist similar theorems for
lim
x→a

f(x)?

A. Yes.

Q. Do we have to prove these theorems all over again?

A. No, the following theorem provides the “bridge” we need to connect sequence
limits to function limits.

Theorem 3.1 (Equivalence of Function and Sequence Limits): lim
x→a

f(x) = L ⇐⇒ f

is defined near a and every sequence of points {xn} in the domain of f , with xn 6= a
but lim

n→∞
xn = a, satisfies lim

n→∞
f(xn) = L.

Proof:

“⇒” Suppose lim
x→a

f(x) = L. Let {xn} be any sequence of points from the

domain of f with xn 6= a, but lim
n→∞

xn = a.

That is, given ε > 0, ∃δ > 0 3

0 < |x− a| < δ ⇒ |f(x)− L| < ε

and ∃N 3
n > N ⇒ 0 < |xn − a| < δ.

Then n > N ⇒ |f(xn)− L| < ε,

i.e. lim
n→∞

f(xn) = L.

“⇐” Suppose that lim
n→∞

f(xn) = L for each sequence {xn} in the domain

of f with xn 6= a, but lim
n→∞

xn = a.

If f(x) does not have limit L at a, then it is not true that:

Given ε > 0, ∃δ > 0 such that 0 < |x− a| < δ ⇒ |f(x)− L| < ε.

Hence there exists some ε, say ε0, for which this fails, no matter which δ
we try. This means that no matter how large we make n ∈ N, there exists
some x with 0 < |x− a| < 1

n
that violates our error requirement:

|f(x)− L| 6< ε0.
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Denote this particular value of x by xn 6= a. In this way, we construct for
each integer n = 1, 2, . . . a member of a sequence {xn}. As n → ∞, this
sequence converges to a, yet the function values {f(xn)} do not converge
to L since |f(x)− L| ≥ ε0. This contradicts the premise lim

n→∞
f(xn) = L

for any such sequence {xn}. Hence it must be that lim
x→a

f(x) = L.

Corollary 3.1.1 (Properties of Function Limits): Suppose L = lim
x→a

f(x) and M =

lim
x→a

g(x). Then

(a) lim
x→a

(f(x) + g(x)) = L+M ;

(b) lim
x→a

f(x)g(x) = LM ;

(c) lim
x→a

f(x)

g(x)
=

L

M
if M 6= 0.

Corollary 3.1.2 (Cauchy Criterion for Functions): lim
x→a

f(x) exists ⇐⇒ for every

ε > 0, ∃δ > 0 such that, whenever two numbers x and y are chosen from the set
(a− δ, a) ∪ (a, a+ δ), their functions values satisfy |f(x)− f(y)| < ε.

• How about lim
x→0

f(x), where

f(x) =

{
sin 1

x
if x 6= 0,

0 if x = 0.

x

sin 1
x
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Note that there exist values x 6= 0 and other values y 6= 0 in any interval (−δ, δ)
with f(x) = 1 and f(y) = −1, so that |f(x)− f(y)| = 2. We cannot possibly satisfy
the Cauchy Criterion for ε = 1, so by Corollary 3.1.2, we see that lim

x→0
f(x)∃/.

For example, when
1

x
=
π

2
+ 2nπ, where n ∈ N, then sin

(
1

x

)
= 1. This happens

when x =
(π

2
+ 2nπ

)−1

. There are infinitely many such values in (0, δ), one for every

n >
1

2πδ
− 1

4
.

Similarly, when
1

y
=

3π

2
+ 2nπ, where n ∈ N, then sin

(
1

y

)
= −1. This happens

when y =

(
3π

2
+ 2nπ

)−1

. There are infinitely many such values in (0, δ), one for

every n >
1

2πδ
− 3

4
.

• However, for the function

h(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0,

lim
x→0

h(x) exists and equals 0: given ε > 0, we can make |h(x)− 0| ≤ |x| < ε for all

x satisfying 0 < |x| < δ if we simply choose δ = ε.

x

x sin 1
x

Corollary 3.1.3 (Squeeze Principle for Functions): Suppose f(x) ≤ h(x) ≤ g(x)
when x ∈ (a− δ, a+ δ), for some δ > 0. Then

lim
x→a

f(x) = lim
x→a

g(x) = L⇒ lim
x→a

h(x) = L.
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• Consider
f(x) = − |x| ,

h(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0.

g(x) = |x| .
Since

f(x) ≤ h(x) ≤ g(x),

and
lim
x→0

f(x) = lim
x→0

g(x) = 0,

we learn from Corollary 3.1.3 that

lim
x→0

h(x) = 0.

3.E Continuity

[Muldowney 1990, pp. 55–58]
[Spivak 1994, Chapter 6]

Definition: Let D ⊂ R. A point c is an interior point of D if it belongs to some
open interval (a, b) entirely contained in D: c ∈ (a, b) ⊂ D.

• 1

10
,
1

2
,
2

3
,

9

10
are interior points of [0, 1] but 0 and 1 are not.

• All points of (0, 1) are interior points of (0, 1).

Recall that the value of f at x = a is completely irrelevant to the value of its limit
as x → a. Sometimes, however, these two values will happen to agree. In that case,
we say that f(x) is continuous at x = a.

Definition: A function f is continuous at an interior point a of its domain if

lim
x→a

f(x) = f(a).

Remark: Otherwise, if

(a) the limit fails to exist, or

(b) the limit exists and equals some number L 6= f(a),

the function is said to be discontinuous .
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Remark: f is continuous at a ⇐⇒ for every ε > 0, there exists a δ > 0 such that

|x− a| < δ ⇒ |f(x)− f(a)| < ε.

Note that when x = a we have |f(a)− f(a)| = 0 < ε.

• f(x) = x is continuous at every point a of its domain (R) since lim
x→a

x = a = f(a)

for all a ∈ R.

• f(x) = x2 is continuous at all points a by Corollary 3.1.1, since

lim
x→a

f(x) = lim
x→a

x2 = lim
x→a

x · lim
x→a

x = a · a = a2 = f(a).

• By repeated use of Corollary 3.1.1, we see that a polynomial is continuous at all
real numbers a.

Corollary 3.1.4 (Properties of Continuous Functions): Suppose f and g are contin-
uous at a. Then f + g and fg are continuous at a and f/g is continuous at a if
g(a) 6= 0.

Corollary 3.1.5 (Continuity of Rational Functions): A rational function is continu-
ous at all points of its domain.

• f(x) =
1

x
is continuous at all x 6= 0.

• f(x) =
1

x2 + 1
is continuous everywhere.

• f(x) =
1

x2 − 1
is continuous on (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

Problem 3.7: Are any of the following functions continuous at 0?

f(x) =

{
sin 1

x
if x 6= 0,

0 if x = 0.

g(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0.

h(x) =

{
x sin 1

x
if x 6= 0,

1 if x = 0.

Corollary 3.1.6 (Continuous Functions of Sequences): f is continuous at an interior
point a of the domain of f ⇐⇒ each sequence {xn} in the domain of f with
lim
n→∞

xn = a satisfies lim
n→∞

f(xn) = f(a).
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• On p. 34 we showed for any sequence of non-negative numbers an that an → a ⇒√
an →

√
a. Hence f(x) =

√
x is continuous at all a > 0. Note that a = 0 is not

an interior point of the domain of f .

Corollary 3.1.7 (Composition of Continuous Functions): Suppose g is continuous
at a and f is continuous at g(a). Then f ◦ g is continuous at a.

Proof: Let {xn} be any sequence in the domain of g such that lim
n→∞

xn = a. Then by

Corollary 3.1.6, {g(xn)} is a sequence in the domain of f such that lim
n→∞

g(xn) = g(a)

since g is continuous at a.
Likewise, since f is continuous at g(a), lim

n→∞
f(g(xn)) = f(g(a)), (again appealing

to Corollary 3.1.6).

• Given any continuous function g(x), is |g(x)| continuous?

We have already seen that lim
x→0
|x| = 0 = |0|. This means that the function

f(x) = |x| is continuous at x = 0. In fact, f(x) = |x| is continuous at all x ∈ R since
at positive x points it behaves locally as the function x and at negative x it behaves
locally as the function −x, both of which are continuous functions. We then know
from Corollary 3.1.7 that f ◦ g = |g(x)| is continuous at all x ∈ R.

• Corollary 3.1.7 can also be used to show that the function

{
x sin 1

x
if x 6= 0,

0 if x = 0.

is continuous at all a ∈ R, not just at a = 0. All we need to do is to prove that
sinx is a continuous function at all a ∈ R. On p. 61 we showed that

|sinx| ≤ |x| ∀x ∈ R. (3.2)

Recall

sin(A+B) = sinA cosB + cosA sinB,

sin(A−B) = sinA cosB − cosA sinB.

Then
sin(A+B)− sin(A−B) = 2 cosA sinB.

Let
A+B = x
A−B = y

}
i.e.

A = x+y
2
,

B = x−y
2
.

Thus

sinx− sin y = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
∀x, y ∈ R.
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We use this result together with Eq. (3.2) to show that sinx is continuous at any
a ∈ R. Given ε > 0, choose δ = ε. Then

|x− a| < δ ⇒ |sinx− sin a| = 2

∣∣∣∣cos

(
x+ a

2

)∣∣∣∣
∣∣∣∣sin

(
x− a

2

)∣∣∣∣

≤ 2

∣∣∣∣sin
(
x− a

2

)∣∣∣∣

≤ 2

∣∣∣∣
x− a

2

∣∣∣∣ = |x− a| < δ = ε.

From Corollary 3.1.7, it then follows that cosx = sin
(
π
2
− x
)

is also continuous
on R and that tanx is continuous on its domain.

3.F One-Sided Limits

Definition: We write lim
x→a+

f(x) = L if for each ε > 0, ∃δ > 0 3

0 < x− a < δ︸ ︷︷ ︸
i.e. a<x<a+δ

⇒ |f(x)− L| < ε.

• For the function

H(x) =

{
1 if x ≥ 0,
0 if x < 0,

we see that lim
x→0+

H(x) = 1.

Definition: We write lim
x→a−

f(x) = L if for each ε > 0, ∃δ > 0 3

0 < a− x < δ ⇒ |f(x)− L| < ε.

• In the above example, we see that lim
x→0−

H(x) = 0.

Remark: lim
x→a

f(x) = L ⇐⇒ lim
x→a+

f(x) = lim
x→a−

f(x) = L.

Definition: A function f is continuous from the right at a if

lim
x→a+

f(x) = f(a).
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Definition: A function f is continuous from the left at a if

lim
x→a−

f(x) = f(a).

• f(x) =
√
x is continuous from the right at x = 0.

• In the above example, H(x) is continuous from the right at all points, including 0,
and from the left at all points except 0.

Remark: A function is continuous at an interior point a of its domain if and only if
it is continuous both from the left and from the right at a.

Definition: A function f is said to be continuous on [a, b] if f is continuous at each
point in (a, b) and continuous from the right at a and from the left at b.

• f(x) =
√
x is continuous on [ 0,∞).

Remark: Extending Corollary 3.1.6 to one-sided limits, we see that f is continuous
on [a, b] ⇐⇒ lim

n→∞
f(xn) = f(c) for each sequence {xn} such that xn ∈ [a, b] and

lim
n→∞

xn = c. That is, lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

3.G Properties of Continuous Functions

[Muldowney 1990, pp. 59–68]

[Spivak 1994, Chapter 6]

We have seen that continuous functions are free of sudden jumps. This property
may be exploited to help locate the roots of a continuous function. Suppose we want
to know whether the continuous function f(x) = x3 + x2 − 1 has a root in (0, 1).
We might notice that f(0) is negative and f(1) is positive. Since f has no jumps, it
would then seem plausible that there exists a number c ∈ (0, 1) where f(c) = 0. The
following theorem establishes that this is indeed the case.

Theorem 3.2 (Intermediate Value Theorem [IVT]): Suppose
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(i) f is continuous on [a,b],

(ii) f(a) < 0 < f(b).

Then there exists a number c ∈ (a, b) such that f(c) = 0.

Proof: Let a1 = a and b1 = b. Inductively we define, for n = 1, 2, . . .,

an+1 =





an + bn
2

if f

(
an + bn

2

)
≤ 0,

an if f

(
an + bn

2

)
> 0

and

bn+1 =





bn if f

(
an + bn

2

)
≤ 0,

an + bn
2

if f

(
an + bn

2

)
> 0.

We first use induction to show that f(an) ≤ 0 and f(bn) > 0 for all n.

Step 1: We are given that this holds for n = 1.

Step 2: Suppose f(an) ≤ 0 and f(bn) > 0. Then in both cases f(an+1) ≤ 0 and
f(bn+1) > 0.

Note that a ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ b ∀n. Being bounded and monotone,
{an} and {bn} are hence convergent sequences. Also,

bn − an =
b− a
2n−1

⇒ lim
n→∞

bn = lim
n→∞

an = c ∈ [a, b].

Now f continuous ⇒





lim
n→∞

f(an) = f
(

lim
n→∞

an

)
= f(c),

lim
n→∞

f(bn) = f
(

lim
n→∞

bn

)
= f(c).

But
f(an) ≤ 0⇒ f(c) = lim

n→∞
f(an) ≤ 0,

f(bn) > 0⇒ f(c) = lim
n→∞

f(bn) ≥ 0.

∴ f(c) = 0. Note that

{
f(a) < 0⇒ c 6= a
f(b) > 0⇒ c 6= b

}
. Hence c ∈ (a, b).

• Consider the continuous function f(x) = xn − C, where C > 0 and n ∈ N. Noting
that f(0) = −C < 0 and f(x) > 0 for sufficiently large x, the equation f(x) = 0
is seen to have at least one positive root. Hence, we have established our claim on
p. 45 that every number C > 0 always has a unique nth positive root, so that one
can define a function f(x) = x1/n on [0,∞). This example leads us to formulate
the following corollary to Theorem 3.2.

Corollary 3.2.1 (Generalized Intermediate Value Theorem): Suppose
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(i) f is continuous on [a,b],

(ii) f(a) < y < f(b).

Then there exists a number c ∈ (a, b) such that f(c) = y.

Proof: Apply Theorem 3.2 to the function F (x) = f(x)− y.

Problem 3.8: For n ∈ N, prove that the function f(x) = x1/n is continuous on
[0,∞). Hint: apply the factorization on p. 45 to x−a = (x1/n)n−(a1/n)n for a > 0.
Do the case a = 0 separately.

Definition: We say that a function is bounded on a set S if

∃M 3 |f(x)| ≤M ∀x ∈ S.

• f(x) =
1

x
is bounded on [1, 2], but not on (0, 1].

Theorem 3.3 (Boundedness of Continuous Functions on Closed Intervals): If f is
continuous on [a, b] then f is bounded on [a, b].

Proof: We want to show that |f(x)| ≤ M ∀x ∈ [a, b]. We establish this by
contradiction.

Suppose that no such number M exists. Then, for each n = 1, 2, . . ., there exists
xn ∈ [a, b] 3

(3.3)|f(xn)| > n.

The sequence {xn} is bounded (why?) and therefore has a subsequence {xnk} that
converges to some number c ∈ [a, b] as k →∞. Now

f continuous on [a, b] ⇒ lim
k→∞

f(xnk) = f(c).

This contradicts Eq. (3.3) (which implies that lim
k→∞
|f(xnk)| =∞).

Hence f is bounded on [a, b].

Theorem 3.4 (Weierstrass Max/Min Theorem): If f is continuous on [a, b] then
it achieves both a maximum and minimum value on [a, b]. That is, there exists
numbers c and d in [a, b] such that

f(c) ≤ f(x) ≤ f(d) ∀x ∈ [a, b].
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Proof: Let M = sup{f(x) : x ∈ [a, b]} (why does this exist?).
For n = 1, 2, . . . we know that M−1/n is not an upper bound of {f(x) : x ∈ [a, b]}.

That is, there exists a number xn ∈ [a, b] such that

M − 1

n
< f(xn) ≤M.

By the Squeeze Principle, lim
n→∞

f(xn) = M . Now, the bounded sequence {xn} has a

convergent subsequence {xnk} → d ∈ [a, b] and

f continuous on [a, b] ⇒ lim
k→∞

f(xnk) = f(d).

But {f(xnk)} is a subsequence of the convergent sequence {f(xn)}, so

lim
k→∞

f(xnk) = lim
n→∞

f(xn) = M.

Hence f(d) = M ≥ f(x) ∀x ∈ [a, b]. Similarly, ∃c 3 f(c) = m ≤ f(x) ∀x ∈ [a, b],
where m = inf{f(x) : x ∈ [a, b]}.
Problem 3.9: Complete the above proof to show that such a number c indeed exists.

Remark: Theorem 3.4 does not hold when the closed interval [a, b] is replaced by
the open interval (a, b). For example, f(x) = 1/x on (0, 1) has no maximum value.
Does it have a minimum value?

Problem 3.10: Precisely what step goes wrong in the proof of Theorem 3.4 if we try
to replace [a, b] with (a, b) for functions f that are bounded on (a, b)? For example,
consider the function f(x) = 1/x on (1, 2).

Corollary 3.4.1 (Image of a Continuous Function on a Closed Interval): If f is
continuous on [a, b] then f([a, b]) is either a closed interval or a point.

Proof: Theorem 3.4 ⇒ f achieves its minimum value f(c) and maximum value
f(d) at some points c and d in [a, b], respectively. Corollary 3.2.1 ⇒ f also achieves
every value in between f(c) and f(d). Hence f([a, b]) = [f(c), f(d)].

Problem 3.11: Determine which of the following limits exist as a finite number,
which are ∞, which are −∞, and which do not exist at all. Where possible,
compute the limit.

(a)

lim
x→2

x2 − 5x+ 6

x− 2

= lim
x→2

(x− 2)(x− 3)

x− 2
= lim

x→2
(x− 3) = −1.
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(b)

lim
x→2

x− 2

x2 − 4

= lim
x→2

x− 2

(x− 2)(x+ 2)
= lim

x→2

1

x+ 2
=

1

4
.

(c)

lim
x→2

x+ 2

x2 − 4

The limit

lim
x→2

x+ 2

(x− 2)(x+ 2)
= lim

x→2

1

x− 2
.

does not exist.

(d)

lim
x→2

x+ 2

(x− 2)(x2 − 4)

The limit

= lim
x→2

x+ 2

(x− 2)2(x+ 2)
= lim

x→2

1

(x− 2)2
=∞.

(e)

lim
x→8

x+
√
x+ 1

x−
√
x+ 1

Since the function under consideration is continuous, it may be evaluated directly by

substitution to obtain the answer 11/5.

Problem 3.12: Let f : R→ R be a continuous odd function. Prove that there exists
a number c ∈ [0, 1) such that f(c) = 1

2
f(1). Hint: Draw a picture.

Since f(x) = −f(−x) we know that f(0) = 0. If f(1) = 0 then c = 0. Otherwise either

f(1) > 1
2f(1) > 0 or f(1) < 1

2f(1) < 0. In either case, since f is continuous, the generalized

Intermediate Value Theorem tells us that there exists a c ∈ (0, 1) such that f(c) = 1
2f(1).

Problem 3.13: If f is continuous at a and f(a) > 0, show that there exists a real
number δ > 0 such that f(x) > 0 for all x ∈ (a− δ, a+ δ). Hint: Draw a picture.

Let ε = f(a) > 0. We know that there exists a δ > 0 such that

x ∈ (a− δ, a+ δ)⇒ |f(x)− f(a)| < ε⇒ −ε < f(x)− f(a)⇒ 0 < f(x).



Chapter 4

Differentiation

4.A The Derivative and Its Properties

[Muldowney 1990, pp. 69–124]
[Spivak 1994, Chapter 9]

Definition: Let a be an interior point of the domain of a function f . If

lim
x→a

f(x)− f(a)

x− a
exists, then f is said to be differentiable at a. The limit is denoted f ′(a) and is
called the derivative of f at a. If f is differentiable at every point a of its domain,
we say that f is differentiable.

Written in this way, we see that the derivative is the limit of the slope

m(x) =
f(x)− f(a)

x− a
of a secant line joining the points (a, f(a)) and (x, f(x)), where x 6= a. The limit is
taken as x gets closer to a; that is,

f ′(a) = lim
x→a

m(x).

Problem 4.1: Show that the equation of the secant line joining the points (a, f(a))
and (x, f(x)) is given by

y = f(a) +m(x)(x− a),

where m(x) is defined above. As x approaches a, we obtain the equation for the
tangent line to the graph of f(x) that goes through the point a:

y = f(a) + f ′(a)(x− a).

80
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Problem 4.2: Show that

lim
x→a

f(x) = L ⇐⇒ lim
h→0

f(a+ h) = L.

Hence, the definition of the derivative may be written equivalently as

f ′(a) = lim
x→a

f(x)− f(a)

x− a = lim
h→0

f(a+ h)− f(a)

h
.

• Let f(t) be the position of a particle on a curve at time t. The average velocity of
the particle between time t and t+ h is the ratio of the distance travelled over the
time interval h:

change in position

change in time
=
f(t+ h)− f(t)

h
(h 6= 0).

The instantaneous velocity at t is calculated by taking the limit as h→ 0:

lim
h→0

f(t+ h)− f(t)

h
= f ′(t).

• If f(x) = c, where c is a constant, then

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c
h

= 0 ∀a ∈ R.

• The derivative of the affine function f(x) = mx+ b, where m and b are constants,
(the graph of which is a straight line) has the constant value m:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

m(a+ h)−ma
h

= m.

In the case where b = 0, the function f(x) = mx is said to be linear . A function
that is neither linear nor affine is said to be nonlinear .

Remark: The derivative is the natural generalization of the slope of linear and affine
functions to nonlinear functions. In general, the value of the local (or instantaneous)
slope of a nonlinear function will depend on the point at which it is evaluated.
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• Consider the function f(x) = x2. Then

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

(a+ h)2 − a2

h

= lim
h→0

6a2 +2ha+ h2− 6a2

h
= lim

h→0
(2a+ h) = 2a.

We see here that the value of the derivative of f at the point a depends on a. Note
that

f ′(a) < 0 for a < 0,

f ′(a) = 0 for a = 0,

f ′(a) > 0 for a > 0.

It is convenient to think of the derivative as a function on its own, which in general
will depend on exactly where we evaluate it. We emphasize this fact by writing
the derivative in terms of a dummy argument such as a or x. In this case, we can
express this functional relationship as f ′(a) = 2a for all a, or with equal validity,
f ′(x) = 2x for all x.

• Let f(x) = xn, where n ∈ N. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)n − xn
h

= lim
h→0

6xn +nxn−1h+ n(n−1)
2

xn−2h2 + . . .+ hn− 6xn
h

= lim
h→0

[
nxn−1 +

n(n− 1)

2
xn−2h+ . . .+ hn−1

]

= nxn−1

(see also [Muldowney 1990, p.72, proof II]).

• For the function f(x) = x1/n where x > 0 and n ∈ N, we can use the factorization
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of y − x = (y1/n)n − (x1/n)n on p. 45 to compute the derivative:

f ′(x) = lim
y→x

f(y)− f(x)

y − x

= lim
y→x

y1/n − x1/n

y − x

= lim
y→x

y1/n − x1/n

(y1/n − x1/n)(y(n−1)/n + y(n−2)/nx1/n + . . .+ y1/nx(n−2)/n + x(n−1)/n)

=
1

lim
y→x

y(n−1)/n + lim
y→x

y(n−2)/nx1/n + . . .+ lim
y→x

x(n−1)/n

︸ ︷︷ ︸
n terms

=
1

nx(n−1)/n
=

1

n
x

1−n
n

=
1

n
x

1
n
−1.

Problem 4.3: Use the following procedure to show that the derivative of sinx is
cosx.

(a) Use the inequality sinx ≤ x ≤ tanx for 0 ≤ x < π/2 to prove that

cosx ≤ sinx

x
≤ 1 for 0 < |x| < π

2
.

(b) Prove that

lim
x→0

sinx

x
= 1.

(c) Prove that

1− cosx ≤ |x|
2

2
∀x ∈ R.

Hint: Try replacing x by 2x.
(d) Prove that

lim
x→0

1− cosx

x
= 0.

(e) Use the above results to prove that sinx is differentiable at any real number a
and find its derivative. That is, show that

lim
h→0

sin(a+ h)− sin a

h

exists and evaluate the limit.
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Q. Are all functions differentiable?

A. No, consider

f(x) =

{
0 if x < 0,
1 if x ≥ 0.

We see that

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

1− 1

x
= lim

x→0+

0

x
= 0,

but

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

0− 1

x
∃/.

So lim
x→0

f(x)− 1

x− 0
∃/. It appears, at the very least, that we must avoid jumps, as

the following theorem points out.

Theorem 4.1 (Differentiable ⇒ Continuous): If f is differentiable at a then f is
continuous at a.

Proof: For x 6= a, we may write

f(x) = f(a) +
f(x)− f(a)

x− a (x− a).

If lim
x→a

f(x)− f(a)

x− a exists, then

lim
x→a

f(x) = lim
x→a

f(a) + lim
x→a

f(x)− f(a)

x− a · lim
x→a

(x− a)

= f(a) + f ′(a) · 0
= f(a),

so f is continuous at a.

Q. Are all continuous functions differentiable?

A. No, consider f(x) = |x|:

f(x)− f(0)

x− 0
=
|x| − 0

x− 0
=
|x|
x

=
{

1 if x > 0,
−1 if x < 0.

Hence lim
x→0

f(x)− f(0)

x− 0
does not exist; f is not differentiable at 0, even though f

is continuous at 0.



4.A. THE DERIVATIVE AND ITS PROPERTIES 85

Derivative Notation

Three equivalent notations for the derivative have evolved historically. Letting
y = f(x), ∆y = f(x+ h)− f(x), and ∆x = (x+ h)− x = h, we may write

f ′(x) = lim
∆x→0

∆y

∆x
.

To help us remember this, we sometimes denote the derivative by dy/dx (Leibniz
notation).

The operator notation Df (or Dxf , which reminds us that the derivative is with
respect to x) is also occasionally used to emphasize that the derivativeDf is a function
derived from the original function, f .

Theorem 4.2 (Properties of Differentiation): If f and g are both differentiable at a,
then

(a) (f + g)′(a) = f ′(a) + g′(a),

(b) (fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(c)

(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

[g(a)]2
if g(a) 6= 0.

Proof: We are given that f ′(a) = lim
x→a

f(x)− f(a)

x− a ∃ and g′(a) = lim
x→a

g(x)− g(a)

x− a ∃.

(a)

lim
x→a

(f + g)(x)− (f + g)(a)

x− a = lim
x→a

f(x) + g(x)− f(a)− g(a)

x− a
= lim

x→a
f(x)− f(a)

x− a + lim
x→a

g(x)− g(a)

x− a
= f ′(a) + g′(a).

(b)

lim
x→a

(fg)(x)− (fg)(a)

x− a = lim
x→a

f(x)g(x)− f(a)g(a)

x− a
= lim

x→a
f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a
= lim

x→a
f(x)− f(a)

x− a lim
x→a

g(x)
︸ ︷︷ ︸

∃=g(a) by Theorem 4.1

+f(a) lim
x→a

g(x)− g(a)

x− a

= f ′(a)g(a) + f(a)g′(a).
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(c) Let h(x) =
1

g(x)
. Then

h′(a) = lim
x→a

h(x)− h(a)

x− a = lim
x→a

1
g(x)
− 1

g(a)

x− a

= lim
x→a

g(a)−g(x)
g(x)g(a)

x− a
= − 1

g2(a)
lim
x→a

g(x)− g(a)

x− a = − g
′(a)

g2(a)
.

Then from (b),

(
f

g

)′
(a) = (fh)′(a) = f ′(a)h(a) + f(a)h′(a)

=
f ′(a)

g(a)
− f(a)g′(a)

g2(a)

=
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Corollary 4.2.1: Any polynomial is differentiable on R.

Corollary 4.2.2: A rational function is differentiable at every point of its domain.

Problem 4.4: Compute

(a)
d

dx
(x cosx)

= cosx− x sinx.

(b)

lim
x→∞

x tan

(
1

x

)

Hint: let y = 1/x.

= lim
y→0+

tan y

y
= lim

y→0+

(
sin y

y

)
lim
y→0+

(
1

cos y

)
= 1 · 1 = 1.
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Problem 4.5: Show that the rule dxn/dx = nxn−1 can be extended to n ∈ Z.

For n = 0, the derivative evaluates to lim
h→0

1− 1

h
= 0. For n < 0, we have

d

dx
xn =

d

dx

1

x−n
=

0 · x−n − 1 · ddxx−n
(x−n)2

=
−(−n)x−n−1

(x−n)2
= nxn−1.

Problem 4.6: (a) If f(x) = anx
n + an−1x

n−1 + . . . + a0, find at least two different
functions g such that g′ = f .

(b) If

f(x) =
b2

x2
+
b3

x3
+ . . .+

bm
xm

,

find a function g for which g′ = f .
(c) Is there a function

g(x) = anx
n + . . .+ a0 +

b1

x
+ . . .+

bm
xm

,

such that g′(x) = 1/x?

Theorem 4.3 (Chain Rule): Suppose h = f ◦ g, i.e. h(x) = f(g(x)). Let a be an
interior point of the domain of h and define b = g(a). If f ′(b) and g′(a) both exist,
then h is differentiable at a and

h′(a) = f ′(b)g′(a).

That is, if y = f(u) and u = g(x), then

dy

dx

∣∣∣∣
a

=
dy

du

∣∣∣∣
b

du

dx

∣∣∣∣
a

.

• Consider that
d

dx
(x2 + 1)2 =

d

dx
f(g(x)), where u = g(x) = x2 + 1 and f(u) = u2.

We let h(x) = f(g(x)):

h′(x) = f ′(u)g′(x)

= 2u · 2x
= 2(x2 + 1) · 2x = 4x3 + 4x.

As a check, we could also work out this derivative directly:

d

dx
(x2 + 1)2 =

d

dx
(x4 + 2x2 + 1) = 4x3 + 4x.
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• The Chain Rule makes it easy to find

d

dx
(x3 + 1)100 = 100(x3 + 1)993x2

= 300x2(x3 + 1)99.

• Letf(u) = u
1
n ⇒ f ′(u) =

1

n
u

1
n
−1 and g(x) = xm ⇒ g′(x) = mxm−1.

Then h(x) = f(g(x)) = x
m
n ⇒ h′(x) = f ′(u)g′(x) where u = g(x). Thus

h′(x) = f ′(g(x))g′(x)

=
1

n
(xm)

1
n
−1mxm−1

=
m

n
x
m
n
−6m+6m−1.

Hence
d

dx
xq = qxq−1 for all q ∈ Q.

• Find
d

dx

1

g(x)
(cf. Theorem 4.2(c)).

Let f(x) = x−1, f ′(x) = −x−2, and h(x) =
1

g(x)
= f(g(x)). Then

h′(x) = f ′(g(x))g′(x)

= − 1

[g(x)]2
g′(x),

We may express this using an alternative notation. Letting y =
1

u
and u = g(x), we

find
dy

dx
=
dy

du

du

dx
= − 1

u2
g′(x) = − g

′(x)

g2(x)
.

•
d

dx

√
1

1 + x3
=

1

2
√

1
1+x3

[
− 1

(1 + x3)2
· 3x2

]

= −3x2(1 + x3)
1
2

2(1 + x3)2
= −3

2
x2(1 + x3)−

3
2 .

Here is an even easier way to find this derivative:

d

dx

√
1

1 + x3
=

d

dx
(1 + x3)−

1
2

= −1

2
(1 + x3)−

3
2 · 3x2.
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•
d

dx
sin(sin(x)) = cos(sin(x)) cos(x).

•
d

dx
sin(sin(sin(x))) = cos(sin(sin(x))) cos(sin(x)) cos(x).

• The derivative of cosx and tan x can be calculated as follows:

d

dx
cosx =

d

dx
sin
(π

2
− x
)

= cos
(π

2
− x
)

(−1) = − sinx,

d

dx
tanx =

d

dx

sinx

cosx
=

cosx cosx− sinx(− sinx)

cos2 x
=

1

cos2 x
= sec2 x.

To prove the Chain Rule it is not enough to argue

lim
∆x→0

∆y

∆x
= lim

∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x

because ∆u = g(x)− g(a) might be zero for values of x close to (but not equal to) a.
However, we can easily fix up this argument as follows.

Proof (of Theorem 4.3):
Let b = g(a) and define

m(u) =





f(u)− f(b)

u− b if u 6= b,

f ′(b) if u = b.

Then

f ′(b)∃ ⇒ lim
u→b

m(u) = f ′(b) = m(b)⇒ m is continuous at b

and

g′(a)∃ ⇒ g is continuous at a⇒ m ◦ g is continuous at a (Corollary 3.1.7),

⇒ lim
x→a

m(g(x)) = m(g(a)) = m(b) = f ′(b).

Note that
f(u)− f(b) = m(u)(u− b) ∀u.

Letting u = g(x), we then find that

lim
x→a

f(g(x))− f(g(a))

x− a = lim
x→a

m(g(x)) lim
x→a

g(x)− g(a)

x− a
= f ′(b)g′(a).
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Problem 4.7: Find
d

dx

(
1

cosx

)

=

(
1

cos2 x

)
sinx.

Problem 4.8: Let f be a differentiable function. Find the following derivatives

(a)
d

dx
f(f(f(x)))

= f ′(f(f(x)))f ′(f(x))f ′(x).

(b)
d

dx

[
f 3(x) + 1

f 2(x)

]

=
d

dx

[
f(x) +

1

f2(x)

]
=

[
1− 2

f3(x)

]
f ′(x).

Problem 4.9: Let

f(x) =

{
x2 cos

(
1
x

)
if x 6= 0,

0 if x = 0.

Prove that f is differentiable for all x ∈ R and find f ′(x).
Since cos(x) is differentiable at all x and 1/x is differentiable on (−∞, 0) ∪ (0,∞), the

composite function cos(1/x), and hence f , is differentiable on (−∞, 0) ∪ (0,∞). Moreover,
f is also differentiable at x = 0, with derivative 0:

lim
x→0

x2 cos
(

1
x

)
− 0

x− 0
= lim

x→0
x cos

(
1

x

)
= 0

since, given ε > 0, we can make

∣∣∣∣x cos

(
1

x

)∣∣∣∣ ≤ |x| < δ = ε

whenever |x| < δ, simply by choosing δ = ε.
Hence f is differentiable on R and

f ′(x) =

{
2x cos

(
1
x

)
+ sin

(
1
x

)
if x 6= 0,

0 if x = 0.



4.B. MAXIMA AND MINIMA 91

4.B Maxima and Minima

Definition: f has a global maximum (global minimum) at c if

f(x) ≤ f(c) (f(x) ≥ f(c))

∀x in the domain of f .

Definition: A function f has an interior local maximum (interior local minimum)
at an interior point c of its domain if for some δ > 0,

x ∈ (c− δ, c+ δ)⇒ f(x) ≤ f(c)

(f(x) ≥ f(c)).

Definition: An extremum is either a maximum or a minimum.

Remark: A global extremum is always a local extremum (but not necessarily an
interior local extremum).

Theorem 4.4 (Interior Local Extrema (Maxima/Minima)): Suppose

(i) f has an interior local extremum at c,

(ii) f ′(c) exists.

Then f ′(c) = 0.

Proof: Without loss of generality (why?) we can consider the case where f has
an interior local maximum, i.e. ∃δ > 0 3

x ∈ (c− δ, c+ δ) ⇒ f(x) ≤ f(c)

⇒ f(x)− f(c)

x− c

{
≥ 0 if x ∈ (c− δ, c),
≤ 0 if x ∈ (c, c+ δ)

⇒ f ′L(c)
.
= lim

x→c−
f(x)− f(c)

x− c ≥ 0,

f ′R(c)
.
= lim

x→c+
f(x)− f(c)

x− c ≤ 0

⇒ f ′(c) = lim
x→c

f(x)− f(c)

x− c = 0.

Remark: Theorem 4.4 establishes that the condition f ′(c) = 0 is necessary for a
differentiable function to have an interior local extremum. However, this condition
alone is not sufficient to ensure that a differentiable function has an extremum at c;
consider the behaviour of the function f(x) = x3 near the point c = 0.
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Remark: If a function is continuous on a closed interval, we know from Theorem 3.4
that it must achieve global maximum and minimum values somewhere in the inter-
val. We know from Theorem 4.4 that if these extrema occur in the interior of the
interval, the derivative of the function must either vanish there or else not exist.
However, it is possible that the global maximum or minimum occurs at one of the
endpoints of the interval; at these points, it is not at all necessary that the deriva-
tive vanish, even if it exists. It is also possible that an extremum occurs at a point
where the derivative doesn’t exist. For example, consider the fact that f(x) = |x|
has a minimum at x = 0.

Extrema can occur either at

(i) an end point,

(ii) a point where f ′ does not exist,

(iii) a point where f ′ = 0.

• Find the maxima and minima of

f(x) = 2x3 − x2 + 1 on [0, 1].

Since f is continuous on [0, 1] we know that it has a global maximum and a global
minimum on [0, 1]. Note that f ′(x) = 6x2 − 2x = 2x(3x − 1) = 0 in (0, 1) only
at the point x = 1/3. Theorem 4.4 implies that the only possible global interior
extremum (which is of course also a local interior extremum) is at the point x = 1/3.
By comparing the function values f(1/3) = 26/27 with the endpoint function values
f(0) = 1 and f(1) = 2 we see that f has an (interior) global minimum value of
26/27 at x = 1/3 and an (endpoint) global maximum value of 2 at x = 1. Hence
26/27 ≤ f(x) ≤ 2 for all x ∈ [0, 1].

• Determine the rectangle having the largest area that can be inscribed inside a right-
angle triangle of side lengths a, b, and

√
a2 + b2, if the sides of the rectangle are

constrained to be parallel to the sides of length a and b.
Let the vertices of the triangle be (0, 0), (a, 0), (0, b) and those of the rectangle be

(0, 0), (0, x), (x, y), (0, y), where 0 ≤ x ≤ a. By similar triangles we see that

y

a− x =
b

a
.

The area A of the rectangle is given by

A(x) = xy =
b

a
x(a− x) = bx− b

a
x2,

so that

A′(x) = b− 2b

a
x =

b

a
(a− 2x).
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Since A is continuous on the closed interval [0, a] we know that A must achieve
maximum and minimum values in [0, a]. Since A′(x) exists everywhere in (0, a),
the only points we need to check are x = a/2, where A′(x) = 0, and the endpoints
x = 0 and x = a; at least one of these must represent a maximum area and one
must represent a minimum area. Since A(a/2) = ab/4 and A(0) = A(a) = 0 we
see that the maximum area is ab/4 and the minimum area is 0. Thus, the largest
rectangle that can be inscribed has side lengths a/2 and b/2.

Corollary 4.4.1 (Rolle’s Theorem): Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b),

(iii) f(a) = f(b).

Then there exists a number c ∈ (a, b) for which f ′(c) = 0.

Proof:

Case I: f(x) = f(a) = f(b) ∀x ∈ [a, b] (i.e. f is constant on [a, b])
⇒ f ′(c) = 0 ∀c ∈ (a, b).

Case II: f(x0) > f(a) = f(b) for some x0 ∈ (a, b). Theorem 3.4 ⇒ f achieves its
maximum value f(c) for some c ∈ [a, b]. But

f(c) ≥ f(x0) > f(a) = f(b)⇒ c ∈ (a, b).

∴ f has an interior local maximum at c.
Theorem 4.4 ⇒ f ′(c) = 0.

Case III (Exercise): f(x0) < f(a) = f(b) for some x0 ∈ (a, b).

• f(x) = x3 − x+ 1.

f(0) = 1, f(1) = 1 ⇒ ∃c ∈ (0, 1) 3 f ′(c) = 0.
In this case we can actually find the point c. Since f ′(x) = 3x2 − 1, we can solve

the equation 0 = f ′(c) = 3c2 − 1 to deduce c =
1√
3
∈ (0, 1).

• Recall that sinnπ = 0, ∀n ∈ N. Rolle’s Theorem tells us that d
dx

sinx = cosx must
vanish (become zero) at some point x ∈ (nπ, (n+ 1)π). Indeed, we know that

cos

[(
n+

1

2

)
π

]
= cos

(
2n+ 1

2
π

)
= 0 ∀n ∈ N.
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• We can use Rolle’s Theorem to show that the equation

f(x) = x3 − 3x2 + k = 0

never has 2 distinct roots in [0, 1], no matter what value we choose for the real
number k. Suppose that there existed two numbers a and b in [0, 1], with a 6= b
and f(a) = f(b) = 0. Then Rolle’s Theorem ⇒ ∃c ∈ (a, b) ⊂ (0, 1) such that
f ′(c) = 0. But f ′(x) = 3x2 − 6x = 3x(x − 2) has no roots in (0, 1); this is a
contradiction.

Q. What happens when the condition f(a) = f(b) is dropped from Rolle’s Theorem?
Can we still deduce something similar?

A. Yes, the next corollary addresses precisely this situation.

Corollary 4.4.2 (Mean Value Theorem [MVT]): Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b).

Then there exists a number c ∈ (a, b) for which

f ′(c) =
f(b)− f(a)

b− a .

Remark: Notice that when f(a) = f(b), the Mean Value Theorem reduces to Rolle’s
Theorem.

Proof: Consider the function

ϕ(x) = f(x)−M(x− a),

where M is a constant. Notice that ϕ(a) = f(a). We choose M so that ϕ(b) = f(a)
as well:

M =
f(b)− f(a)

b− a .

Then ϕ satisfies all three conditions of Rolle’s Theorem:

(i) ϕ is continuous on [a, b],

(ii) ϕ′ exists on (a, b),

(iii) ϕ(a) = ϕ(b).

Hence ∃c ∈ (a, b) such that

0 = ϕ′(c) = f ′(c)−M = f ′(c)− f(a)− f(b)

b− a .
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Q. We know that when f(x) is constant that f ′(x) = 0. Does the converse hold?

A. No, a function may have zero slope somewhere without being constant (e.g. f(x) =
x2 at x = 0). However, if f ′(x) = 0 for all x ∈ [a, b], where a 6= b, we may then
make use of the following result.

Corollary 4.4.3 (Zero Derivative on an Interval): Suppose f ′(x) = 0 for every x in
an interval I (of nonzero length). Then f is constant on I.

Proof: Let x, y be any two elements of I, with x < y. Since f is differentiable at
each point of I, we know by Theorem 4.1 that f is continuous on I. From the MVT,
we see that

f(x)− f(y)

x− y = f ′(c) = 0

for some c ∈ (x, y) ⊂ I. Hence f(x) = f(y). Thus, f is constant on I.

Corollary 4.4.4 (Equal Derivatives): Suppose f ′(x) = g′(x) for every x in an interval
I (of nonzero length). Then f(x) = g(x) + k for all x ∈ I, where k is a constant.

Proof: Let F (x) = f(x)− g(x). Then by Corollary 4.4.3,

F ′(x) = 0⇒ F (x) = k

for some constant k.

Problem 4.10: Let f be a differentiable function on (a, b) and M be a real number
such that |f ′(x)| ≤M for all x ∈ (a, b). Let ε be a fixed positive number.

(a) Prove that

|f(x)− f(y)| ≤M |x− y| ∀x, y ∈ (a, b).

Let x and y be two numbers chosen from (a, b) with x < y (without loss of generality).
Since f is continuous on [x, y] ⊂ (a, b) and differentiable on (x, y), we can make use of the
Mean Value Theorem to obtain the desired result:∣∣∣∣

f(x)− f(y)

x− y

∣∣∣∣ =
∣∣f ′(c)

∣∣ ≤M.

(b) Find a δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε ∀x, y ∈ (a, b).

Note here that a single δ must work for all x and y in the interval (a, b). This uniform
continuity is a stronger condition than continuity at each point x ∈ (a, b), as the latter
allows δ to depend on x in addition to ε.

If M = 0, then |f(x)− f(y)| = 0 < ε for all x and y in (a, b) (any δ will work). Otherwise
choose δ = ε/M > 0:

|x− y| < δ ⇒ |f(x)− f(y)| ≤M |x− y| < Mδ = ε ∀x, y ∈ (a, b).
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4.C Monotonic Functions

Definition: A function is said to be increasing (decreasing) on an interval I if

x, y ∈ I, x ≤ y ⇒ f(x) ≤ f(y) (f(x) ≥ f(y))

and strictly increasing (strictly decreasing) if

x, y ∈ I, x < y ⇒ f(x) < f(y) (f(x) > f(y)).

Note that strictly increasing ⇒ increasing.

Definition: A function is said to be monotonic on an interval I if it is either (i)
increasing on I; or (ii) decreasing on I.

Corollary 4.4.5 (Monotonic Functions): Suppose f is differentiable on an interval I.
Then

(i) f is increasing on I ⇐⇒ f ′(x) ≥ 0 on I;

(ii) f is decreasing on I ⇐⇒ f ′(x) ≤ 0 on I.

Proof:
“⇒” Without loss of generality let f be increasing on I. Then for each x ∈ I,

f ′(x) = lim
y→x

f(y)− f(x)

y − x ≥ 0.

“⇐” Suppose f ′ ≥ 0 on I. Let x, y ∈ I with x < y. The MVT ⇒ ∃c ∈ (x, y) 3
f(y)− f(x)

y − x = f ′(c) ≥ 0

⇒ f(y)− f(x) ≥ 0.

Hence f is increasing on I.

Remark: Corollary 4.4.5 only provides sufficient, not necessary, conditions for a
function to be increasing (since it might not be differentiable).

• Consider the function f(x) = bxc, which returns the greatest integer less than or
equal to x. Note that f is increasing (on R) but f ′(x) ∃/ at integer values of x.

Q. If we replace “increasing” with “strictly increasing” in Corollary 4.4.5 (i), can we
then change “≥” to “>”?

A. No, consider the strictly increasing function f(x) = x3. We can only say f ′(x) =
3x2 ≥ 0 since f ′(0) = 0.
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Problem 4.11: Prove that if f is continuous on [a, b] and f ′(x) > 0 for all x ∈ (a, b),
then f is strictly increasing on [a, b].

Corollary 4.4.6 (Horse-Race Theorem): Suppose

(i) f and g are continuous on [a, b],

(ii) f ′ and g′ exist on (a, b),

(iii) f(a) ≥ g(a),

(iv) f ′(x) ≥ g′(x) ∀x ∈ (a, b).

Then f(x) ≥ g(x) ∀x ∈ [a, b].

Proof: Consider

φ(x) = f(x)− g(x),

φ(a) ≥ 0,

φ′(x) ≥ 0 ∀x ∈ (a, b).

Suppose ∃x ∈ (a, b] such that φ(x) < 0. But then

MVT⇒ ∃c ∈ (a, x) 3 φ′(c) =
φ(x)− φ(a)

x− a < 0,

which contradicts the fact that φ′(x) ≥ 0 on (a, b). Hence φ(x) ≥ 0 on [a, b]. That is,

f(x) ≥ g(x) ∀x ∈ [a, b].

• Consider f(x) = x and g(x) = sin x on [0, b], where b > 0. Then

(i) holds,

(ii) holds,

(iii) f(0) = g(0),

(iv) f ′(x) = 1 ≥ cosx = g′(x) ∀x ∈ (0, b).

Since we can choose b arbitrarily large, we might then be convinced from Corol-
lary 4.4.6 that x ≥ sinx for all x ≥ 0. However, since we already used this result
to compute the derivative of sinx, this does not really constitute an independent
proof of this important inequality.
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4.D First Derivative Test

We have seen that points where the derivative of a function vanishes may or may
not be extrema. How do we decide which ones are extrema and, of those, which are
maxima and which are minima? One answer is provided by the First Derivative Test.

Definition: A point where the derivative of f is zero or does not exist is called a
critical point.

Theorem 4.4 ⇒ Local interior maxima and minima occur at critical points.

Remark: Not all critical points are extrema: consider f(x) = x3 at x = 0.

Q. How do we decide which critical points c correspond to maxima, to minima, or
neither?

A. If f is differentiable near c, look at the first derivative.

Corollary 4.4.7 (First Derivative Test): Suppose f is differentiable near a critical
point c (except possibly at c, provided f is continuous at c). If there exists a δ > 0
such that

(i) f ′(x)

{
≤ 0 ∀x ∈ (c− δ, c) (f decreasing),
≥ 0 ∀x ∈ (c, c+ δ) (f increasing),

then f has a local minimum at c;

(ii) f ′(x)

{
≥ 0 ∀x ∈ (c− δ, c) (f increasing),
≤ 0 ∀x ∈ (c, c+ δ) (f decreasing),

then f has a local maximum at c;

(iii) f ′(x) > 0 on (c− δ, c) ∪ (c, c+ δ) or f ′(x) < 0 on (c− δ, c) ∪ (c, c+ δ),
then f does not have a local extremum at c.

Problem 4.12: Give examples of differentiable functions which have the behaviours
described in each of the cases above.

Definition: The derivative of f ′, that is (f ′)′, when it exists, is denoted either f ′′ or
f (2) and is called the second derivative of f . In general, we denote the n-th deriva-
tive of f , the function obtained by differentiating f with respect to its argument
n times, by f (n). The parentheses help us avoid confusion with exponent notation.
It is also convenient to define f (0) = f itself.
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Remark: Observe that f (n+1) = (f (n))′ and that if f (n+1) exists at a point a, then
by Theorem 4.1 f (n) and all lower-order derivatives must exist and be continuous
at a.

Problem 4.13: Suppose that two functions f and g are differentiable n times at the
point a. Prove Leibniz’s formula:

(fg)(n)(x) =
n∑

k=0

(
n

k

)
f (n−k)(x)g(k)(x).

4.E Second Derivative Test

In cases where the second derivative of f can be easily computed, the following test
provides simple conditions for classifying critical points.

Corollary 4.4.8 (Second Derivative Test): Suppose f is twice differentiable at a
critical point c (this implies f ′(c) = 0). If

(i) f ′′(c) > 0, then f has a local minimum at c;

(ii) f ′′(c) < 0, then f has a local maximum at c.

Proof:

(i) f ′′(c) > 0⇒ lim
x→c

f ′(x)− f ′(c)
x− c > 0⇒ lim

x→c
f ′(x)

x− c > 0

⇒ ∃δ > 0 3 f ′(x)

{
< 0 ∀x ∈ (c− δ, c),
> 0 ∀x ∈ (c, c+ δ)

⇒ f has a local minimum at c by the First Derivative Test.

(ii) Exercise.

Remark: If f ′′(c) = 0, then anything is possible.

• f(x) = x3,
f ′(x) = 3x2 = 0 at x = 0,
f ′′(x) = 6x = 0 at x = 0,
f has neither a maximum nor minimum at x = 0.

• f(x) = x4,
f ′(x) = 4x3 = 0 at x = 0,
f ′′(x) = 12x2 = 0 at x = 0,
f has a minimum at x = 0.
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• f(x) = −x4 has a maximum at x = 0.

Remark: The First Derivative Test can sometimes be helpful in cases where the
Second Derivative Test fails, e.g. in showing that f(x) = x4 has a minimum at
x = 0.

Remark: The Second Derivative Test establishes only the local behaviour of a func-
tion, whereas the First Derivative Test can sometimes be used to establish that an
extremum is global:

f(x) = x2, f ′(x) = 2x

{
< 0 ∀x < 0,
> 0 ∀x > 0.

Since f is decreasing for x < 0 and increasing for x > 0, we see that f has a global
minimum at x = 0.

Corollary 4.4.9 (Cauchy Mean Value Theorem): Suppose

(i) f and g are continuous on [a, b],

(ii) f ′ and g′ exist on (a, b).

Then there exists a number c ∈ (a, b) for which

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

Proof: Consider

φ(x) = [f(x)− f(a)][g(b)− g(a)]− [f(b)− f(a)][g(x)− g(a)].

Note that φ is continuous on [a, b] and differentiable on (a, b). Since φ(a) = φ(b) = 0,
we know from Rolle’s Theorem that φ′(c) = 0 for some c ∈ (a, b); from this we
immediately deduce the desired result.

4.F L’Hôpital’s Rule

Corollary 4.4.10 (L’Hôpital’s Rule for 0
0
): Suppose f and g are differentiable on

(a, b), g′(x) 6= 0 for all x ∈ (a, b), lim
x→b−

f(x) = 0, and lim
x→b−

g(x) = 0. Then

lim
x→b−

f ′(x)

g′(x)
= L⇒ lim

x→b−
f(x)

g(x)
= L.

This result also holds if
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(i) lim
x→b−

is replaced by lim
x→a+

;

(ii) lim
x→b−

is replaced by lim
x→∞

and b is replaced by ∞;

(iii) lim
x→b−

is replaced by lim
x→−∞

and a is replaced by −∞.

Proof: Theorem 4.1 ⇒ f and g are continuous on (a, b). Consider

F (x) =
{
f(x) a < x < b,
0 x = b.

G(x) =
{
g(x) a < x < b,
0 x = b.

Since limx→b− f(x) = 0, and limx→b− g(x) = 0, we know for any x ∈ (a, b) that F and
G are continuous on [x, b] and differentiable on (x, b). We can also be sure that G
is nonzero on (a, b): if G(x) = 0 = G(b) for some x ∈ (a, b), Rolle’s Theorem would
imply that G′, and hence g′, vanishes somewhere in (x, b).

Given ε > 0, we know there exists a number δ with 0 < δ < b− a such that

x ∈ (b− δ, b)⇒
∣∣∣∣
f ′(x)

g′(x)
− L

∣∣∣∣ < ε.

If x ∈ (b− δ, b), Corollary 4.4.9 then implies that there exists a point c ∈ (x, b) such
that

f(x)

g(x)
=
F (x)

G(x)
=
F (x)− F (b)

G(x)−G(b)
=
F ′(c)

G′(c)
=
f ′(c)

g′(c)
,

so that ∣∣∣∣
f(x)

g(x)
− L

∣∣∣∣ =

∣∣∣∣
f ′(c)

g′(c)
− L

∣∣∣∣ < ε.

That is, lim
x→b−

f(x)

g(x)
= L.

• Using L’Hôpital’s Rule, we find

lim
x→0

tanx

x
= 1⇐ lim

x→0

sec2 x

1
= 1,

•
lim
x→1

xn − 1

x− 1
= n⇐ lim

x→1

nxn−1

1
= n.

Remark: L’Hôpital’s Rule should only be used where it applies. For example, it
should not be used for when the limit does not have the 0

0
form. For example,

0 = lim
x→1

x− 1

x
6= lim

x→1

1

1
= 1.
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Definition: If for everyM > 0 there exists a δ > 0 such that x ∈ (b− δ, b)⇒ f(x) > M ,
we say lim

x→b−
f(x) =∞.

Corollary 4.4.11 (L’Hôpital’s Rule for ∞∞): Suppose f and g are differentiable on
(a, b), g′(x) 6= 0 for all x ∈ (a, b), and lim

x→b−
f(x) =∞, and lim

x→b−
g(x) =∞. Then

lim
x→b−

f ′(x)

g′(x)
= L⇒ lim

x→b−
f(x)

g(x)
= L.

This result also holds if

(i) lim
x→b−

is replaced by lim
x→a+

;

(ii) lim
x→b−

is replaced by lim
x→∞

and b is replaced by ∞;

(iii) lim
x→b−

is replaced by lim
x→−∞

and a is replaced by −∞.

Proof: We only need to make minor modifications to the proof used to establish
Corollary 4.4.10. Choose δ such that f(x) > 0 and g(x) > 0 on (b− δ, b) and redefine

F (x) =





1
f(x)

b− δ < x < b,

0 x = b,

G(x) =

{ 1
g(x)

b− δ < x < b,

0 x = b.

Problem 4.14: Determine which of the following limits exist as a finite number,
which are ∞, which are −∞, and which do not exist at all. Where possible,
compute the limit.

(a)

lim
x→1

sin(x99)− sin(1)

x− 1

One could use L’Hôpital’s Rule here, but it is even simpler to note that this is just the
definition of the derivative of the function f(x) = sin(x99) at x = 1. Since

f ′(x) = cos(x99)99x98,

the limit reduces to f ′(1) = 99 cos(1).

(b)

lim
x→π/4

tanx− 1

x− π/4
Letting f(x) = tanx, we see that this is just the definition of f ′(π/4) = sec2(π/4) = 2.
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(c)

lim
x→0

tanx− x
x3

= lim
x→0

sec2 x− 1

3x2
= lim

x→0

2 sec3 x sinx

6x
= lim

x→0

−6 sec2 x sin2 x+ 2 sec2 x cosx

6
=

1

3
,

on applying the 0/0 form of L’Hôpital’s Rule three times. Alternatively, after the second

application of L’Hôpital’s Rule, one can use the fact that lim
x→0

sinx/x = 1.

4.G Taylor’s Theorem

Corollary 4.4.12 (Taylor’s Theorem): Let n ∈ N. Suppose

(i) f (n−1) exists and is continuous on [a, b],

(ii) f (n) exists on (a, b).

Then there exists a number c ∈ (a, b) such that

f(b) =
n−1∑

k=0

(b− a)k

k!
f (k)(a) +

(b− a)n

n!
f (n)(c)

︸ ︷︷ ︸
Rn

.

That is,

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(a) + . . .+

(b− a)n−1

(n− 1)!
f (n−1)(a) +Rn.

Remark: This is known as the Taylor expansion of f at b about a. The term Rn is
known as the remainder after n terms.

• For n = 1:

f(b) =
(b− a)0

0!
f(a) +

(b− a)1

1!
f ′(c)

i.e. f(b) = f(a) + (b− a)f ′(c) (MVT).

• For n = 2:

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(c).
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Remark: It is interesting to notice that for functions with continuous second deriva-
tives, Theorem 4.4.12 implies the Second Derivative Test. If f ′(a) = 0 and f ′′(a) >
0, then ∃δ > 0 3 f ′′(c) > 0 ∀c ∈ (a− δ, a+ δ). Hence

|b− a| < δ ⇒ f(b) = f(a) +
(b− a)2

2
f ′′(c) ≥ f(a),

i.e. f has a local minimum at a. Likewise, if f ′(a) = 0 and f ′′(a) < 0, f has a
maximum at a.

Proof (of Taylor’s Theorem): We will apply Rolle’s Theorem to

ϕ(x) = f(x) +
n−1∑

k=1

(b− x)k

k!
f (k)(x) +M(b− x)n,

where M is a constant. Noting that ϕ(b) = f(b), we choose M so that ϕ(a) = f(b)
also:

f(b) = ϕ(a) = f(a) +
n−1∑

k=1

(b− a)k

k!
f (k)(a) +M(b− a)n. (4.1)

That is, we choose

M =
1

(b− a)n

[
f(b)− f(a)−

n−1∑

k=1

(b− a)k

k!
f (k)(a)

]
.

Note that ϕ(x) is continuous on [a, b]. Using the Chain Rule, we find that

ϕ′(x) = f ′(x) +
n−1∑

k=1

[
−(b− x)k−1

(k − 1)!
f (k)(x) +

(b− x)k

k!
f (k+1)(x)

]
− n(b− x)n−1M

= f ′(x)−
n−1∑

k= 1

(b− x)k−1

(k − 1)!
f (k)(x) +

n∑

k=2

(b− x)k−1

(k − 1)!
f (k)(x)− n(b− x)n−1M

= f ′(x)− f ′(x) +
(b− x)n−1

(n− 1)!
f (n)(x)− n(b− x)n−1M

exists ∀x ∈ (a, b). We then apply Rolle’s Theorem to deduce that there exists a
number c ∈ (a, b) such that

0 = ϕ′(c) =
(b− c)n−1

(n− 1)!
f (n)(c)− n(b− c)n−1M

⇒ M =
1

n!
f (n)(c).

Upon substituting this result into Eq. (4.1), we obtain Taylor’s Theorem:

f(b) = f(a) +
n−1∑

k=1

(b− a)k

k!
f (k)(a) +

(b− a)n

n!
f (n)(c).
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Remark: If
∣∣f (n)(c)

∣∣ ≤ M for all c between b and a then |Rn| ≤ M |b− a|n /n! on
this same interval.

• Compute the first three digits of sin 1 after the decimal point and determine its
value correctly rounded to two digits.

Step 1: Let f(x) = sinx. Choose a value a reasonably close to 1 at which the value
of f and its derivatives are known, such as a = 0.

Step 2: Write down the Taylor expansion to enough terms so that |Rn| is less than
or equal to the allowed error. Set b = x.

sinx = sin 0 + (x− 0) cos 0− (x− 0)2

2!
sin 0− (x− 0)3

3!
cos 0 +

(x− 0)4

4!
sin 0

+
(x− 0)5

5!
cos 0− (x− 0)6

6!
sin 0 +R7,

= x− x3

3!
+
x5

5!
+R7,

where R7 = − 1
7!

(x − 0)7 cos c for some c ∈ (0, x). For x = 1 we know that
|cos c| < 1, so

|R7| <
1

7!
=

1

5040
< 0.0002

and

sin 1 ≈ 1− 1

6
+

1

120
=

101

120
= 0.8416.

Hence sin 1 ≈ 0.8416± 0.0002, so the first three digits of sin 1 are 0.841. If we round
this result to two digits after the decimal place, we obtain sin 1 ≈ 0.84.

Definition: If lim
n→∞

Rn = 0 in the Taylor expansion of f at b about a then

f(b) =
∞∑

k=0

(b− a)k

k!
f (k)(a)

This is known as the Taylor Series of f at b about a.

Definition: The special case of a Taylor Series about a = 0 is sometimes known as
a Maclaurin Series .
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Problem 4.15: Let f(x) = 3
√

1 + x.

(a) Determine the first three terms of the Taylor expansion of f(x) about the
point a = 0,

f(x) =
2∑

k=0

(x− a)k

k!
f (k)(a) +R3.

Recall that the remainder term R3 is given by

R3 =
(x− a)3

3!
f (3)(c).

We find

f (1)(x) =

(
1

3

)
(1 + x)−2/3,

f (2)(x) =

(
1

3

)(
−2

3

)
(1 + x)−5/3,

and

f (3)(c) =

(
1

3

)(
−2

3

)(
−5

3

)
(1 + c)−8/3.

Hence

f(x) = 1 +

(
1

3

)
x

1!
−
(

2

9

)
x2

2!
+R3 = 1 +

x

3
− x2

9
+R3.

(b) Use part (a) to find a lower bound for 3

√
3
2

and show that your result approx-

imates the exact value to within 1%. (You may leave your answer as a fraction.)

3

√
3

2
= f

(
1

2

)
= 1 +

(
1

3

)
(1

2)

1!
−
(

2

9

)
(1

2)2

2!
+R3 = 1 +

1

6
− 1

36
+R3 =

41

36
+R3,

where

R3 =
(1

2)3

3!
f (3)(c).

for some number c ∈ (0, 1
2). The third derivative of f at c can be easily bounded:

0 ≤ f (3)(c) ≤
(

1

3

)(
2

3

)(
5

3

)
=

10

27
,

so

0 ≤ R3 ≤
(1

2)3

3!

(
10

27

)
=

5

24× 27
<

1

24× 5
<

1

100
<

1

100
3

√
3

2
.

Thus 3

√
3
2 lies in the interval [

41

36
,
41

36
+

1

100

]
.
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Problem 4.16: Find the Taylor series for f(x) = sin2 x about x = 0. Hint: after
computing the first derivative, simplify the result before proceeding to take further
derivatives.

4.H Convex and Concave Functions

Definition: A function f is convex (sometimes called concave up) on an interval I
if the secant line segment joining (a, f(a)) and (b, f(b)) lies on or above the graph
of f for all a, b ∈ I.

Definition: A function f is concave (sometimes called concave down) on an interval
I if −f is convex on I.

Definition: An inflection point is a point on the graph of a function f at which the
behaviour of f changes from convex to concave. For example, since f(x) = x3 is
concave on (−∞, 0] and convex on [0,∞), the point (0, 0) is an inflection point.

Remark: Since the equation of the line through (a, f(a)) and (b, f(b)) is

y = f(a) +
f(b)− f(a)

b− a (x− a),

the definition of convex says

f(x) ≤ f(a) +
f(b)− f(a)

b− a (x− a) ∀x ∈ [a, b], ∀a 6= b ∈ I. (4.2)

This condition may be rewritten by re-expressing the linear interpolation of f
between a and b on the right-hand side of Eq. (4.2):

f(x) ≤
(
b− x
b− a

)
f(a) +

(
x− a
b− a

)
f(b) ∀x ∈ [a, b], ∀a 6= b ∈ I (4.3)

or as

f(x) ≤ f(b) +
f(b)− f(a)

b− a (x− b) ∀x ∈ [a, b], ∀a 6= b ∈ I. (4.4)

It is sometimes convenient to introduce the parameter t =
b− x
b− a , in terms of

which we may express x = b− (b− a)t and

x− a
b− a =

(b− a)− (b− a)t

b− a = 1− t.
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This allow us to restate Eq. (4.3) in parametric form:

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b) ∀t ∈ [0, 1], ∀a, b ∈ I. (4.5)

The convexity condition may also be expressed directly in terms of the slope of a
secant:

f(x)− f(a)

x− a ≤ f(b)− f(a)

b− a ≤ f(b)− f(x)

b− x ∀x ∈ (a, b), ∀a 6= b ∈ I. (4.6)

The left-hand inequality follows directly from Eq. (4.2) and the right-hand inequality
follows from Eq. (4.4).

Theorem 4.5 (First Convexity Criterion): Suppose f is differentiable on an interval
I. Then

(i) f is convex ⇐⇒ f ′ is increasing on I;

(ii) f is concave ⇐⇒ f ′ is decreasing on I.

Proof: Without loss of generality we only need to consider the case where f is
convex.

“⇒” Suppose f is convex. Let a, b ∈ I, with a < b, and define

m(x) =
f(x)− f(a)

x− a (x 6= a), M(x) =
f(b)− f(x)

b− x (x 6= b).

From Eq. (4.6) we know that

m(x) ≤ m(b) = M(a) ≤M(x)

whenever a < x < b. Hence

f ′(a) = lim
x→a

m(x) = lim
x→a+

m(x) ≤ m(b) = M(a) ≤ lim
x→b−

M(x) = lim
x→b

M(x) = f ′(b).

Thus f ′ is increasing on I.

“⇐” Suppose f ′ is increasing on I. Let a, b ∈ I, with a < b and x ∈ (a, b).
By the MVT,

f(x)− f(a)

x− a = f ′(c1),
f(b)− f(x)

b− x = f ′(c2)

for some c1 ∈ (a, x) and c2 ∈ (x, b). Since f ′ is increasing and c1 < c2, we
know that f ′(c1) ≤ f ′(c2). Hence

f(x)− f(a)

x− a ≤ f(b)− f(x)

b− x
⇒ f(x)

[
1

x− a +
1

b− x

]
≤ f(b)

b− x +
f(a)

x− a =
f(b)(x− a) + f(a)(b− x)

(b− x)(x− a)
,

which reduces to Eq. (4.3), so f is convex.

Corollary 4.5.1 (Second Convexity Criterion): Suppose f ′′ ∃ on an interval I. Then
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(i) f is convex on I ⇐⇒ f ′′(x) ≥ 0 ∀x ∈ I;

(ii) f is concave on I ⇐⇒ f ′′(x) ≤ 0 ∀x ∈ I.

Proof: Apply Corollary 4.4.5 to f ′.

Corollary 4.5.2 (Tangent to a Convex Function): If f is convex and differentiable
on an interval I, the graph of f lies above the tangent line to the graph of f at
every point of I.

Proof: Let a ∈ I. The equation of the tangent line to the graph of f at the
point (a, f(a)) is y = f(a) + f ′(a)(x − a). Given x ∈ I, the MVT implies that
f(x) − f(a) = f ′(c)(x − a), for some c between a and x. Since f is convex on I, we
also know, from Theorem 4.5, that f ′ is increasing on I:

x < a⇒ c < a⇒ f ′(c) ≤ f ′(a),

x > a⇒ c > a⇒ f ′(c) ≥ f ′(a).

In either case f(x)− f(a) = f ′(c)(x− a) ≥ f ′(a)(x− a). Hence

f(x) ≥ f(a) + f ′(a)(x− a) ∀x ∈ I.

Remark: For a function f with a continuous second derivative, Corollary 4.5.1
and 4.5.2 ⇒ Second Derivative Test: f ′′(a) > 0 and f ′′ continuous ⇒ f ′′ > 0
in (a − δ, a + δ) for some δ > 0; this implies that f is locally convex . Given
f ′(a) = 0, we deduce f(x) ≥ f(a) for all x ∈ (a− δ, a+ δ).

Corollary 4.5.3 (Global Second Derivative Test): Suppose f is twice differentiable
on I and f ′(c) = 0 at some c ∈ I. If

(i) f ′′(x) ≥ 0 ∀x ∈ I, then f has a global minimum at c;

(ii) f ′′(x) ≤ 0 ∀x ∈ I, then f has a global maximum at c.

Proof: These results follow from Corollaries 4.5.1 and 4.5.2, upon noting that the
tangent line to the graph of f at c is the line y = f(c).

• Consider f(x) =
1

1 + x2
on R.

Observe that f(0) = 1 and f(x) > 0 for all x ∈ R and lim
x→±∞

f(x) = 0. Note

that f is even: f(−x) = f(x). Also, 1 + x2 ≥ 1 ⇒ f(x) ≤ 1 = f(0), so f has a
maximum at x = 0. Alternatively, we can use either the First Derivative Test or
the Second Derivative Test to establish this. We find

f ′(x) = − 2x

(1 + x2)2
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and,

f ′′(x) =
−2

(1 + x2)2
+

2(2x)2x

(1 + x2)3
=
−2− 2x2 + 8x2

(1 + x2)3
=

2(3x2 − 1)

(1 + x2)3
.

First Derivative Test:

{
f ′(x) > 0 on (−∞, 0)⇒ f is increasing on (−∞, 0),
f ′(x) < 0 on (0,∞)⇒ f is decreasing on (0,∞)

⇒ f has a maximum at 0.

Second Derivative Test: f ′(0) = 0, f ′′(0) = −2 < 0 ⇒ f has a maximum at 0.

Convexity:





f ′′(x) ≥ 0 for |x| ≥ 1√
3

, i.e. f is convex on

(
−∞,− 1√

3

]
∪
[

1√
3
,∞
)
,

f ′′(x) ≤ 0 for |x| ≤ 1√
3

, i.e. f is concave on

[
− 1√

3
,

1√
3

]
,

f ′′(x) = 0 at ± 1√
3

; these correspond to inflection points.

Problem 4.17: Consider the function f(x) = (x+ 1)x2/3 on [−1, 1].

(a) Find f ′(x).
On rewriting f(x) = x5/3 + x2/3, we find

f ′(x) =
5

3
x2/3 +

2

3
x−1/3 =

x−1/3

3
(5x+ 2) (x 6= 0).

(b) Determine on which intervals f is increasing and on which intervals f is de-
creasing.

Since

f ′(x)





> 0, −1 ≤ x < −2/5,
= 0, x = −2/5,
< 0, −2/5 < x < 0,
∃/ x = 0,
> 0, 0 < x ≤ 1,

we know that f is increasing on [−1,−2/5] and [0, 1]. It is decreasing on [−2/5, 0].

(c) Does f have any interior local extrema on [−1, 1]? If so, where do these occur?
Which are maxima and which are minima?

Note that f has two critical points: x = −2/5 and x = 0. By the First Derivative Test,

f has a local maximum at x = −2/5 and a local minimum at x = 0.

(d) What are the global minimum and maximum values of f and at what points
do these occur?

On comparing the endpoint function values to the function values at the critical points,

we conclude that f achieves its global minimum value of 0 at x = −1 and at x = 0. It has

a global maximum value of 2 at x = 1.
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(e) Determine on which intervals f is convex and on which intervals f is concave.
Since f ′′(x) = 10

9 x
−1/3 − 2

9x
−4/3 = 2

9x
−4/3(5x− 1), we see that

f ′′(x)





< 0, −1 ≤ x < 0,
∃/, x = 0,
< 0, 0 < x < 1/5,
= 0, x = 1/5,
> 0, 1/5 < x ≤ 1.

Thus, f is concave on [−1, 0] and [0, 1/5] and convex on [1/5, 1]. Note that f is not concave

on the interval [−1, 1/5].

(f) Does f have any inflection points? If so, where?
Yes: f has an inflection point at x = 1/5.

(g) Sketch a graph of f using the above information.

0

1

2f(x)

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
x

4.I Inverse Functions and Their Derivatives

[Spivak 1994, p. 227]
[Muldowney 1990, p. 103–111]
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This section addresses the question: given a function f , when is it possible to find
a function g that undoes the effect of f , so that

y = f(x) ⇐⇒ x = g(y)?

Recall that a function is a collection of pairs of numbers (x, y) such that if (x, y1) and
(x, y2) are in the collection, then y1 = y2.

Definition: A function f : A→ B is one-to-one on its domain A if, whenever (x1, y)
and (x2, y) are in the collection, then x1 = x2. That is,

x1 = x2 ⇐⇒ f(x1) = f(x2).

We say that such a function is 1–1 or invertible.

This can be restated using the horizontal line test : a set of ordered pairs (x, y) is
a one-to-one function if every horizontal and every vertical line intersects their graph
at most once.

Remark: Equivalently, a 1–1 function f satisfies

x1 6= x2 ⇐⇒ f(x1) 6= f(x2).

• f(x) = x and f(x) = x3 are 1–1 functions.

• f(x) = x2 and f(x) = sinx are not 1–1 functions.

Remark: Sometimes a noninvertible function can be made invertible by restricting
its domain.

• f = sinx restricted to the domain [−π
2
, π

2
] is 1–1.

Remark: If f : A→ B is 1–1 then the collection of pairs of numbers (y, x) such that
(x, y) belong to f is also a function.

Definition: The function defined by the pairs {(y, x) : (x, y) ∈ f} is the inverse
function f−1 : B → A of f .

Problem 4.18: Show that the inverse of a 1–1 function is itself an invertible function;
that is, it satisfies both the horizontal and vertical line tests.
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• The inverse of the function sinx restricted to the domain [−π
2
, π

2
] is denoted arcsinx

or sin−1 x; it is itself a 1–1 function on [−1, 1], yielding values in the range [−π
2
, π

2
].

Remark: Do not confuse the notation sin−1 x with 1
sinx

; they are not the same func-
tion! Because of this rather unfortunate notational ambiguity, we will use the
short-hand notation fn(x) to denote (f(x))n only when n ≥ 0; in particular, we
reserve the notation f−1(x) for the inverse of f .

Problem 4.19: Suppose that f and g are inverse functions of each other. Show that
g(f(x)) = x for all x in the domain of f and f(g(y)) = y for all y in the range of f .

Theorem 4.6 (Continuous Invertible Functions): Suppose f is continuous on I.
Then f is one-to-one on I ⇐⇒ f is strictly monotonic on I.

Proof:

“⇒” Let f be a continuous one-to-one function. If f were not strictly
monotonic, we could find points a, x, b ∈ I with a < x < b such that

f(a) < f(x) and f(x) > f(b)

or

f(a) > f(x) and f(x) < f(b).

Since f is one-to-one on I, we know that f(a) 6= f(b). Consider the first
case. If f(a) < f(b) < f(x), IVT ⇒ there exists c ∈ (a, x) such that
f(c) = f(b). If f(b) < f(a) < f(x), IVT ⇒ there exists c ∈ (x, b) such
that f(c) = f(a). These statements contradict the fact that f is one-to-
one on I. Upon reversing these inequalities, we obtain a contradiction for
the second case also.

“⇐” Without loss of generality, suppose f is strictly increasing on I.
Consider any points a, b ∈ I. Since a < b ⇒ f(a) < f(b) and a > b ⇒
f(a) > f(b), we see that f(a) = f(b)⇒ a = b.

Problem 4.20: Prove that if f is continuous on [a, b] and f ′(x) > 0 for all x ∈ (a, b),
then f is 1–1 on [a, b].
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Corollary 4.6.1 (Continuity of Inverse Functions): Suppose f is continuous and
one-to-one on an interval I. Then its inverse function f−1 is continuous on f(I) =
{f(x) : x ∈ I}.

Proof: Theorem 4.6 ⇒ f is strictly monotonic on I.

It is sufficient to consider only the case of a strictly increasing function:

x1 < x2 ⇐⇒ f(x1) < f(x2).

Denoting y1 = f(x1) and y2 = f(x2) we can rewrite this as

f−1(y1) < f−1(y2) ⇐⇒ y1 < y2.

Hence f−1 is also increasing. Note that this means that we can apply f−1 to both
sides of an inequality.

Let a be an interior point of I. Given ε > 0 small enough so that [a− ε, a+ ε] ⊂ I,
let δ = min{f(a) − f(a − ε), f(a + ε) − f(a)} > 0. The IVT implies that the
image of the interval [a− ε, a+ ε] under the continuous function f is also an interval
(cf. Corollary 3.4.1), so every point y ∈ [f(a − ε), f(a + ε)] is in the domain of f−1.
Hence

|y − f(a)| < δ ⇒ f(a− ε) ≤ f(a)− δ < y < f(a) + δ ≤ f(a+ ε)

⇒ a− ε < f−1(y) < a+ ε

⇒ f−1(f(a))− ε < f−1(y) < f−1(f(a)) + ε

⇒
∣∣f−1(y)− f−1(f(a))

∣∣ < ε.

Thus, f−1 is continuous at f(a).

If a is an endpoint of I, a one-sided version of this argument shows that f−1 has
the appropriate one-sided continuity.

Corollary 4.6.2 (Differentiability of Inverse Functions): Suppose f is continuous
and one-to-one on an interval I and differentiable at a ∈ I. Let b = f(a) and
denote the inverse function of f on I by g. If

(i) f ′(a) = 0, then g is not differentiable at b;

(ii) f ′(a) 6= 0, then g is differentiable at b and g′(b) =
1

f ′(a)
.

Proof:
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(i) If g were differentiable at b then g(f(x)) = x ⇒ g′(f(a))f ′(a) = 1 ⇒ 0 = 1, a
contradiction.

(ii) For x 6= a, let y = f(x) and consider

g(y)− g(b)

y − b =
x− a

f(x)− f(a)
,

where b = f(a) and a = g(b).

Corollary 4.6.1 and Corollary 3.1.6⇒ there corresponds to each sequence {yn} → b
a sequence {xn} → a, where xn = g(yn). Theorem 3.1 then tells us that

lim
y→b

g(y)− g(b)

y − b = lim
x→a

x− a
f(x)− f(a)

=
1

f ′(a)
;

that is,

g′(b) =
1

f ′(a)
=

1

f ′(g(b))
.

• The inverse of the function f(x) = x3 is f−1(y) = y1/3 since y = x3 ⇒ x = y
1
3 .

Notice that f ′(x) = 3x2 6= 0 for x 6= 0 (i.e. y 6= 0). We can then verify that

d

dy
f−1(y) =

1

3
y−

2
3 =

1

3y
2
3

=
1

3[f−1(y)]2
=

1

f ′(f−1(y))
.

• What is the derivative of y = arctanx (or y = tan−1 x, the inverse function of
x = tan y?

Corollary 4.6.2 ⇒ dy

dx
=

1
dx
dy

where x = tan y and
dx

dy
=

1

cos2 y
. That is,

dy

dx
=

1
1

cos2 y

= cos2 y.

Normally, we will want to re-express the derivative in terms of x. Recalling that
tan2 y + 1 = 1

cos2 y
and x = tan y, we see that

dy

dx
=

1

1 + tan2 y
=

1

1 + x2
.

∴
d

dx
arctanx =

1

1 + x2
on (−∞,∞).
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Remark: Although f(x) = tan x does not satisfy the horizontal line test on R, it does
if we restrict tanx to the domain (−π

2
, π

2
). We call tanx on (−π

2
, π

2
) the principal

branch of tanx, which is sometimes denoted Tanx. Its inverse, which is sometimes
written Arctanx or Tan−1 x, maps R to the interval (−π

2
, π

2
).

Problem 4.21: Compute π to 1 digit accuracy by using the fact that π = 4 Arctan 1
and considering the Taylor expansion for Arctanx about a = 0.

Remark: To go to 2 or more digits, you will probably want to write a small program
to sum up the series you get. This is not a very efficient way of computing π!

• Consider f(x) =
√

1− x2, which is 1–1 on [0, 1].

Note that f ′(x) = − x√
1−x2 exists on [0, 1).

Now y =
√

1− x2 ⇒ x =
√

1− y2 ⇒ x = f−1(y) = f(y).
In this case f and f−1 are identical functions of their respective arguments!

d

dy
f−1(y) =

1

f ′(x)

= −
√

1− x2

x

= −
√

1− [f−1(y)]2

f−1(y)

= −
√

1− [f(y)]2

f(y)

= −
√

1− (1− y2)√
1− y2

= − y√
1− y2

on [0, 1).

• y = sinx is 1–1 on
[
−π

2
,
π

2

]
.

dy

dx
= cosx 6= 0 on (−π

2
, π

2
).

The inverse function (as a function of y) is

x = arcsin y (or x = sin−1 y),

with derivative
dx

dy
=

1
dy
dx

=
1

cosx
.
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We can express cos x as a function of y:

cosx =
√

1− sin2 x

=
√

1− y2,

noting that cosx > 0 on (−π
2
, π

2
), to find

d

dy
arcsin y =

1√
1− y2

on (−1, 1).

That is,

d

dx
arcsinx =

1√
1− x2

on (−1, 1).

• y = cosx is 1–1 on [0, π].

dy

dx
= − sinx 6= 0 on (0, π).

The inverse function x = arccos y (or x = cos−1 y) has derivative

dx

dy
=

1
dy
dx

=
1

− sinx
,

which we can express as a function of y, noting that sinx > 0 on (0, π),

sinx =
√

1− cos2 x =
√

1− y2.

∴
d

dy
arccos y = − 1√

1− y2
,

i.e.
d

dx
arccosx = − 1√

1− x2
on (−1, 1).

It is not surprising that d
dx

arccosx = − d
dx

arcsinx since arccosx = π
2
− arcsinx,

as can readily be seen by taking the cosine of both sides and using cos y = sin(π
2
− y).

• Prove that cos−1 x+ sin−1 x = π
2

for all x ∈ [−1, 1]. Let

f(x) = cos−1 x+ sin−1 x

f ′(x) =
−1√

1− x2
+

1√
1− x2

= 0

⇒ f(x) = c, a constant.

Set x = 0 to find c:
c = f(0) = cos−1 0 =

π

2
.

∴ f(x) =
π

2
for all x ∈ [−1, 1].
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Problem 4.22: Let f(x) = sin−1(x2 − 1). Find

(a) the domain of f ;

The inverse function y = sin−1 x has domain [−1, 1], and x2 − 1 ∈ [−1, 1] implies

x2 ∈ [0, 2]. Hence, the domain of f is [−
√

2,
√

2].

(b) f ′(x);

Letting y = sin−1(x2 − 1), we first find the derivative for x > 0:

x2 − 1 = sin y

⇒ x =
√

sin y + 1

⇒ dx

dy
=

cos y

2
√

sin y + 1

=

√
1− (x2 − 1)2

2
√
x2

=

√
2x2 − x4

2x

⇒ dy

dx
=

2x√
2x2 − x4

.

Since the derivative of an even function is odd (and vice-versa) we see that the same
result holds for x < 0 as well.

Alternatively, one could use the formula for the derivative of sin−1 x together with the

Chain Rule.

(c) the domain of f ′.

The domain of f ′ = dy/dx is the set of x such that 2x2 − x4 > 0:

2x2 > x4 ⇒ 2 > x2 if x 6= 0.

∴ domain of f ′ is
{
x : 0 < |x| <

√
2
}

=
(
−
√

2, 0
)
∪
(
0,
√

2
)
.

Problem 4.23: Suppose that there exists a positive differentiable function y = f(x)
on R such that f ′(x) = f(x) for all x ∈ R.

(a) Prove that f is one-to-one.
As we have previously seen from the Mean Value Theorem, f ′(x) > 0 implies that f is

strictly increasing. Hence, f is one-to-one.

(b) Prove that the inverse function g given by x = g(y) is differentiable.
This follows from Corollary 4.6.2 since f ′(x) > 0 for all x ∈ R.

(c) Compute g′(y). As usual, express your answer as a function of the argument y.

g′(y) =
1

f ′(x)
=

1

f(x)
=

1

y
.

This is an example of a function that differentiates to 1/y, as we sought earlier. In Math

118, we will establish the existence of g(y), which we will come to know as the logarithmic

function log(y) (we have already seen that g cannot be written as a finite sum of powers

of y).
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4.J Implicit Differentiation

Suppose that a variable y is defined implicitly in terms of x and we wish to know dy/dx.
For example, given the implicit equation

(4.7)y3 + 3y2 + 3y + 1 = x5 + x,

we could solve for y to find
(y + 1)3 = x5 + x

⇒ y + 1 = (x5 + x)
1
3

⇒ dy

dx
=

1

3
(x5 + x)−

2
3 (5x4 + 1). (4.8)

But what happens if you can’t (or don’t want to) solve for y? You might try first
to solve for x in terms of y and then find the derivative dx/dy of the inverse function.
But what if this is also difficult?

It is often easier in these cases to differentiate both sides of Eq. (4.7) with respect
to x, noting that y = y(x):

d

dx

[
y3(x) + 3y2(x) + 3y(x) + 1

]
=

d

dx
(x5 + x).

By the Chain Rule, we find

(
3y2 + 6y + 3

)
y′(x) = 5x4 + 1,

which we can easily solve to obtain dy/dx as a function of x and y,

dy

dx
=

5x4 + 1

3y2 + 6y + 3
=

5x4 + 1

3(y + 1)2
. (4.9)

Once we know an (x, y) pair that satisfies Eq. (4.7), we can immediately compute the
derivative from Eq. (4.9).

It is instructive to verify that Eqs. (4.8) and (4.9) agree:

dy

dx
=

5x4 + 1

3(y + 1)2
=

5x4 + 1

3(x5 + x)
2
3

.

Problem 4.24: Suppose that f and its inverse g are twice differentiable functions
on R. Let a ∈ R and denote b = f(a).

(a) Implicitly differentiate both sides of the identity g(f(x)) = x with respect to x.
By the Chain Rule,

g′(f(x))f ′(x) = 1.
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(b) Using part(a), prove that f ′(a) 6= 0.
If f ′(a) = 0, we would obtain a contradiction:

0 = g′(f(a))f ′(a) = 1.

(c) Using parts (a) and (b), find a formula expressing g′(b) in terms of f ′(a).

g′(b) =
1

f ′(a)
.

(d) Show that

g′′(b) = − f ′′(a)

[f ′(a)]3
.

On differentiating the expression in part (a), we find that

g′′(f(x))[f ′(x)]2 + g′(f(x))f ′′(x) = 0.

On setting x = a and using part(c), we find that

g′′(f(a))[f ′(a)]2 +
f ′′(a)

f ′(a)
= 0,

from which the desired result immediately follows.



Chapter 5

Integration

[Muldowney 1990, pp. 125]
[Spivak 1994, Chapter 13]

5.A The Riemann Integral

Suppose, given a bounded function f(x) ≥ 0 on [a, b], that we wish to determine the
area of the region

S = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.
That is, we want to find the area of the region bounded by the graph of f(x), the x
axis, and the lines x = a and x = b.

Consider a union L of non-overlapping rectangles that are each contained within S,
as illustrated in Figure 5.1. Also consider a union U of non-overlapping rectangles
that together contain S, as illustrated in Figure 5.2.

a b

f(x)

L

Figure 5.1: Lower rectangles

a b

f(x)

U

Figure 5.2: Upper rectangles

Notice that
area L ≤ area S ≤ area U .

We now use this construction to give a precise definition for the concept of area.

121
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Definition: If there is a unique number α satisfying

area L ≤ α ≤ area U

for all such rectangular unions, we define

area S = α

and write α =
∫ b
a
f , the Riemann integral over [a, b] of f .

The following definitions will help us formalize this notion.

Definition: Let [a, b] be a closed interval. A partition of [a, b] is a finite set of distinct
points from [a, b] that includes the endpoints a and b. It is convenient to list the
points of a partition P = {x0, x1, . . . , xn} in increasing order: a = x0 < x1 < . . . <
xn = b.

Definition: A partition Q of [a, b] is a refinement of a partition P of [a, b] if Q ⊃ P .

Definition: Let f be a bounded function on [a, b] and P = {x0, x1, . . . , xn} be a
partition of [a, b]. For each interval i = 1, 2, . . . , n we let

mi = inf {f(x) : xi−1 ≤ x ≤ xi},
Mi = sup {f(x) : xi−1 ≤ x ≤ xi}.

Then we define

L(P, f)
.
= m1(x1 − x0) +m2(x2 − x1) + . . .+mn(xn − xn−1),

U(P, f)
.
= M1(x1 − x0) +M2(x2 − x1) + . . .+Mn(xn − xn−1)

to be the lower and upper sums, respectively, of f with respect to P .

Remark: Since mi ≤ Mi for each i = 1, 2, . . . , n, we see for any partition P that
L(P, f) ≤ U(P, f).

Lemma 5.1 (Partition Refinement): If P and Q are partitions of [a, b] such that
Q ⊃ P , then

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

That is, refinement increases lower sums and decreases upper sums.

Proof: It is sufficient to prove the lemma when Q contains just one more point
that P . (Why?) Then for some n ∈ N and k ∈ {1, 2, . . . , n} we have

P = {x0, x1, . . . , xk−1, xk, . . . , xn},
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Q = {x0, x1, . . . , xk−1, q, xk, . . . , xn}.
Recall

mk = inf{f(x) : x ∈ [xk−1, xk]}.
Let

m′k = inf{f(x) : x ∈ [xk−1, q]},
m′′k = inf{f(x) : x ∈ [q, xk]}.

Note that mk ≤ m′k and mk ≤ m′′k. Then

L(Q, f) =
k−1∑

i=1

mi(xi − xi−1) +m′k(q − xk−1) +m′′k(xk − q) +
n∑

i=k+1

mi(xi − xi−1)

≥
k−1∑

i=1

mi(xi − xi−1) +mk(q − xk−1) +mk(xk − q) +
n∑

i=k+1

mi(xi − xi−1)

=
k−1∑

i=1

mi(xi − xi−1) +mk(xk − xk−1) +
n∑

i=k+1

mi(xi − xi−1) = L(P, f).

The proof for upper sums follows upon replacing inf with sup and reversing the sign
of the inequalities.

Lemma 5.2 (Upper Sums Bound Lower Sums): Let f be bounded on [a, b]. If P
and Q are any partitions of [a, b], then

L(P, f) ≤ U(Q, f).

That is, any upper sum of f is an upper bound for all lower sums and any lower
sum of f is a lower bound for all upper sums.

Proof: Consider the partition P ∪ Q. Then P ∪ Q is a refinement of P and also
of Q:

P ⊂ P ∪Q, Q ⊂ P ∪Q.
Hence Lemma 5.1 ⇒

L(P, f) ≤ L(P ∪Q, f) ≤ U(P ∪Q, f) ≤ U(Q, f).

Definition: The lower integral and upper integral of f are, respectively,
∫ b

a

f = sup{L(P, f) : ∀ partitions P of [a, b]},

∫ b

a

f = inf{U(P, f) : ∀ partitions P of [a, b]}.
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Q. Do the sup and inf here always exist? Note that the set of lower sums is nonempty
and bounded above by any given upper sum (Lemma 5.2).

Lemma 5.3 (Lower Integrals vs. Upper Integrals): Let f be bounded on [a, b]. Then

∫ b

a

f ≤
∫ b

a

f.

Proof: We first show that
∫ b
a
f is an upper bound for all lower sums. Consider any

lower sum. Being a lower bound for the entire set of upper sums (by Lemma 5.2), it

must be less than or equal to the greatest lower bound
∫ b
a
f of the set of upper sums.

That is,
∫ b
a
f provides an upper bound for all lower sums.

But
∫ b
a
f is the least upper bound of all lower sums. Hence

∫ b

a

f

︸ ︷︷ ︸
sup
P
{L(P, f)}

≤
∫ b

a

f.

︸ ︷︷ ︸
inf
P
{U(P, f)}

Definition: If
∫ b

a

f =

∫ b

a

f = α,

we say that f is Riemann integrable on [a, b] and define
∫ b
a
f
.
= α. The number∫ b

a
f is called the Riemann integral of f on [a, b].

Since, for any partition P ,

L(P, f) ≤
∫ b

a

f ≤
∫ b

a

f ≤ U(P, f),

this definition is seen to be equivalent to our previous definition of the Riemann
integral. That is, if there exists a unique number α such that

L(P, f) ≤ α ≤ U(P, f)

for all partitions P of [a, b], then f is Riemann integrable on [a, b] and
∫ b
a
f
.
= α.
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• Consider f(x) = c, a ≤ x ≤ b.
Consider P = {a, b}. Then

L(P, f) = c(b− a), U(P, f) = c(b− a)

and
∫ b

a

f = sup{L(Q, f) : Q is a partition of [a, b]} ≥ L(P, f) = c(b− a),

∫ b

a

f = inf{U(Q, f) : Q is a partition of [a, b]} ≤ U(P, f) = c(b− a),

so that ∫ b

a

f ≥
∫ b

a

f.

But Lemma 5.3 ⇒ ∫ b

a

f ≤
∫ b

a

f.

Thus ∫ b

a

f =

∫ b

a

f = c(b− a)⇒
∫ b

a

f = c(b− a).

Remark: By definition, for
∫ b
a
f to exist it is necessary that f have an infimum and

supremum on all possible subintervals of [a, b]. That is, a function must be bounded
on [a, b] in order to be Riemann integrable on [a, b].

Theorem 5.1 (Integrability):
∫ b
a
f exists and equals α ⇐⇒ there exists a sequence

of partitions {Pn}∞n=1 of [a, b] such that

lim
n→∞

L(Pn, f) = α = lim
n→∞

U(Pn, f).

Proof:

“⇒” Suppose
∫ b
a
f = α. That is,

∫ b

a

f =

∫ b

a

f = α.

This means that for each n ∈ N, there exist partitions Qn, Rn of [a, b] such
that

α− 1

n
< L(Qn, f) ≤ α

(otherwise α would not be the least upper
bound of the set of all lower sums)

α ≤ U(Rn, f) < α +
1

n
.
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Let Pn = Qn ∪Rn. Note Pn ⊃ Qn and Pn ⊃ Rn.
Lemma 5.1 ⇒

L(Qn, f) ≤ L(Pn, f) ≤ U(Pn, f) ≤ U(Rn, f).

Hence

α− 1

n
< L(Pn, f) ≤ U(Pn, f) < α +

1

n
.

The Squeeze Principle then guarantees that the sequences {L(Pn, f)}∞n=1,
{U(Pn, f)}∞n=1 both converge to α.

“⇐” Suppose that there exist partitions Pn of [a, b] for n = 1, 2, . . . 3
(i) lim

n→∞
L(Pn, f) = α,

(ii) lim
n→∞

U(Pn, f) = α.

Then

(i)⇒
∫ b

a

f ≥ α, (what would happen if

∫ b

a

f = α−ε, for ε > 0?)

(ii)⇒
∫ b

a

f ≤ α.

Hence ∫ b

a

f ≥ α ≥
∫ b

a

f.

But Lemma 5.3 ⇒ ∫ b

a

f ≤
∫ b

a

f.

Thus ∫ b

a

f =

∫ b

a

f = α.

That is,
∫ b
a
f = α.

• Consider f(x) = x, 0 ≤ x ≤ 1.

Given n ∈ N, let Pn =

{
0,

1

n
,

2

n
, . . . ,

n− 1

n
, 1

}
. This is an example of a uniform

partition into n subintervals. Denoting the points of Pn by xi = i/n for i =
0, 1, 2, . . . n, we see that

L(Pn, f) =
n∑

i=1

xi−1 ·
1

n
=

1

n2

n∑

i=1

(i− 1) =
1

n2

(
n(n+ 1)

2
− n

)
=
n− 1

2n
,

U(Pn, f) =
n∑

i=1

xi ·
1

n
=

1

n2

n∑

i=1

i =
n+ 1

2n
.
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Note that

lim
n→∞

L(Pn, f) =
1

2
= lim

n→∞
U(Pn, f).

Theorem 5.1 ⇒ ∫ 1

0

f =
1

2
.

• If

f(x) =

{
1 if x ∈ Q,
0 if x 6∈ Q,

then
∫ b
a
f does not exist for any interval [a, b] since L(P, f) = 0 and U(P, f) = b−a

for every partition P of [a, b]. Thus Theorem 5.1 ⇒
∫ b
a
f ∃/. Note that

∫ b

a

f = 0 < b− a =

∫ b

a

f.

Remark: We would arrive at the wrong conclusion if we attempted to compute the
integral in the previous example by sampling the function at uniformly spaced
points. For example, when a = 0 and b = 1,

lim
n→∞

n∑

i=1

f

(
i

n

)
1

n
= lim

n→∞

n∑

i=1

1

n
= lim

n→∞
1 = 1.

Problem 5.1: Suppose f is integrable on [a, b]. Let g(x) = f(x− c) for some c ∈ R.
By considering lower and upper sums, prove that g is integrable on [a + c, b + c]
and ∫ b+c

a+c

g =

∫ b

a

f.

Problem 5.2: Suppose f is integrable on [a, b]. Let g(x) = f(x/c) for some c > 0.
By considering lower and upper sums, prove that g is integrable on [ac, bc] and

∫ bc

ac

g = c

∫ b

a

f.

5.B Cauchy Criterion

Theorem 5.2 (Cauchy Criterion for Integrability): Suppose f is bounded on [a, b].

Then
∫ b
a
f exists ⇐⇒ for each ε > 0 there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.
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Proof:

“⇒” From Theorem 5.1, we know for any ε > 0 we can find a partition P
such that

α− ε

2
< L(P, f) ≤ U(P, f) < α +

ε

2
.

Hence

U(P, f)− L(P, f) < α +
ε

2
−
(
α− ε

2

)
= ε.

“⇐” Suppose that for each ε > 0 there exists a partition P such that

U(P, f)− L(P, f) < ε.

Then ∫ b

a

f ≤ U(P, f) and −
∫ b

a

f ≤ −L(P, f)

⇒
∫ b

a

f −
∫ b

a

f ≤ U(P, f)− L(P, f) < ε for each ε > 0.

Hence ∫ b

a

f −
∫ b

a

f ≤ 0.

But Lemma 5.3 ⇒ ∫ b

a

f −
∫ b

a

f ≥ 0.

Hence ∫ b

a

f =

∫ b

a

f ⇒
∫ b

a

f ∃.

Corollary 5.2.1 (Piecewise Integration): Suppose a < c < b. Then

∫ b

a

f ∃ ⇐⇒
∫ c

a

f ∃ and

∫ b

c

f ∃.

Furthermore, when either side holds,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof [of existence]:
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“⇒” Theorem 5.2: Given ε > 0, there exists a partition Q of [a, b] such
that

U(Q, f)− L(Q, f) < ε.

Now by Lemma 5.1, the refinement P = Q ∪ {c} of [a,b] satisfies

U(P, f)− L(P, f) ≤ U(Q, f)− L(Q, f) < ε.

Define P ′ = P ∩ [a, c] and P ′′ = P ∩ [c, b]. Note that P ′ is a partition of
[a, c] and P ′′ is a partition of [c, b]. Observe that

U(P ′, f) + U(P ′′, f) = U(P, f),

L(P ′, f) + L(P ′′, f) = L(P, f)

⇒ U(P ′, f)− L(P ′, f)︸ ︷︷ ︸
≥0

+U(P ′′, f)− L(P ′′, f)︸ ︷︷ ︸
≥0

= U(P, f)− L(P, f) < ε

⇒ U(P ′, f)− L(P ′, f) < ε and U(P ′′, f)− L(P ′′, f) < ε.

Hence Theorem 5.2 ⇒
∫ c

a

f ∃ and

∫ b

c

f ∃.

“⇐” Suppose
∫ c
a
f and

∫ b
c
f both exist. Then given ε > 0, there exists

partitions P ′ of [a, c] and P ′′ of [c, b] 3

U(P ′, f)− L(P ′, f) <
ε

2
and U(P ′′, f)− L(P ′′, f) <

ε

2
.

Consider the partition P = P ′ ∪ P ′′ of [a, b]. Then

U(P, f)−L(P, f) = U(P ′, f)−L(P ′, f)+U(P ′′, f)−L(P ′′, f) <
ε

2
+
ε

2
= ε.

Hence Theorem 5.2 ⇒
∫ b
a
f ∃.

Problem 5.3: Complete the proof of Corollary 5.2.1 to show, given the existence of
either side, that ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Definition: If a ≤ b, define
∫ a
b
f = −

∫ b
a
f .
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Remark: This implies that
∫ a
a
f = 0.

Problem 5.4: Given any c ∈ R, show that

∫ c

a

f ∃ and

∫ b

c

f ∃ ⇒
∫ b

a

f ∃ =

∫ c

a

f +

∫ b

c

f.

5.C Riemann Sums

Definition: Let f be a function on [a, b] and P = {x0, x1, . . . , xn} a partition of [a, b].
Then any sum of the form

S(P, f) =
n∑

i=1

f(xi)(xi − xi−1),

where xi are points chosen from [xi−1, xi], is called a Riemann sum of f with respect
to P .

Remark: Given any partition P and a continuous function f , the upper sum U(P, f)
and lower sum L(P, f) are particular examples of Riemann sums S(P, f). To what
choices of points xi do these sums correspond?

Remark: Since mi ≤ f(xi) ≤Mi, every Riemann sum S(P, f) satisfies

L(P, f) ≤ S(P, f) ≤ U(P, f).

Problem 5.5: Suppose that f is integrable on [a, b]. Show that there always exists a

sequence of partitions Pn such that lim
n→∞

S(Pn, f) =
∫ b
a
f (independent of how the

points xi are chosen).

Theorem 5.3 (Darboux Integrability Theorem):
∫ b
a
f exists and equals α ⇐⇒

for any sequence of partitions Pn having subinterval widths approaching zero as
n→∞, all Riemann sums S(Pn, f) converge to α.

Proof:
“⇒” We know since f is integrable that |f(x)| ≤M for some bound M > 0. Let

α =
∫ b
a
f . For any ε > 0, Theorem 5.1 implies that there exists a partition Q of [a, b]

such that

α− ε

2
< L(Q, f) ≤ U(Q, f) < α +

ε

2
.
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Suppose Q partitions [a, b] into q subintervals. Let P be any partition with subinterval
widths all less than δ = ε/(8qM). Consider the refinement P ∪ Q of P and Q. The
contributions to the difference

U(P, f)− U(P ∪Q, f) ≥ 0

come only from subintervals of P ∪ Q having an endpoint in the set Q. The q − 1
interior points of Q can be an endpoint of at most 2 such (adjacent) subintervals,
while the points a and b can each belong to at most one subinterval. Hence there
are certainly no more than 2(q − 1) + 2 = 2q such subintervals, each of which will
contribute less than 2Mδ to the difference. Thus

U(P, f)− U(P ∪Q, f) < 4qMδ =
ε

2
.

We then deduce

U(P, f) < U(P ∪Q, f) +
ε

2
≤ U(Q, f) +

ε

2
< α +

ε

2
+
ε

2
= α + ε.

Similarly, we find
L(P, f) > α− ε,

so that any Riemann sum S(P, f) of f on the partition P must satisfy

α− ε < L(P, f) ≤ S(P, f) ≤ U(P, f) < α + ε.

“⇐” Given n ∈ N, choose a partition Pn sufficiently fine so that for all possible
choices of the points xi, we have |S(Pn, f)− α| < 1/(2n). In particular, we may
choose xi ∈ [xi−1, xi] such that

f(xi) > Mi −
1

2n(b− a)
. (Why?)

On denoting the number of points in Pn by |Pn| we find

U(Pn, f) =

|Pn|∑

i=1

Mi(xi − xi−1)

<

|Pn|∑

i=1

[
f(xi) +

1

2n(b− a)

]
(xi − xi−1) = S(Pn, f) +

1

2n(b− a)

|Pn|∑

i=1

(xi − xi−1)

< α +
1

2n
+

1

2n(b− a)
(b− a) = α +

1

n
.

Using another similar choice for the points xi, we may show

L(Pn, f) > α− 1

n
.

Thus, we have found a sequence of partitions Pn for which

lim
n→∞

L(Pn, f) = α = lim
n→∞

U(Pn, f).

From Theorem 5.1 we then conclude that
∫ b
a
f exists and equals α.
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5.D Properties of Integrals

Theorem 5.4 (Linearity of Integral Operator): Suppose
∫ b
a
f and

∫ b
a
g exist. Then

(i)
∫ b
a
(f + g) ∃ =

∫ b
a
f +

∫ b
a
g,

(ii)
∫ b
a
(cf) ∃ = c

∫ b
a
f for any constant c ∈ R.

Proof:

(i) Let α =
∫ b
a
f , β =

∫ b
a
g. Theorem 5.1: ∃ partitions Pn and Qn of [a, b] for each

n ∈ N 3

α− 1

n
< L(Pn, f) ≤ U(Pn, f) < α +

1

n
,

β − 1

n
< L(Qn, g) ≤ U(Qn, g) < β +

1

n
.

Let Rn = Pn ∪ Qn. Note that the partition Rn is a refinement of both Pn
and Qn. Now on any subinterval I = [xk−1, xk] of Rn,

f(x) + g(x) ≤ sup{f(x) : x ∈ I}+ sup{g(x) : x ∈ I}.
Since the right-hand side is an upper bound for f(x) + g(x) for all x ∈ I,

sup{f(x) + g(x) : x ∈ I} ≤ sup{f(x) : x ∈ I}+ sup{g(x) : x ∈ I}.

Hence
U(Rn, f + g) ≤ U(Rn, f) + U(Rn, g).

Similarly,
L(Rn, f + g) ≥ L(Rn, f) + L(Rn, g).

Thus

α + β − 2

n
< L(Pn, f) + L(Qn, g) ≤ L(Rn, f) + L(Rn, g)

≤ L(Rn, f + g) ≤ U(Rn, f + g) ≤ U(Rn, f) + U(Rn, g)

≤ U(Pn, f) + U(Qn, g) < α + β +
2

n
.

Using the Squeeze Principle, we conclude

lim
n→∞

L(Rn, f + g) = lim
n→∞

U(Rn, f + g) = α + β.

Thus, by Theorem 5.1,
∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

(ii) Exercise.
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Theorem 5.5 (Integral Bounds): Suppose for a < b that

(i)
∫ b
a
f ∃,

(ii) m ≤ f(x) ≤M for x ∈ [a, b].

Then

m(b− a) ≤
∫ b

a

f ≤M(b− a).

Proof: Consider the partition P = {a, b} of [a, b]. Then

m(b− a) ≤ L(P, f) ≤
∫ b

a

f =

∫ b

a

f =

∫ b

a

f ≤ U(P, f) ≤M(b− a).

Corollary 5.5.1 (Preservation of Non-Negativity): If f(x) ≥ 0 for all x ∈ [a, b] and∫ b
a
f exists then

∫ b
a
f ≥ 0.

Proof: Set m = 0 in Theorem 5.5.

Problem 5.6: Consider the function

f(x) =





1
n

if x = m
n

for relatively prime integers m 6= 0 and n > 0,
1 if x = 0,
0 if x 6∈ Q.

Show that
∫ 1

0
f ∃ = 0, even though f 6≡ 0. Hence, even within the class of non-

negative functions, the statement
∫ 1

0
f = 0⇒ f = 0 does not hold!

Corollary 5.5.2 (Absolute Integral Bounds): If |f(x)| ≤ M for all x ∈ [a, b] and∫ b
a
f exists then

∣∣∣
∫ b
a
f
∣∣∣ ≤M |b− a|.

Proof: Set m = −M in Theorem 5.5.

Corollary 5.5.3 (Continuity of Integrals): Suppose
∫ b
a
f exists. Then the function

F (x) =
∫ x
a
f is continuous on [a, b].

Proof: If f(x) = 0 for all x ∈ [a, b] then F (x) = 0, which is continuous. Otherwise,
let M = sup{|f(x)| : a ≤ x ≤ b} > 0 and consider u ∈ [a, b]. Given ε > 0, for any
x ∈ [a, b] with |x− u| < δ,

|F (x)− F (u)| =
∣∣∣∣
∫ x

a

f −
∫ u

a

f

∣∣∣∣ =

∣∣∣∣
∫ x

a

f +

∫ a

u

f

∣∣∣∣ =

∣∣∣∣
∫ x

u

f

∣∣∣∣ ≤M |x− u| < Mδ = ε,

by Theorem 5.5, provided we choose δ = ε/M .
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Theorem 5.6 (Integrability of Continuous Functions): If f is continuous on [a, b]

then
∫ b
a
f exists.

Proof: Given ε > 0, we claim that ∃ δ > 0 3

|f(x)− f(y)| < ε

b− a ∀ x, y ∈ [a, b] with |x− y| < δ (we say: f is uniformly continuous).

Suppose not. Then ∃ ε0 > 0 and sequences {xn}∞n=1, {yn}∞n=1 in [a, b] 3

|xn − yn| <
1

n
, but |f(xn)− f(yn)| ≥ ε0.

Note that {xn}∞n=1 has a subsequence {xnk}∞k=1 that converges to c ∈ [a, b]. Then,
since

− 1

nk
≤ xnk − ynk ≤

1

nk

and lim
k→∞

1

nk
= 0, we can apply the Squeeze Principle to deduce that lim

k→∞
ynk =

lim
k→∞

xnk = c. But f is continuous, so

lim
k→∞

[(f(xnk)− f(ynk)] = f
(

lim
k→∞

xnk

)
− f

(
lim
k→∞

ynk

)
= f(c)− f(c) = 0.

This contradicts lim
k→∞

∣∣∣∣f(xnk)− f(ynk)

∣∣∣∣ ≥ ε0 > 0, so in fact our claim must hold.

Now choose a partition P = {x0, x1, . . . , xn} of [a, b] such that xi − xi−1 < δ for
i = 1, . . . , n. Since f is continuous on [xi−1, xi], Theorem 3.4 ⇒ there exists numbers
pi and qi ∈ [xi−1, xi] such that

f(pi) = inf{f(x) : xi−1 ≤ x ≤ xi},

f(qi) = sup{f(x) : xi−1 ≤ x ≤ xi}.

Noting that |pi − qi| < δ, our above claim implies that

U(P, f)− L(P, f) =
n∑

i=1

[f(qi)− f(pi)](xi − xi−1)

<

n∑

i=1

ε

b− a(xi − xi−1) =
ε

b− a
n∑

i=1

(xi − xi−1) =
ε

b− a(xn − x0) = ε.

Therefore, by Theorem 5.2,
∫ b
a
f exists.
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Theorem 5.7 (Integrability of Monotonic Functions): If f is monotonic on [a, b]

then
∫ b
a
f exists.

Proof: Suppose f is increasing. Then for any partition P = {x0, x1, . . . , xn} we
know that

inf{f(x) : xi−1 ≤ x ≤ xi} = f(xi−1),

sup{f(x) : xi−1 ≤ x ≤ xi} = f(xi).

If f(b) = f(a) then f is constant ⇒
∫ b
a
f exists. Otherwise, given ε > 0, choose a

partition P = {x0, x1, . . . , xn} of [a, b] fine enough such that for i = 1, . . . , n,

xi − xi−1 < δ =
ε

f(b)− f(a)
.

Then

U(P, f)− L(P, f) =
n∑

i=1

[f(xi)− f(xi−1)](xi − xi−1)

< δ
n∑

i=1

[f(xi)− f(xi−1)] = δ[f(xn)− f(x0)] = δ[f(b)− f(a)] = ε.

Hence by Theorem 5.2,
∫ b
a
f ∃.

• For the function

f(x) =

{ 1
n

if x ∈
(

1
n+1

, 1
n

]
for n ∈ N,

0 if x = 0

on [0, 1], Theorem 5.7 ⇒
∫ 1

0
f ∃.

5.E Fundamental Theorem of Calculus

Definition: A differentiable function F is called an antiderivative of f at an interior
point x of its domain if F ′(x) = f(x).

Remark: If F (x) is an antiderivative of f , then so is F (x) + C for any constant C.

Lemma 5.4 (Families of Antiderivatives): Let F0(x) be an antiderivative of f on an
interval I. Then F is an antiderivative of f on I ⇐⇒ F (x) = F0(x)+C for some
constant C.
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Proof:

“⇐” Let F (x) = F0(x) +C. Then F ′(x) = F ′0(x) = f(x); that is, F is an
antiderivative of f on I.

“⇒” Since

d

dx
[F (x)− F0(x)] = F ′(x)− F ′0(x) = f(x)− f(x) = 0,

we see by Corollary 4.4.3 that F (x)− F0(x) is constant on I.

Theorem 5.8 (Antiderivatives at Points of Continuity): Suppose

(i)
∫ b
a
f exists;

(ii) f is continuous at c ∈ (a, b).

Then f has the antiderivative F (x) =
∫ x
a
f at x = c.

Proof: Given ε > 0, we know from the continuity of f at c that there exists a
δ > 0 such that

|x− c| < δ ⇒ |f(x)− f(c)| < ε.

Consider F (x) =
∫ x
a
f for x ∈ [a, b]. Then

F (c+ h)− F (c)− f(c)h =

∫ c+h

a

f −
∫ c

a

f −
∫ c+h

c

f(c) =

∫ c+h

c

[f − f(c)].

For |h| < δ, Corollary 5.5.2 thus implies

0 ≤ |F (c+ h)− F (c)− f(c)h| ≤ ε |c+ h− c| = ε |h| .

That is, given ε > 0, there exists a δ > 0 such that

0 < |h| < δ ⇒
∣∣∣∣
F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ ≤ ε.

But this is just the statement that the limit

F ′(c) = lim
h→0

F (c+ h)− F (c)

h

exists and equals f(c).
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Remark: In particular, Theorem 5.8 says that, at any point x ∈ (a, b) where an
integrable function f is continuous,

d

dx

∫ x

a

f = f(x).

Thus we see that differentiation and integration are in a sense opposite processes.
The actual situation is slightly complicated by the fact that antiderivatives are not
unique, as we saw in Lemma 5.4. However, note that the arbitrary constant C in
Lemma 5.4 disappears upon differentiation of the antiderivative.

Corollary 5.8.1 (Antiderivative of Continuous Functions): If f is continuous on [a, b]
then f has an antiderivative on [a, b].

Proof: The antiderivative of f on [a, b] is just the antiderivative
∫ x
a
f of the

continuous extension f of f onto all of R:

f(x) =




f(a) if x < a,
f(x) if a ≤ x ≤ b,
f(b) if x > b.

Theorem 5.9 (Fundamental Theorem of Calculus [FTC]): Let f be integrable and
have an antiderivative F on [a, b]. Then

∫ b

a

f = F (b)− F (a).

Proof: Let P = {x0, x1, . . . , xn} be any partition of [a, b]. Since F is differentiable
on [a, b], the MVT tells us that for each i = 1, . . . n there exists a ci ∈ (xi−1, xi) such
that

F (xi)− F (xi−1) = F ′(ci)(xi − xi−1) = f(ci)(xi − xi−1).

Consider the Riemann sum S(P, f)
.
=

n∑

i=1

f(ci)(xi − xi−1). Then

S(P, f) =
n∑

i=1

[F (xi)− F (xi−1)] = F (xn)− F (x0) = F (b)− F (a),

so that
L(P, f) ≤ F (b)− F (a) ≤ U(P, f).

That is, F (b)− F (a) is a lower bound for all upper sums and an upper bound for all
lower sums. Hence ∫ b

a

f ≤ F (b)− F (a) ≤
∫ b

a

f.

But since
∫ b
a
f =

∫ b
a
f =

∫ b
a
f , it follows that

∫ b
a
f = F (b)− F (a).
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Remark: It is possible for a function to be integrable, but have no antiderivative.
But by Theorem 5.8, we know that such a function cannot be continuous. Consider
the function

f(x) =

{−1 if −1 ≤ x < 0,

1 if 0 ≤ x ≤ 1.

Being monotonic, f is certainly integrable (Theorem 5.7). However, the FTC
implies that f cannot be the derivative of another function F . For if f = F ′, then∫ x

0
f = F (x)− F (0), so that

F (x) = F (0) +

∫ x

0

f = F (0) +





∫ x
0

(−1) if −1 ≤ x < 0,

∫ x
0

1 if 0 ≤ x ≤ 1,

= F (0) +




−1(x− 0) if −1 ≤ x < 0,

1(x− 0) if 0 ≤ x ≤ 1,

= F (0) + |x| ,
which we know is not differentiable at x = 0, regardless of what F (0) is.

Problem 5.7: It is also possible for an integrable function f to be discontinuous at
a point but still have an antiderivative F . Consider f = F ′, where

F (x) =

{
x2 sin 1

x
if x 6= 0,

0 if x = 0.

Prove that f is discontinuous at 0 but that f is still integrable on any finite interval.

Corollary 5.9.1 (FTC for Continuous Functions): Let f be continuous on [a, b] and
let F be any antiderivative of f on [a, b]. Then

∫ b

a

f = F (b)− F (a).

Proof: This follows directly from Theorem 5.6 and the FTC.

Remark: The FTC says that a definite integral
∫ b
a
f is equal to the value of any

antiderivative F of f at b minus the value of the same function F at a. That is,∫ b
a
f = [F (x)]ba, where the notation [F (x)]ba or F (x)|ba is shorthand for the difference

F (b)− F (a).

• Let f(x) = x. Then

∫ 1

0

f =

[
x2

2
+ c

]1

0

=
1

2
+ c− (0 + c) =

1

2
.
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Remark: We need a convenient notation for an antiderivative.

Definition: If an integrable function f has antiderivative F , we write F =
∫
f and

say F is the indefinite integral of f .

∫
f = F means f = F ′.

Remark: When we write
∫
f we understand that f is a function of some variable.

Let’s call it x. We want to partition a portion of the x axis into {x0, x1, . . . , xn} and
compute upper and lower sums based on function values and the interval widths
xi − xi−1. Similarly, when we write f ′, it is clear that we mean the derivative
of f with respect to its argument, whatever that may be. However, if we want to
differentiate the function y = f(u), where u = x2, it is important to know whether
we are differentiating with respect to u or with respect to x. Likewise, suppose we
wish to calculate the integral of f . It is equally important to know whether we are
calculating the integral with respect to u or with respect to x, because the area
under the graph of y = f(u) with respect to u will in general differ from the area
under the graph of y = f(x2) with respect to x. Since we can differentiate with
respect to different variables, it is only reasonable, in view of the FTC, that we
should be able to integrate with respect to different variables as well. It will often
be helpful to indicate explicitly with respect to which variable we are integrating,
that is, which variable do we use to construct the differences xi− xi−1 in the lower
and upper sums.

Definition: We can specify the integration variable by writing
∫ 1

0
f(x) dx instead of

just
∫ 1

0
f . The notation f(x) dx reminds us that the lower sums and upper sums

consists of function values (strictly speaking, infima and suprema) multiplied by
interval widths, xi − xi−1.

Remark: The same notation is also used for indefinite integrals. For example,

∫
x dx =

x2

2
+ C means x =

d

dx

(
x2

2
+ C

)
.

Remark: Remember that the definite integral
∫ b
a
f(x) dx is a number, whereas the

indefinite integral
∫
f(x) dx represents a family of functions that differ from each

other by a constant.
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• Since
d

dx

xp+1

p+ 1
= xp,

we know that
∫ b

a

xp dx =
xp+1

p+ 1

∣∣∣∣
b

a

=
bp+1 − ap+1

p+ 1
if p 6= −1.

• Also, ∫ π

0

sinx dx = [− cosx]π0 = −[cosx]π0 = −[−1− 1] = 2.

• But ∫ 2π

0

sinx dx = [− cosx]2π0 = [−1− (−1)] = 0.

• The function

F (x) =

∫ x

0

1

cos t
dt

is differentiable for x ∈ [0, π
2
).

We don’t yet know F , but we do know its derivative. Thm 5.8 ⇒

F ′(x) =
1

cosx
.

Furthermore, suppose

G(x) =

∫ x2

0

1

cos t
dt = F (x2)

for x ∈
[
0,
√

π
2

)
. Then

G′(x) = F ′(x2) 2x =
2x

cos(x2)
by the Chain Rule.

• Consider the inverse trigonometric function y = sin−1 x for x ∈ [−1, 1]. Recall that

d

dx
sin−1 x =

1√
1− x2

for (−1, 1)

and
d

dx
tan−1 x =

1

1 + x2
for x ∈ (−∞,∞).

These results yield two important antiderivatives:
∫

1√
1− x2

dx = sin−1 x+ C

and ∫
1

1 + x2
dx = tan−1 x+ C.
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Problem 5.8: Suppose f is a continuous function and g and b are differentiable
functions on [a, b]. Prove that

d

dx

∫ b(x)

a(x)

f(t) dt = f(b(x))b′(x)− f(a(x))a′(x).

Let F be an antiderivative for f . Theorem FTC states that
∫ b(x)

a(x)
f(t) dt = F (b(x))− F (a(x)).

Hence, using the Chain Rule,

d

dx

∫ b(x)

a(x)
f(t) dt = F ′(b(x))b′(x)− F ′(a(x))a′(x) = f(b(x))b′(x)− f(a(x))a′(x).

5.F Average Value of a Function

Definition: We define the average value of an integrable function f on [a, b] to be

1

b− a

∫ b

a

f.

Remark: If f is continuous on [a, b], the following theorem states that f takes on its
average value somewhere in the interval [a, b].

Theorem 5.10 (Mean Value Theorem for Integrals [MVTI]): Suppose f is continuous
on [a, b]. Then ∫ b

a

f = f(c)(b− a)

for some number c ∈ [a, b].

Proof: We know from Theorem 3.4 that there exists points p, q ∈ [a, b] such that

f(p) ≤ f(x) ≤ f(q) ∀x ∈ [a, b].

Theorem 5.5 then implies that

f(p)(b− a) ≤
∫ b

a

f ≤ f(q)(b− a),

so that

f(p) ≤ 1

b− a

∫ b

a

f ≤ f(q).

Finally, the IVT implies that ∃c ∈ [p, q] ⊂ [a, b], such that

f(c) =
1

b− a

∫ b

a

f.



142 CHAPTER 5. INTEGRATION

Problem 5.9: Find a proof for a slightly stronger version of Theorem 5.10: if f is
continuous on [a, b], then ∫ b

a

f = f(c)(b− a)

for some number c ∈ (a, b).

• Since x3/3 is an antiderivative of f(x) = x2, it follows that
∫ 1

0
f = 1/3. The MVTI

implies that there exists a number c ∈ [0, 1] such that

1

3
=

∫ 1

0

f = f(c)(1− 0) = f(c).

In this case we can even determine the value of c ∈ [0, 1]:

1

3
= c2 ⇒ c =

1√
3
.



Chapter 6

Logarithmic and Exponential
Functions

6.A Exponentials and Logarithms

Suppose we would like to fill in Table 6.1 with a continuous function that satisfies

10x10y = 10x+y.

For example, we might like to find a general method to take the nth root of 10. Also,
most computers express numbers in terms of powers of 2, so we might need a method
to convert numbers from their decimal to binary representations and back again.

x 10x

−2 1
100

−1 1
10

0 1

1/3 3
√

10

1/2
√

10
1 10

4/3 10 3
√

10

3/2 10
√

10
2 100
3 1000

Table 6.1: Values of 10x for rational x

Q. What should it mean to take irrational powers of 10, such as 10
√

2?

143
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General Problem: Find a continuous function f(x) that satisfies f(0) = 1, f(1) > 0
and f(x)f(y) = f(x+y) for all real numbers x and y. In particular, this implies
that

f(n) = bn = b× b× . . .× b︸ ︷︷ ︸
n times

for n ∈ N,

for some positive number b called the base.

Calculus provides us with an answer: if f(x) is differentiable then f(x) will be
continuous, as desired, and

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

f(x)f(h)− f(x)

h

= f(x) lim
h→0

f(h)− 1

h
.

Since f(0) = 1 we see that

f ′(0) = lim
h→0

f(h)− 1

h
,

so we seek a function that satisfies

f ′(x) = f(x)f ′(0), f(0) = 1.

Q. Does such a function exist?

A. Yes, there even exists one with f ′(0) = 1, so that this special function is its own
derivative!

Q. How do we find f such that f ′(x) = f(x)? From the FTC, we see that

f(x)− 1 = f(x)− f(0) =

∫ x

0

f ′(t) dt =

∫ x

0

f(t) dt.

︸ ︷︷ ︸
we can’t integrate this until
we know f (vicious circle)

A. Inverse functions come to our rescue. Letting y = f(x), we see that

dy

dx
= y ⇒ dx

dy
=

1

y
.

For any positive real numbers a and y, we know from Theorem 5.8 that

x =

∫ y

a

1

t
dt⇒ dx

dy
=

1

y
.
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When x = 0, we want y = 1. Enforce this by choosing a = 1. This yields x as
a function of y > 0:

x = f−1(y) =

∫ y

1

1

t
dt.

We define this function, which measures the area under the graph of the function
1
t

vs. t between 1 and y, as the natural logarithm,

log(y) =

∫ y

1

1

t
dt.

Note that log(1) =
∫ 1

1
1
t
dt = 0.

Remark: For an integrable function g and any constant c > 0, we showed in an
earlier exercise that ∫ bc

ac

g(t) dt = c

∫ b

a

g(ct) dt.

By letting g(t) = 1/t, a = 1, and b = c = y, we can use this result to highlight an
important property of the logarithm:

log(y2)− log(y) =

∫ y2

y

1

t
dt = y

∫ y

1

1

yt
dt =

∫ y

1

1

t
dt = log(y).

Thus log(y2) = 2 log(y) for any number y > 0. By induction, we find for n ∈ N
that

log(yn) = n log(y).

Remark: Since y > z implies log y− log z =
∫ y
z

1
t
dt ≥ 1

y
(y− z) > 0, we see that log y

is a strictly increasing function of y.

Problem 6.1: For n ∈ N use the facts that log 2n = n log 2 > 0 and log
(

1
2

)n
=

n log 1
2
< 0, in view of the strictly increasing nature of log x, to prove that lim

y→∞
log y =

∞ and lim
y→0+

log y = −∞.

Remark: Since Corollary 5.5.3 guarantees that log y is continuous, the IVT then
implies that the range of log y is all of R, Moreover, log y > 0 for y > 1 and
log y < 0 for y < 1, as shown in Figure 6.1.
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x

y1

log y

Figure 6.1: The natural logarithm

Q: The function f−1(y) = log y is thus invertible on (0,∞). Its inverse function f(x),
defined on all of R, is a solution to our problem for a particular value of b = f(1).
But what is this special value of b? In other words, for what value of y does
log y = 1?

A: By construction,

1

y
=

d

dy
log(y) = lim

h→0

log(y + h)− log(y)

h
.

At y = 1, we find

1 = lim
h→0

log(1 + h)− log 1

h
= lim

h→0

1

h
log(1 + h)

= lim
n→∞

n log

(
1 +

1

n

)
= lim

n→∞
log

(
1 +

1

n

)n

= log lim
n→∞

(
1 +

1

n

)n
(continuity)

= log e,

where we recall e ≈ 2.718281828459 . . . is the limit of the convergent sequence
{
(
1 + 1

n

)n}∞n=1.

Remark: We have thus found a unique differentiable function f such that

f(0) = 1,

f(1) = e,

f(n) = en = e× e× . . .× e︸ ︷︷ ︸
n times

and
f(x)f(y) = f(x+ y).
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Remark: From these properties we see that

f(x)f(−x) = f(0) = 1⇒ f(−x) = 1/f(x) > 0.

Note that f(x) > 0 for all real x.

Definition: For any real x, we define exp(x)
.
= f(x) to be the inverse of the function

x = log y (which measures the area under the graph of the function 1/t from t = 1
to t = y). Note for n ∈ Z and m ∈ N that exp(n/m) = m

√
en. We thus see that the

function exp(x) extends the notion of exponentiation from Q to R. To emphasize
this connection, it is often convenient to denote the exponential function exp(x) as
ex. The graph of ex is shown in Figure 6.2.

y

x

1

ex

Figure 6.2: The natural exponential function

Remark: There are other such exponential function (e.g. 10x or 2x) corresponding
to different choices of the base b, but we have found a special one, ex, such that its
derivative is the same as its value everywhere.

Problem 6.2: Given that an invertible function f obeys f(x+ y) = f(x)f(y) for all
x and y in its domain, prove that f−1 satisfies f−1(XY ) = f−1(X) + f−1(Y ) for
all X and Y in the range of f . Deduce that log(xy) = log x+ log y for all positive
numbers x and y.
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Remark: We now use Taylor’s Theorem about the point a = 0 to show that the
number e is irrational. Let n ∈ N and set f(x) = ex. On using the fact that
f (k)(x) = ex for all k ∈ N, we find that

e = f(1) =
n−1∑

k=0

1

k!
e0 +

1

n!
ecn

for some cn ∈ (0, 1). That is,

e−
n−1∑

k=0

1

k!
=

1

n!
ecn .

We know that ex is strictly increasing on R since its derivative ex is positive on R.
Hence

0 < cn < 1⇒ 1 < ecn < e1 < 3.

Thus
1

n!
< e−

n−1∑

k=0

1

k!
<

3

n!
.

On multiplying this result by (n− 1)! we find

0 <
1

n
< (n− 1)! e−

n−1∑

k=0

(n− 1)!

k!
<

3

n
≤ 1 (for n ≥ 3).

Note that each term of the summation here is an integer. If e were rational, this
would imply for n sufficiently large that there exists an integer in the interval
(0, 1), which is absurd! Hence e must be irrational. It can also be shown that e
is transcendental ; that is, e does not satisfy any algebraic equation with integer
coefficients [Spivak 1994, Ch. 21].

Base Conversion: Sometimes, we need to work in another base b > 0, e.g. b = 2 or
b = 10.

Define bx
.
= ex log b (this agrees with our notation for integral powers and roots

of b since en log b = elog bn = bn). Note that if f(x) = ex log b then f ′(x) =

f(x) log b. The factor log b is just the expression lim
h→0

f(h)−1
h

= lim
h→0

eh log b−1
h

that

we encountered in our construction of exponential functions.

Remark: For integral (and some rational) values of x, the definition of bx can be
extended to negative values of b.
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Properties: If x, y ∈ R and b > 0, then

1. bx+y = bxby.
Proof: bx+y = e(x+y) log b = ex log b+y log b = ex log bey log b = bxby.

2. bx−y = bx

by
.

Proof: bx−y = e(x−y) log b = ex log b−y log b = ex log b

ey log b = bx

by
.

3. (bx)y = bxy.

Proof:
(
ex log b

)y
= ey log (ex log b) = eyx log b = bxy.

4. (ab)x = axbx.
Proof: ex log(ab) = ex log a+x log b = ex log aex log b = axbx.

Q. What is the inverse function of y = bx = e(x log b)?

A. We solve for x:

log y = x log b

⇒ x =
log y

log b
.
= logb y.

• Note that log2 e = log e
log 2

= 1
log 2

.

• However, loge 2 = log 2.

Properties: If x, y, and b are positive numbers,

1. logb(xy) = logb x+ logb y.
Proof: Exercise.

2. logb

(
x
y

)
= logb x− logb y.

Proof: Exercise.

3. logb (xr) = r logb x.

Proof: log xr

log b
= log er log x

log b
= r log x

log b
.

Problem 6.3: Use Taylor’s Theorem about a = 0 and the Sequence Limit Ratio Test
to establish that

ex =
∞∑

k=0

xk

k!
.
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Remark: Recall that

1

y
=

d

dy
log(y) = lim

h→0

log(y + h)− log(y)

h
.

In particular, at y = 1
x

we find

x = lim
h→0

log
(

1
x

+ h
)

+ log x

h
= lim

h→0
log(1 + xh)

1
h = log lim

n→∞

(
1 +

x

n

)n
.

We thus obtain another expression for ex:

ex = lim
n→∞

(
1 +

x

n

)n
.

• Derivative of bx:

f(x) = bx = ex log b

⇒ f ′(x) = ex log b log b = bx log b
(
not xbx−1

)
.

• Derivative of logb x:

f(x) = logb x =
log x

log b

⇒ f ′(x) =

(
1

log b

)
d

dx
log x =

(
1

log b

)
1

x
=

1

x log b
.

Remark: We know that
∫ y

1
1
t
dt = log y for any y > 0. What is

∫ y
−1

1
t
dt for y < 0?

Consider

F (x) = log |x| =
{

log x x > 0,
log(−x) x < 0.

Then

F ′(x) =





1

x
x > 0,

1

−x(−1) x < 0

=
1

x
for all x 6= 0.

Therefore, we see that
∫

1

x
dx = log |x|+ C

(
not

x0

0

)
,
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where C is an arbitrary constant. Thus

∫
xn dx =





xn+1

n+1
+ C if n 6= −1,

log |x|+ C if n = −1.

• Here are some further examples:

d

dx

(
e2x

e2x + 1

)
=

d

dx

(
1

1 + e−2x

)
=

−1

(1 + e−2x)2
e−2x(−2) =

2

(ex + e−x)2
.

•
3log3 x = elog3 x(log 3) = e

log x
log 3

log 3 = x.

•
log

∫
ex dx = log(ex + C).

•
e
∫
ex dx = ee

x+C = ee
x

eC = Aee
x

,

where A = eC is a contant.

•

lim
x→0+

xx = lim
x→0+

exp(x log x) = exp

(
lim
x→0+

log x
1
x

)

= exp

(
lim
x→0

1
x

− 1
x2

)
= exp

(
lim
x→0

(−x)
)

= exp(0) = 1,

by L’Hôpital’s Rule.

•
d

dx
log2(sinx) =

(
1

log 2

)
d

dx
log(sinx) =

(
1

log 2

)
cosx

sinx
.

Problem 6.4: Consider a camera flash capacitor with maximum capacity Q0. If the
charge q(t) at time t is given by

q(t) = Q0

(
1− e− t

a

)
,

at what time t will the capacitor have attained the charge Q needed to operate the
flash unit?

We find
Q

Q0
= 1− e− t

a ⇒ log

(
1− Q

Q0

)
= − t

a
.

Hence t = −a log(1 − Q/Q0). For example, if a = 2 seconds, Q = 0.9Q0, we find that

t = −2 log(0.1) ≈ 4.6 seconds.
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Problem 6.5: Find

(a)

lim
x→0

ex − 1

x

= lim
x→0

ex

1
= 1,

on using L’Hôpital’s Rule.

(b)

lim
x→0

ex − 1− x
x2

= lim
x→0

ex − 1

2x
=

1

2
lim
x→0

ex − 1

x
=

1

2
.

(c)
d

dx

(√
x
)x

= e
1
2
x log x 1

2
(log x+ 1) =

(√
x
)x 1

2
(log x+ 1).

(d)
d

dx

∫ log x

arctanx

1

t7 − 1
dt

=

(
1

log7 x− 1

)
1

x
−
(

1

arctan7 x− 1

)
1

1 + x2
.

6.B Logarithmic Differentiation

Because they can be used to transform multiplication problems into addition prob-
lems, logarithms are frequently exploited in calculus to facilitate the calculation of
derivatives of complicated products or quotients. For example, if we need to calculate
the derivative of a positive function f(x), the following procedure may simplify the
task:

1. Take the logarithm of both sides of y = f(x).

2. Differentiate each side implicitly with respect to x.

3. Solve for dy/dx.
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• Differentiate y = x
√
x for x > 0.

We have

log y = log x
√
x =
√
x log x.

Thus

1

y

dy

dx
=

1

2
√
x

log x+
√
x

(
1

x

)
.

⇒ dy

dx
= y

(
log x

2
√
x

+
1√
x

)

= x
√
x

(
log x+ 2

2
√
x

)
.

Problem 6.6: Show that the same result follows on differentiating y = e
√
x log x

directly.

• For x > 0 differentiate

y = −x
3
4

√
x2 + 1

(3x+ 2)5
.

Since

log(−y) =
3

4
log x+

1

2
log(x2 + 1)− 5 log(3x+ 2),

we find

1

y

dy

dx
=

3

4

(
1

x

)
+

1

2

(
1

x2 + 1

)
(2x)− 5

3x+ 2
(3)

⇒ dy

dx
= −x

3
4

√
x2 + 1

(3x+ 2)5

(
3

4x
+

x

x2 + 1
− 15

3x+ 2

)
.

6.C Hyperbolic Functions

Hyperbolic functions are combinations of ex and e−x:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

sinhx

coshx
,

cschx =
1

sinhx
, sechx =

1

coshx
, cothx =

1

tanhx
.

Recall that the points (x, y) = (cos t, sin t) generate a circle, as t is varied from 0
to 2π, since x2 + y2 cos2 t + sin2 t = 1. In contrast, the points (x, y) = (cosh t, sinh t)
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generate a hyperbola, as t is varied over all real values, since x2 − y2 = cosh2 t −
sinh2 t = 1 (hence the name hyperbolic functions). That is,

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4
= 1.

Note that
d

dx
sinhx =

ex + e−x

2
= coshx,

but
d

dx
coshx =

ex − e−x
2

= sinhx,

(without any minus sign). Also,

d

dx
tanhx =

cosh2 x− sinh2 x

cosh2 x
=

1

cosh2 x
.

Note that sinhx and tanh x are strictly monotonic, whereas cosh x is strictly
decreasing on (−∞, 0] and strictly increasing on [0,∞).

sinhx

y

x

coshx

y

x

tanhx

Just as the inverse of ex is log x, the inverse of sinhx also involves log x. Letting
y = sinh−1 x, we see that

x = sinh y =
ey − e−y

2
,
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so that ey − e−y − 2x = 0. To solve for y, it is convenient to make the substitution
z = ey:

z − 1

z
− 2x = 0

⇒ z2 − 2xz − 1 = 0.

Thus

z =
2x±

√
(2x)2 + 4

2
,

so that ey = x ±
√
x2 + 1. But since ey > 0 for all y ∈ R, only the positive square

root is relevant. That is, for all real x,

sinh−1 x = log(x+
√
x2 + 1).

Problem 6.7: Prove that the two solutions for cosh−1 x are given by log(x±
√
x2 − 1).

Show directly that log(x+
√
x2 − 1) = − log(x−

√
x2 − 1).

Problem 6.8: Show that

tanh−1 x =
1

2
log

(
1 + x

1− x

)
.

Problem 6.9: Show that

d

dx
sinh−1 x =

d

dx
log
(
x+
√
x2 + 1

)
=

1√
x2 + 1

.

Also verify this result directly from the fact that

d

dy
sinh y = cosh y.

• Thus ∫ 1

0

dx√
1 + x2

=
[
sinh−1 x

]1
0

=
[
log(x+

√
x2 + 1)

]1

0
= log

(
1 +
√

2
)
.

• To find d
dx

cosh−1 x, we can use the relation cosh2 y − sinh2 y = 1:

y = cosh−1 x

⇒ x = cosh y

⇒ dx

dy
= sinh y =

√
cosh2 y − 1 =

√
x2 − 1

⇒ dy

dx
=

1√
x2 − 1

,

which gives us an antiderivative for

∫
1√

x2 − 1
dx.
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y

x

sinh−1 x

y

x

cosh−1 x

y

x

tanh−1 x
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Problem 6.10: Prove that

(a)

cosh2 t =
cosh 2t+ 1

2

cosh2 t =
(et + e−t)2

4
=
e2t + 2 + e−2t

4
=

cosh 2t+ 1

2
.

(b)

sinh2 t =
cosh 2t− 1

2

sinh2 t =
(et − e−t)2

4
=
e2t − 2 + e−2t

4
=

cosh 2t− 1

2
.

(c)
2 sinh t cosh t = sinh 2t

2 sinh t cosh t = 2
(et − e−t)(et + e−t)

4
=
e2t − e−2t

2
= sinh 2t.



Chapter 7

Techniques of Integration

In this chapter we develop several fundamental techniques of integration.

7.A Change of Variables

Q. What is
∫

tanx dx =

∫
sinx

cosx
dx?

A. On differentiating F (x) = − log |cosx|+ C, we see that
∫

tanx dx = F (x).

Q. Are there systematic ways of finding such antiderivatives?

A. Yes, the following theorem (sometimes known as the Substitution Rule) is often
helpful.

Theorem 7.1 (Change of Variables): Suppose g′ is continuous on [a, b] and f is
continuous on g([a, b]). Then

∫ x=b

x=a

f(g(x)︸︷︷︸
u

) g′(x) dx︸ ︷︷ ︸
du

=

∫ u=g(b)

u=g(a)

f(u) du.

Proof: Theorem 5.8 ⇒ f has an antiderivative F :

F ′(u) = f(u) ∀u ∈ g([a, b]).

Consider H(x) = F (g(x)). Then

H ′(x) = F ′(g(x))g′(x)

= f(g(x))g′(x),

that is, H is an antiderivative of (f ◦ g)g′. Letting u = g(x), we may then write
∫
f(g(x))g′(x) dx = H(x) = F (g(x)) = F (u) =

∫
f(u) du

158
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and, using the FTC,

∫ b

a

f(g(x))g′(x) = [H(x)]ba = [F (g(x))]ba = F (g(b))− F (g(a)) =

∫ u=g(b)

u=g(a)

f(u) du.

• Suppose we wish to calculate
∫ 1

0
(x2 + 2)99 2x dx. One could expand out this poly-

nomial and integrate term by term, but a much easier way to evaluate this integral
is to make the substitution u = g(x) = x2 + 2. To help us remember the factor
du
dx

= g′(x) = 2x we formally write du = g′(x) dx = 2x dx,

∫ x=1

x=0

(x2 + 2)992x dx =

∫ u=3

u=2

u99 du =
u100

100

∣∣∣∣
3

2

=
3100 − 2100

100
.

• To compute
∫
x
√
x2 + 1 dx, it is helpful to substitute u = x2 + 1⇒ du = 2x dx.

∫
x
√
x2 + 1 dx =

∫
u1/2 du

2
=

1

62
62
3
u3/2 + C ←− (don’t leave in this form)

=
1

3
(x2 + 1)3/2 + C.

Check:

d

dx

[
1

3
(x2 + 1)3/2 + C

]
=

1

63
63
62(x2 + 1)1/2 62 x = x

√
x2 + 1.

• The change of variables u = et ⇒ du = et dt allows us to evaluate
∫

et

et + 1
dt =

∫
du

u+ 1
= log |u+ 1|+ C = log(et + 1) + C.

• The substitution u = x
a
⇒ x = au⇒ dx = a du, where a is a constant, allows us to

evaluate any integral of the form
∫

1

x2 + a2
dx =

∫
1

a2
(
x2

a2
+ 1
) dx

=
1

a2

∫
1

u2 + 1
a du

=
1

a

∫
1

u2 + 1
du

=
1

a
tan−1 u+ C

=
1

a
tan−1

(x
a

)
+ C.
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Problem 7.1: Find ∫
cos t
√

sin t dt.

=
2

3
sin3/2 t+ C.

Problem 7.2: Let α be a real number. Find

∫
x−αe−αx

(
1

x
+ 1

)
dx.

We use the substitution u = log x+ x to rewrite

∫
e−α(log x+x)

(
1

x
+ 1

)
dx =

∫
e−αu du =





−e−αu
α + C if α 6= 0,

u+ C if α = 0.

=




−x−αe−αx

α + C if α 6= 0,

log x+ x+ C if α = 0.

Problem 7.3: Let f : [0, 1]→ R be a continuous function. Prove that

∫ π/2

0

f(sinx) dx =

∫ π/2

0

f(cosx) dx.

This follows on using the substitution u = π/2− x:

∫ π/2

0
f(sinx) dx =

∫ π/2

0
f
(

cos
(π

2
− x
))

dx = −
∫ 0

π/2
f(cosu) du =

∫ π/2

0
f(cosu) du.

7.B Integration by Parts

The Change of Variables theorem in the last section is seen to be just an integral
version of the Chain Rule. Another important and frequently used rule in differential
calculus is the product rule.
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d

dx

∫
dx

Chain Rule Change of Variables

Product Rule Integration by Parts

Table 7.1: Techniques of Integration

Q. Does the product rule also have an integral version?

A. Yes, it is called Integration by Parts, as illustrated in Table 7.1.

Theorem 7.2 (Integration by Parts): Suppose f ′ and g′ are continuous functions.
Then ∫

fg′ = fg −
∫
f ′g.

Proof: Let F = fg. Then F ′ = f ′g + fg′, so fg is an antiderivative of f ′g + fg′:

∫
(f ′g + fg′) = fg to with a constant.

That is, ∫
fg′ dx = fg −

∫
f ′g dx.

Remark: Letting u = f(x), so that du = f ′(x) dx, and v = g(x), so that dv =
g′(x) dx, we may rewrite the integration by parts formula as

∫
u dv = uv −

∫
v du.

Remark: For definite integrals we have, by the FTC,

∫ b

a

fg′ dx =

[
fg

]b

a

−
∫ b

a

f ′g dx.
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• We can integrate
∫
x sinx dx using Integration by Parts:

∫
x︸︷︷︸
f

sinx︸︷︷︸
g′

dx = x︸︷︷︸
f

(− cosx)︸ ︷︷ ︸
g

−
∫

1︸︷︷︸
f ′

(− cosx)︸ ︷︷ ︸
g

dx

∴
∫
x sinx dx = −x cosx+ sinx+ C

Try to pick f so that f ′ is simple and g′ has a known antiderivative. If instead we
pick

f = sinx (⇒ f ′ = cosx)

and

g′ = x

(
⇒ g =

x2

2

)

then the Integration by Parts formula leads to an even more complicated integral:

∫
sinx x dx = sinx

(
x2

2

)
−
∫

cosx

(
x2

2

)
= . . . .

So this choice of f and g′ was not fruitful.

• Noting that ∫
log x dx =

∫
1 · log x dx,

we might be tempted to try Integration by Parts, setting f = 1 and g′ = log x:

∫
log x dx = 1

∫
log x dx−

∫
0

[∫
log x dx

]
dx

=

∫
log x dx.

This doesn’t help! Instead, we could try f = log x and g′ = 1:

∫
log x︸︷︷︸
f

· 1︸︷︷︸
g′

dx = log x︸︷︷︸
f

· x︸︷︷︸
g

−
∫

1

x︸︷︷︸
f ′

x︸︷︷︸
g

dx

= x log x− x+ C.
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• Similarly we can integrate tan−1 by parts and use the substitution u = x2 to find

∫ 1

0

tan−1 x︸ ︷︷ ︸
f

· 1︸︷︷︸
g′

dx =

[
x tan−1 x

]1

0

−
∫ 1

0

x

1 + x2
dx

= 1 tan−1 1− 0−
∫ 12

02

1

1 + u

du

2

=
π

4
− 1

2
[log |1 + u|]10

=
π

4
− 1

2
log 2.

• In order to find ∫
x2

︸︷︷︸
f

ex︸︷︷︸
g′

dx = x2ex −
∫

2xex dx,

we need to know
∫

2xex dx. But that integral is just twice
∫
xex dx, which we can

find by applying integration by parts again:

∫
xex dx = xex −

∫
ex dx = xex − ex + C.

Thus
∫
x2ex dx = x2ex − 2(xex − ex + C)

= x2ex − 2xex + 2ex + C2, where C2 = −2C.

• We can even find integrals of the form

I =

∫
sinx︸︷︷︸
f

ex︸︷︷︸
g′

dx = sinx ex −
∫

cosx ex dx.

What is
∫

cosx ex dx?

∫
cosx︸︷︷︸
f

ex︸︷︷︸
g′

dx = cosx ex −
∫

(− sinx) ex dx

= cosx ex + I.

Thus I = sinx ex− (cosx ex+ I), from which we find I = 1
2

sinx ex− 1
2

cosx ex+C.
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• For nonzero real numbers a and b find

I =

∫
eax sin bx dx,

J =

∫
eax cos bx dx.

On integrating by parts, we obtain

I =

∫
eax sin bx dx =

1

a
eax sin bx− b

a

∫
eax cos bx dx

︸ ︷︷ ︸
J

.

J =

∫
eax︸︷︷︸
g′

cos bx︸ ︷︷ ︸
f

dx =
1

a
eax cos bx+

b

a

∫
eax sin bx dx

︸ ︷︷ ︸
I

,

We thus need to solve the system of equations

I =
1

a
eax sin bx− b

a
J,

J =
1

a
eax cos bx+

b

a
I.

⇒ J =
1

a
eax cos bx+

b

a2
eax sin bx− b2

a2
J

(
1 +

b2

a2

)
J =

(
1

a
cos bx+

b

a2
sin bx

)
eax.

⇒ J =
a cos bx+ b sin bx

a2 + b2
eax + C1,

I =
a sin bx− b cos bx

a2 + b2
eax + C2.

• We now compute, for n ≥ 2,

In =

∫
sinn x dx

=

∫
sinn−1 x︸ ︷︷ ︸

f

sinx︸︷︷︸
g′

dx

= sinn−1 x(− cosx)−
∫

(n− 1) sinn−2 x(cosx)︸ ︷︷ ︸
f ′

(− cosx) dx
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Now ∫
sinn−2 x cos2 x︸ ︷︷ ︸

1−sin2 x

dx =

∫
(sinn−2 x− sinn x) dx = In−2 − In.

Thus

In = − sinn−1 x cosx+ (n− 1)(In−2 − In)

⇒ In = − sinn−1 x cosx+ (n− 1)In−2 − nIn + In

⇒ nIn = − sinn−1 x cosx+ (n− 1)In−2.

That is, ∫
sinn x dx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx.

This is known as a reduction formula.

• For n = 2, the reduction formula states that

∫
sin2 x dx = −1

2
sinx cosx+

1

2

∫
1 dx

= −1

2
sinx cosx+

1

2
x+ C.

Alternatively, one can evaluate this integral using trigonometric identities:

∫
sin2 x dx =

∫
1− cos 2x

2
dx =

1

2
x− 1

4
sin 2x+ C

=
1

2
x− 1

2
sinx cosx+ C.

• For n = 3,

∫
sin3 x dx = −1

3
sin2 x cosx+

2

3

∫
sinx dx

= −1

3
sin2 x cosx− 2

3
cosx+ C.

• Find I =
∫
x3 log x dx.

I =
x4

4
log x−

∫
x4

4

1

x
dx =

x4

4
log x− x4

16
+ C.
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• We can also find a reduction formula for integrals of the form

In =

∫
xµ︸︷︷︸
g′

logn x︸ ︷︷ ︸
f

dx, where µ 6= −1, µ ∈ R, n = 0, 1, 2, 3, . . .

=
xµ+1

µ+ 1︸ ︷︷ ︸
g

logn x︸ ︷︷ ︸
f

−
∫

xµ+1

µ+ 1︸ ︷︷ ︸
g

n logn−1 x

(
1

x

)

︸ ︷︷ ︸
f ′

dx

=
xµ+1

µ+ 1
logn x− n

µ+ 1

∫
xµ logn−1 x dx.

Thus,

In =
xµ+1

µ+ 1
logn x− n

µ+ 1
In−1.

When µ = −1, we can evaluate In directly, by making the substitution u = log x:

In =

∫
logn x

x
dx =

logn+1 x

n+ 1
+ C.

• For n = 0 and µ 6= −1,

I0 =

∫
xµ dx =

xµ+1

µ+ 1
+ C.

• For n = 1 and µ 6= −1,

I1 =

∫
xµ log x dx =

xµ+1

µ+ 1
log x− 1

µ+ 1
I0

=
xµ+1

µ+ 1
log x− xµ+1

(µ+ 1)2
+ C.

• An important integral that will soon need is, for n ≥ 1 and a 6= 0,

Jn,a(x) =

∫
1

(x2 + a2)n
· 1 dx

=
x

(x2 + a2)n
+ 2n

∫
x2

(x2 + a2)n+1
dx

=
x

(x2 + a2)n
+ 2n

∫
(x2 + a2)− a2

(x2 + a2)n+1
dx

=
x

(x2 + a2)n
+ 2n

(∫
1

(x2 + a2)n
dx−

∫
a2

(x2 + a2)n+1
dx

)

=
x

(x2 + a2)n
+ 2n(Jn,a(x)− a2Jn+1,a(x))

⇒ (1− 2n)Jn,a(x) =
x

(x2 + a2)n
− 2na2Jn+1,a(x).
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The resulting reduction formula,

Jn+1,a(x) =
1

2na2

x

(x2 + a2)n
+

2n− 1

2na2
Jn,a(x) (n ≥ 1, a 6= 0),

together with the result (for a 6= 0)

J1,a(x) =

∫
1

x2 + a2
dx =

1

a
arctan

x

a
+ C,

allows us to compute Jn,a(x) for any n ≥ 1.

Problem 7.4: Find ∫ 1

0

arcsinx dx.

∫ 1

0
1 · arcsinx dx = [x arcsinx]10 −

∫ 1

0

x√
1− x2

dx = arcsin 1 +
[
(1− x2)1/2

]1

0
=
π

2
− 1.

Problem 7.5: Let P (x) be a polynomial of degree n. Prove that

∫
P (x)ex dx = ex

n∑

k=0

(−1)kP (k)(x) + C,

where P (k) denotes the kth derivative of P . Give an explicit reason why the sum
terminates at k = n.

This follows immediately on integrating by parts n times, using f(x) = P (x) and g(x) =
ex. Alternatively, we can verify the result by noting that the derivative of the right-hand
side is

ex
n∑

k=0

(−1)kP (k)(x) + ex
n∑

k=0

(−1)kP (k+1)(x) = ex
n∑

k=0

(−1)kP (k)(x)− ex
n+1∑

k=1

(−1)kP (k)(x)

= exP (0)(x)− ex(−1)n+1P (n+1)(x) = exP (x)

since P (n+1)(x) = 0.

7.C Integrals of Trigonometric Functions

Often we encounter integrals of the form
∫

sinm x cosn x dx,

where m and n are integers. Here is an integration strategy:
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Case I. If either of the integers m or n is odd, separate out one factor of sinx or
cosx so that the rest of the integrand may be written entirely as a polynomial in
cosx or a polynomial in sinx, as the case may be. Then make the appropriate
substitution. (Note: if both m and n are odd there will be two possible ways of
doing this.)

Case II. If m and n are both even use the addition formulae

sin2 x =
1− cos 2x

2
, cos2 x =

1 + cos 2x

2
, 2 sinx cosx = sin 2x,

possibly repeatedly, to reduce the problem to the form of Case I.

• Find
∫

sin3 x cos2 x dx, using the substitution u = cosx (du = − sinx dx),

∫
sin3 x cos2 x dx =

∫
sinx(1− cos2 x) cos2 x dx

= −
∫

(1− u2)u2 du = −
∫

(u2 − u4) du

= −
(
u3

3
− u5

5

)
+ C =

1

5
cos5 x− 1

3
cos3 x+ C.

• Find
∫

sin2 x cos3 x dx, using the substitution u = sinx (du = cosx dx),

∫
sin2 x cos3 x dx =

∫
sin2 x(1− sin2 x) cosx dx

=

∫
u2(1− u2) du

=
u3

3
− u5

5
+ C =

1

3
sin3 x− 1

5
sin5 x+ C.

• We can use the fact that sin2 2x = (1− cos 4x)/2 to compute

∫
sin2 x cos2 x dx =

∫ (
1

2
sin 2x

)2

dx

=
1

4

∫
1− cos 4x

2
dx

=
1

8

[
x− sin 4x

4

]
+ C.
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Problem 7.6: Find ∫
cos7 x sin2 x dx

Let u = sinx. The integral then evaluates to

∫
(1− u2)3u2 du =

∫
(1− 3u2 + 3u4 − u6)u2 du =

∫
(u2 − 3u4 + 3u6 − u8) du

=
u3

3
− 3u5

5
+

3u7

7
− u9

9
+ C =

sin3 x

3
− 3 sin5 x

5
+

3 sin7 x

7
− sin9 x

9
+ C.

Remark: In view of Problem 6.10, the same technique can be used to compute∫
coshm t sinhn t dt for integer values of m and n.

Remark: One can use a similar technique to compute certain integrals of the form

∫
tanm x secn x dx,

by exploiting the Pythagorean relation tan2 x+1 = sec2 x, along with the derivatives

d

dx
tanx = sec2 x

and
d

dx
secx =

d

dx

(
1

cosx

)
=

+ sinx

cos2 x
= secx tanx.

For example, if n is an even natural number, the substitution u = tanx will reduce
the integrand to a polynomial. If m is an odd natural number, the substitution
u = secx will work.

• Letting u = tanx, we find

∫
tan4 x sec4 x dx

=

∫
tan4 x(1 + tan2 x) sec2 x dx︸ ︷︷ ︸

du

=

∫
u4(1 + u2) du =

u5

5
+
u7

7
+ C =

tan5 x

5
+

tan7 x

7
+ C.
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• Letting u = secx, we find
∫

tan3 x sec3 x dx

=

∫
tan2 x sec2 x secx tanx dx︸ ︷︷ ︸

du

=

∫
(u2 − 1)u2 du =

u5

5
− u3

3
+ C

=
sec5 x

5
− sec3 x

3
+ C.

Remark: The technique of extracting out an odd factor of cosx or sinx can even be
applied if one or both of the integers m and n are negative. For example, we can
compute the indefinite integral of secx by rewriting the integrand and using the
substitution u = sinx,

∫
secx dx =

∫
cosx

cos2 x
dx =

∫
cosx

1− sin2 x
dx

=

∫
1

1− u2
du =

∫ ( 1
2

1 + u
+

1
2

1− u

)
dx

=
1

2
log |1 + u| − 1

2
log |1− u|+ C

=
1

2
log

∣∣∣∣
1 + sin x

1− sinx

∣∣∣∣+ C

=
1

2
log

∣∣∣∣
(1 + sin x)2

1− sin2 x

∣∣∣∣+ C

= log

∣∣∣∣∣∣

√
(1 + sin x)2

1− sin2 x

∣∣∣∣∣∣
+ C

= log

∣∣∣∣
1 + sin x

cosx

∣∣∣∣+ C

= log |secx+ tanx|+ C. (7.1)

Alternatively, we could use the following trick to obtain this integral:
∫

secx dx =

∫
secx

(
secx+ tanx

secx+ tanx

)
dx

=

∫
(sec2 x+ secx tanx) dx

secx+ tanx

= log |secx+ tanx|+ C.
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• Compute ∫
1

cos3 x
dx =

∫
sec3 x dx =

∫
secx︸︷︷︸
f

sec2 x︸ ︷︷ ︸
g′

dx.

On integrating by parts, we find that
∫

1

cos3 x
dx = secx tanx−

∫
(secx tanx) tanx dx

= secx tanx−
∫

secx(sec2 x− 1) dx

= secx tanx−
∫

sec3 x dx+

∫
secx dx.

Thus

2

∫
sec3 x dx = sec x tanx+ log |secx+ tanx|+ C

⇒
∫

sec3 x dx =
1

2
(secx tanx+ log |secx+ tanx|) + C.

Definition: A birational function R(x, y) is a rational function of the form

R(x, y) =

∑

ij

aijx
iyj

∑

kl

bk`x
ky`

,

where aij and bk` are real numbers (at least one bk` must be nonzero). Note that
a birational function is a rational function of each of its arguments (holding the
other argument fixed).

Remark: Any birational function R(sinx, cosx) of sin x and cosx can be converted
to a rational function of t with the universal substitution t = tan x

2
since

cosx =
1− t2
1 + t2

, sinx =
2t

1 + t2
, dx =

2

1 + t2
dt. (7.2)

Problem 7.7: Use the trigonometric addition formulae to prove that cos x, sinx,
and dx transform according to Eq. (7.2).

• We can use the universal substitution to find an alternative expression for
∫

secx dx:
∫

secx dx =

∫
1 + t2

1− t2
(

2

1 + t2

)
dt =

∫ (
2

1− t2
)
dt =

∫ (
1

1 + t
+

1

1− t

)
dt

= log

∣∣∣∣
1 + tan(x/2)

1− tan(x/2)

∣∣∣∣+ C = log
∣∣∣tan

(x
2

+
π

4

)∣∣∣+ C. (7.3)
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Problem 7.8: Show directly that

tan
(x

2
+
π

4

)
= secx+ tanx.

Hence, Eq. (7.3) and Eq. (7.1) are equivalent.

Remark: Although the universal substitution will always work (i.e. it can always be
used to reduce the integrand to a rational function), it should be viewed only as a
last resort; often, easier methods are available.

7.D Partial Fraction Decomposition

[Muldowney 1990, p. 211]
[Spivak 1994, p. 374]

Consider the following techniques for integrating rational functions.

• Find ∫
x+ 1

x
dx =

∫ (
1 +

1

x

)
dx = x+ log |x|+ C.

• Similarly,

∫
x

x+ 1
dx =

∫ (
x+ 1

x+ 1
− 1

x+ 1

)
dx = x− log |x+ 1|+ C.

• In general,

∫
ax+ b

cx+ d
dx =

∫
ax+ ad

c
− ad

c
+ b

cx+ d
dx

=

∫ a
c
(cx+ d)− ad

c
+ b

cx+ d
dx =

∫ [
a

c
+

(
b− ad

c

)
1

cx+ d

]
dx

=
(a
c

)
x+

(
bc− ad
c2

)
log |cx+ d|+ C.

• We can also evaluate integrals like

∫
1

x(x+ 1)
dx =

∫
(x+ 1)− x
x(x+ 1)

dx =

∫ (
1

x
− 1

x+ 1

)
dx = log |x|−log |x+ 1|+C.
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• Here is a more complicated example:

∫
1

x2(1 + x2)2
dx =

∫
(1 + x2)− x2

x2(1 + x2)2
dx =

∫ [
1

x2(1 + x2)
− 1

(1 + x2)2

]
dx

=

∫ [
(1 + x2)− x2

x2(1 + x2)
− 1

(1 + x2)2

]
dx

=

∫ [
1

x2
− 1

1 + x2
− 1

(1 + x2)2

]
dx = −1

x
− arctanx− J2,1(x),

where

J2,a(x) =

∫
dx

(x2 + a2)2
.

Recall that the indefinite integral

Jn,a(x) =

∫
dx

(x2 + a2)n

can be evaluated using the reduction formula

Jn+1,a(x) =
1

2na2

x

(x2 + a2)n
+

2n− 1

2na2
Jn,a(x).

Setting n = 1 and a = 1 yields

J2,1(x) =
1

2

(
x

x2 + 1

)
+

1

2
J1,1(x),

where J1,1(x) = arctan x+ C. Hence,

∫
1

x2(1 + x2)2
dx = −1

x
− arctanx− 1

2

(
x

x2 + 1

)
− 1

2
arctanx+ C

= −1

x
− 3

2
arctanx− 1

2

(
x

x2 + 1

)
+ C.

Q. Can these techniques be generalized for integrating any rational function?

A. Yes, using the general method of partial fraction decomposition:

Suppose we wish to evaluate the integral

∫
P (x)

Q(x)
dx,

where P and Q are polynomials functions of x.
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Step 1: If the degree of P ≥ degree of Q, we rewrite the integrand in proper form:

P (x)

Q(x)
= S(x) +

R(x)

Q(x)
,

such that the degree of R is less than the degree of Q.

• Suppose that P (x) = x3 +x and Q(x) = x−1. We see that degP = 3 ≥ degQ = 1,
so we put P (x)/Q(x) in proper form, using long division:

P (x)

Q(x)
=
x3 + x

x− 1
= x2 + x+ 2︸ ︷︷ ︸

S(x)

+
2

x− 1︸ ︷︷ ︸
R(x)
Q(x)

.

We can now go ahead and integrate S(x) and, in this case, also R(x)/Q(x) without
doing any further work:

∫
x3 + x

x− 1
dx =

∫ (
x2 + x+ 2 +

2

x− 1

)
dx

=
x3

3
+
x2

2
+ 2x+ 2 log |x− 1|+ C.

Remark: At this stage, we will always be able to find an antiderivative for S(x)
since it is just a polynomial. The following steps may be needed to integrate the
remaining term R(x)/Q(x).

Step 2: Factor Q(x) as far as possible, into products of linear factors and irreducible
quadratic factors.

• Q(x) = x4 − 16 = (x2 − 4)(x2 + 4) = (x− 2)(x+ 2)(x2 + 4).

• Q(x) = (x+ 1)(x+ 2)2(x2 + x+ 3)(x2 + x+ 4)2.

Step 3: Suppose Q(x) has the form

Q(x) = A(x− a)n . . . (x2 + γx+ λ)m . . . ,

where the discriminant γ2−4λ < 0, so that x2+γx+λ cannot be factorized into
linear factors with real coefficients. It is then possible to express R(x)/Q(x),
where degR < degQ in the form

R(x)

Q(x)
=

[
A1

(x− a)
+

A2

(x− a)2
+ . . .+

An
(x− a)n

]
+ . . .

+

[
Γ1x+ Λ1

x2 + γx+ λ
+ . . .+

Γmx+ Λm

(x2 + γx+ λ)m

]
+ . . . .

Step 4: Solve for the coefficients in the numerator by equating like powers of x.
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• We can solve
1

x(x+ 1)
=
A

x
+

B

x+ 1
=
A(x+ 1) +Bx

x(x+ 1)

for the coefficients A and B by equating like polynomial coefficients in the numer-
ator. On setting

1 = A(x+ 1) +Bx = (A+B)x+ A,

we see that the coefficients of x0 and x1 are

x0 : 1 = A,
x1 : 0 = A+B.

The unique solution to these equations is A = 1 and B = −1.

Step 5: Integrate each term separately. Each term of the form A1/(x − a) has an-
tiderivative A1 log |x− a|+ C. Also,

∫
An

(x− a)n
= −

(
An
n− 1

)
1

(x− a)n−1
+ C, for n ≥ 2.

Finally, each integral of the form

∫
Γmx+ Λm

(x2 + γx+ λ)m
dx

can be evaluated by “completing the square” in the denominator,

∫
Γmx+ Λm[(

x+ γ
2

)2 − γ2

4
+ λ
]m dx.

On making the substitution u = x + γ
2
, we can then express the result as the

sum of two integrals,

Γm

∫
u

(u2 + a2)m
du+

(
Λm −

γ

2
Γm

)∫ 1

(u2 + a2)m
du,

where a2 = λ− γ2

4
= −(γ2−4λ)/4 > 0. The first integral can be easily computed

using the substitution w = u2 + a2 and the second integral is just Jm(a).

Remark: If γ = 0 there is no need to complete the square.
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• To find ∫
1− x+ 2x2 − x3

x(x2 + 1)2
dx

we write
1− x+ 2x2 − x3

x(x2 + 1)2
=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
.

This requires that

−x3 + 2x2 − x+ 1 = A(x2 + 1)2 + (Bx+ C)x(x2 + 1) + (Dx+ E)x

= A(x4 + 2x2 + 1) +B(x4 + x2) + C(x3 + x) +Dx2 + Ex

Thus
x4 : 0 = A+B,
x3 : −1 = C,
x2 : 2 = 2A+B +D,
x1 : −1 = C + E ⇒ E = 0,
x0 : 1 = A⇒ B = −1 and D = 1,

so that
∫

1− x+ 2x2 − x3

x(x2 + 1)2
dx =

∫ (
1

x
− x+ 1

x2 + 1
+

x

(x2 + 1)2

)
dx

=

∫ (
1

x
− x

x2 + 1
− 1

x2 + 1
+

x

(x2 + 1)2

)
dx

= log |x| − 1

2
log(x2 + 1)− tan−1 x− 1

2(x2 + 1)
+K.

• Find ∫
x

(x+ a)(x+ b)
dx.

Try to write

x

(x+ a)(x+ b)
=

A

x+ a
+

B

x+ b
=
A(x+ b) +B(x+ a)

(x+ a)(x+ b)
.

Thus
x1 : 1 = A+B ⇒ B = 1− A,
x0 : 0 = Ab+Ba.

Solving for A and B, we find for a 6= b that

0 = Ab+ (1− A)a,

⇒ A =
a

a− b,

B = 1− a

a− b =
−b
a− b.
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∴ If a 6= b then

∫
x

(x+ a)(x+ b)
dx =

∫ a
a−b
x+ a

dx−
∫ b

a−b
x+ b

dx

=
a

a− b log |x+ a| − b

a− b log |x+ b|+ C.

Problem: But what if b = a? Then

1 = A+B

0 = Aa+Ba = (A+B)a,

which is consistent only if a = b = 0.

Remedy: Write
x

(x+ a)2
=

A

x+ a
+

B

(x+ a)2
=
A(x+ a) +B

(x+ a)2
.

Then
x1 : 1 = A
x0 : 0 = Aa+B ⇒ B = −a.

∴
∫

x

(x+ a)2
dx =

∫ [
1

x+ a
− a

(x+ a)2

]
dx

= log |x+ a|+ a

x+ a
+ C.

• Evaluate ∫
x2

(x+ 1)2
dx.

Since deg x2 = 2 ≥ deg(x+ 1)2 = 2, we need to rewrite

x2

(x+ 1)2
= 1− (2x+ 1)

(x+ 1)2
.

Express
2x+ 1

(x+ 1)2
=

A

x+ 1
+

B

(x+ 1)2
;

this requires that 2x+ 1 = A(x+ 1) +B. On equating like powers of x, we find

x1 : 2 = A,
x0 : 1 = A+B ⇒ B = −1,



178 CHAPTER 7. TECHNIQUES OF INTEGRATION

so that
∫

x2

(x+ 1)2
dx =

∫ (
1−

[
A

x+ 1
+

B

(x+ 1)2

])
dx

=

∫ (
1−

[
2

x+ 1
+

−1

(x+ 1)2

])
dx

= x− 2 log |x+ 1| − 1

x+ 1
+ C.

Remark: Show that the substitution u = x + 1 makes the previous problem much
easier!

• Find ∫
1

x3 − 1
dx.

Step 1: We already have degP < degQ.

Step 2: Noting that Q(x) = x3 − 1 has a root at x = 1, we factor

Q(x) = x3 − 1 = (x− 1)(x2 + x+ 1).

The quadratic factor x2 + x+ 1 cannot be factored into linear factors with real
coefficients since it has no real roots (the discriminant 12− 4 = −3 is negative).

Step 3: Write
1

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1
.

Step 4: Then

1 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

= Ax2 + Ax+ A+Bx2 −Bx+ Cx− C.

We find
x2 : 0 = A+B ⇒ B = −A,
x1 : 0 = A−B + C,
x0 : 1 = A− C ⇒ C = A− 1.

The x1 equation then yields 0 = A+A+(A−1), which implies A = 1
3
, B = −1

3
,

and C = −2
3
, so that

∫
1

x3 − 1
dx =

∫ 1
3

x− 1
dx+

∫ −1
3
x− 2

3

x2 + x+ 1
dx.
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Step 5: On completing the square and letting u = x+ 1
2
, we evaluate

∫
x+ 2

x2 + x+ 1
dx =

∫
x+ 2

(x+ 1
2
)2 − 1

4
+ 1

dx

=

∫
u+ 3

2

u2 + 3
4

du

=

∫
u

u2 + 3
4

du+
3

2

∫
1

u2 + 3
4

du

=
1

2
log

∣∣∣∣u2 +
3

4

∣∣∣∣+
3

2

1√
3
4

arctan


 u√

3
4




=
1

2
log
∣∣x2 + x+ 1

∣∣+
√

3 arctan

(
2x+ 1√

3

)
+ C.

Thus
∫

1

x3 − 1
dx =

1

3
log |x− 1| − 1

6
log
∣∣x2 + x+ 1

∣∣− 1√
3

arctan

(
2x+ 1√

3

)
+ C.

Problem 7.9: Evaluate

∫
1

1− u2
du.

∫
1

(1 + u)(1− u)
du =

∫ ( 1
2

1 + u
+

1
2

1− u

)
du =

1

2
log

∣∣∣∣
1 + u

1− u

∣∣∣∣+ C

Note: in the complex plane, the antiderivative may also be written as tanh−1 u+C. However,

in R, the latter solution does not exist outside of (−1, 1).

Problem 7.10: Compute ∫
1

(u2 + 1)(u+ 1)
du.

Express
1

(u2 + 1)(u+ 1)
=

A

u+ 1
+
Bu+ C

u2 + 1
.

By equating coefficients of like powers in 1 = A(u2 + 1) +B(u2 + u) +C(u+ 1), we obtain
the system of equations

u0 : 1 = A+ C,
u1 : 0 = B + C,
u2 : 0 = A+B,
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which has the unique solution A = C = 1/2, B = −1/2. Hence the integral becomes

1

2

∫ (
1

u+ 1
− u

u2 + 1
+

1

u2 + 1

)
du =

1

2
log |u+ 1| − 1

4
log(u2 + 1) +

1

2
arctanu+K,

where K is a constant.

Problem 7.11: Find ∫
x3 + 4x2 + 7x+ 5

(x+ 1)2(x+ 2)
dx.

First, note that (x+ 1)2(x+ 2) = x3 + 4x2 + 5x+ 2. The integral thus becomes
∫

1 +
2x+ 3

(x+ 1)2(x+ 2)
du

On expressing
2x+ 3

(x+ 1)2(x+ 2)
=

A

x+ 1
+

B

(x+ 1)2
+

C

x+ 2

and equating coefficients of like powers in 2x+ 3 = A(x+ 1)(x+ 2) +B(x+ 2) +C(x+ 1)2,
we obtain the system of equations

x0 : 3 = 2A+ 2B + C,
x1 : 2 = 3A+B + 2C,
x2 : 0 = A+ C,

which has the unique solution A = B = 1, C = −1.
The integral thus evaluates to

x+ log

∣∣∣∣
x+ 1

x+ 2

∣∣∣∣−
1

x+ 1
+K,

where K is an arbitrary constant.

Q. Can the method of partial fraction decomposition be used to reduce every rational
function into terms of the types discussed in Step 5?

A. Yes, Theorem A.1 (the Fundamental Theorem of Algebra) and Corollary A.1.2
in Appendix A show that the factorization of the denominator in the form
described in Step 2 is always possible. Furthermore, recursive application of
the following lemmas can be used to show that the decomposition described in
Steps 3 and 4 is always possible. Together, these results show that we can in
principle integrate any rational function in terms of other rational functions,
logarithms, and inverse tangents. Note that for polynomials Q(x) of degree five
and higher, we may have to resort to a numerical method for approximately
locating the roots of the denominator.

Lemma 7.1 (Factor Theorem): If z0 is a root of a polynomial P (z) then P (z) is
divisible by (z − z0).
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Proof: Suppose z0 is a root of a polynomial P (z) =
∑n

k=0 akz
k of degree n.

Consider

P (z) = P (z)− P (z0) =
n∑

k=0

akz
k −

n∑

k=0

akz
k
0 =

n∑

k=0

ak(z
k − zk0 )

=
n∑

k=0

ak(z − z0)(zk−1 + zk−2z0 + . . .+ zk−1
0 ) = (z − z0)Q(z),

where Q(z) =
∑n

k=0 ak(z
k−1 + zk−2z0 + . . .+ zk−1

0 ) is a polynomial of degree n− 1.

Lemma 7.2 (Linear Partial Fractions): Suppose that P (x)/Q(x) is a proper rational
function such that Q(x) = (x− a)nQ0(x), where Q0(a) 6= 0 and n ∈ N. Then there
exists a constant A and a polynomial P0 with degP0 < degQ− 1 such that

P (x)

Q(x)
=

A

(x− a)n
+

P0(x)

(x− a)n−1Q0(x)
.

Proof: Let A = P (a)/Q0(a), so that the polynomial P (x)− AQ0(x) has the root
a. Lemma 7.1 implies P (x)−AQ0(x) = (x− a)P0(x) for some polynomial P0, where
degP0 ≤ max(degP, degQ0) − 1 < degQ − 1. On dividing this result by Q(x), we
obtain

P (x)

Q(x)
− A

(x− a)n
=

P0(x)

(x− a)n−1Q0(x)
.

Lemma 7.3 (Quadratic Partial Fractions): Let x2 + γx + λ be an irreducible qua-
dratic polynomial (i.e. γ2 − 4λ < 0). Suppose that P (x)/Q(x) is a proper rational
function such that Q(x) = (x2 + γx + λ)mQ0(x), where Q0(x) is not divisible by
(x2 + γx + λ) and m ∈ N. Then there exists constants Γ and Λ and a polynomial
P0 with degP0 < degQ− 2 such that

P (x)

Q(x)
=

Γx+ Λ

(x2 + γx+ λ)m
+

P0(x)

(x2 + γx+ λ)m−1Q0(x)
.

Proof: Use long division to express

P (x) = (x2 + γx+ λ)S(x) + (ax+ b),

Q0(x) = (x2 + γx+ λ)T (x) + (cx+ d),

where S and T are polynomials. We want to find Γ and Λ such that

P (x)− (Γx+ Λ)Q0(x) = P0(x)(x2 + γx+ λ),
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i.e., we want ax+ b− (Γx+ Λ)(cx+ d) to be divisible by (x2 + γx + λ). Using long
division, we then see that the remainder [a+ (cγ− d)Γ−Λc]x+ (b+ Γcλ−Λd) must
be zero. We thus need to satisfy the simultaneous equations

(cγ − d)Γ− Λc = −a,
Γcλ− Λd = −b.

We can write this condition as the matrix equation

(7.4)

[
cγ − d −c
cλ −d

][
Γ
Λ

]
=

[
−a
−b

]
.

Let

∆ = det

[
cγ − d −c
cλ −d

]
= d2 − cγd+ c2λ.

If c 6= 0, then ∆ = c2
[(−d

c

)2
+ γ
(−d
c

)
+ λ
]
6= 0 since x2 + γx + λ 6= 0 for all x. If

c = 0, then ∆ = d2 6= 0 since the fact that Q0(x) is not divisible by (x2 + γx + λ)
implies that c and d cannot both be 0. In either case, we see that ∆ 6= 0, so we can
always solve Eq. (7.4) for values of Γ and Λ such that Eq. (7.3) will hold. Note that
degP0 ≤ max(degP, degQ0 + 1)− 2 < degQ− 2.

7.E Trigonometric & Hyperbolic Substitution

Trigonometric and hyperbolic trigonometric substitutions are often useful for eval-
uating integrals containing square roots of quadratic expressions. Several common
trigonometric substitutions for frequently appearing quadratic expressions are listed
in Table 7.2. Note that it may be necessary to complete the square of the quadratic
and shift the variable of integration to put the expression into one of these forms.

• We can use the trigonometric substitution x = a sin θ to find the area between the
half-circle y =

√
a2 − x2 and y = 0:

∫ a

−a

√
a2 − x2 dx =

∫ π
2

−π
2

a cos θ a cos θ dθ = a2

∫ π
2

−π
2

1 + cos 2θ

2
dθ =

π

2
a2.

Note that this result agrees with our original definition of π as the area of the unit
circle.

• We can find the indefinite integral

∫ √
u2 + a2 du
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Expression x Domain Substitution θ or t Domain Identity

√
a2 − x2 [−a, a] x = a sin θ

[
−π

2
, π

2

]
1− sin2 θ = cos2 θ

√
a2 + x2 (−∞,∞) x = a tan θ

(
−π

2
, π

2

)
1 + tan2 θ = sec2 θ

x = a sinh t (−∞,∞) 1 + sinh2 t = cosh2 t

√
x2 − a2 (−∞,−a] ∪ [a,∞] x = a sec θ

[
0, π

2

)
∪
[
π, 3π

2

)
sec2 θ − 1 = tan2 θ

x = a cosh t [0,∞) cosh2 t− 1 = sinh2 t

Table 7.2: Useful trigonometric substitutions.

with the substitution u = a tan θ (du = a sec2 θ dθ). Without loss of generality, we
assume that a > 0. Since

u2 + a2 = a2(tan2 θ + 1) = a2 sec2 θ,

we may write

∫ √
u2 + a2 du =

∫
a sec θ a sec2 θ dθ = a2

∫
1

cos3 θ
dθ

= a2

∫
cos θ

cos4 θ
dθ = a2

∫
cos θ

(1− sin2 θ)2
dθ

= a2

∫
dw

(1− w2)2
= a2

∫
dw

(1− w)2(1 + w)2
,

upon making the substitution w = sin θ. We have thus reduced the integrand
to a rational function that can be integrated by the method of partial fractions.
Alternatively, the integral of 1/cos3 x we obtained above could have be evaluated
by an integration by parts, as we did on page 171.

Problem 7.12: Evaluate ∫ √
u2 + a2 du

instead with the substitution u = a sinh t and Problem 6.10.
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• For 0 < x ≤ 3, the substitution x = 3 sin θ (dx = 3 cos θ dθ) and the fact that
9− x2 = 9 cos2 θ can be used to evaluate the integral
∫ √

9− x2

x2
dx =

∫
3 cos θ

9 sin2 θ
3 cos θ dθ =

∫
1− sin2 θ

sin2 θ
dθ =

∫ (
1

sin2 θ
− 1

)
dθ

= − cot θ − θ + C = −
√

9

x2
− 1− sin−1 x

3
+ C.

Problem 7.13: Find the antiderivative
∫ √

9− x2

x2
dx

for −3 ≤ x < 0.

• The hyperbolic substitution x = a cosh t (dx = a sinh t dt) and the fact that x2−a2 =
a2 sinh2 t allow us to evaluate

∫
dx√
x2 − a2

=

∫
1

a sinh t
a sinh t dt =

∫
dt = t+ C = cosh−1 x

a
+ C.

Problem 7.14: Show that the substitution x = a sec θ can also be used to find
∫

dx√
x2 − a2

and that the answer equals cosh−1 x

a
+ C.

• An integral of the form

I =

∫
x3

(4x2 + 9)
3
2

dx

can first be put in the form of the expressions listed in Table 7.2 with the substi-
tution u = 2x, so that 4x2 + 9 = u2 + 9. One could then apply the substitution
u = 3 sinh t. In fact, both substitutions can be done in a single step by defining
x = 3

2
sinh t:

I =

∫ (( 63
2

)3
sinh3 t

633 cosh3 t

)
3

2
cosh t dt =

3

16

∫
sinh3 t

cosh2 t
dt =

3

16

∫
sinh t(cosh2 t− 1)

cosh2 t
dt

=
3

16

∫ (
sinh t− sinh t

cosh2 t

)
dt =

3

16

(
cosh t+

1

cosh t

)
+ C

=
1

16

(√
4x2 + 9 +

9√
4x2 + 9

)
+ C.

This integral could have also been evaluated with the substitution x = 3
2

tan θ.
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7.F Integration of Certain Irrational Expressions

Q. How do we find integrals like ∫ √
x+ 4

x
dx?

A. Substitute t =
√
x+ 4. Then t2 = x+ 4⇒ 2t dt = dx and

∫ √
x+ 4

x
dx =

∫ (
t

t2 − 4

)
2t dt

= 2

∫
t2

t2 − 4
dt = 2

∫ [
t2 − 4

t2 − 4
+

4

t2 − 4

]
dt

= 2t+ 8

∫
1

t2 − 4
dt

= 2t+ 8

∫ [
A

t− 2
+

B

t+ 2

]
dt





1 = A(t+ 2) +B(t− 2),
0 = A+B ⇒ B = −A,
1 = 2A− 2B = 4A⇒ A = 1

4
.

= 2t+ 8

∫ [ 1
4

t− 2
−

1
4

t+ 2

]
dt

= 2t+ 2 log

∣∣∣∣
t− 2

t+ 2

∣∣∣∣+ C.

Thus ∫ √
x+ 4

x
dx = 2

√
x+ 4 + 2 log

∣∣∣∣
√
x+ 4− 2√
x+ 4 + 2

∣∣∣∣+ C.

In general, one can reduce any integral of the form

∫
R

(
x,

m

√
ax+ b

cx+ d

)
dx,

where R is a birational function of its arguments, to the integral of a rational function
by using the substitution

t =
m

√
ax+ b

cx+ d
.

• We can evaluate ∫
1

x−
√
x+ 2

dx

with the substitution t =
√
x+ 2⇒ t2 = x+ 2⇒ 2t dt = dx,

∫
1

x−
√
x+ 2

dx =

∫ (
1

t2 − 2− t

)
2t dt = 2

∫
t

t2 − t− 2
dt

= 2

∫
t

(t− 2)(t+ 1)
dt,
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which can then be decomposed into partial fractions.

Remark: When more than one radical appears, it is often helpful to take m to be
the least common multiple of the radical indices.

Problem 7.15: Find ∫
1

2
√
x− 3
√
x
dx

using the substitution t = x
1
2·3 = x

1
6 .

Problem 7.16: Find ∫
1

6
√
x+ 4
√
x
dx.

using the substitution t = x
1
12 .

Q. How about integrals of the form
∫ √

x2 + x+ 1 dx?

A. We can first simplify the integrand somewhat by completing the square and mak-
ing the substitution u = x+ 1/2:

∫ √(
x+

1

2

)2

− 1

4
+ 1 dx =

∫ √
u2 +

3

4
du.

The resulting integral is of the form
∫ √

u2 + a2 du, which we computed in
section 7.E.

Remark: Integrals of the form
∫
R(x,

√
ax2 + bx+ c) dx,

where R is a birational function of its arguments, can be calculated with the aid
of one of the three Euler substitutions

(i)
√
ax2 + bx+ c = t± x√a if a > 0;

(ii)
√
ax2 + bx+ c = tx±√c if c > 0;

(iii)
√
ax2 + bx+ c = (x− α)t if α is a real root of ax2 + bx+ c = 0.

(Either sign may be taken in the first two cases.)
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• To find

I =

∫
dx

1 +
√
x2 + 2x+ 2

,

we can use the first Euler substitution since a = 1 > 0. Let

√
x2 + 2x+ 2 = t− x.

Then x2 + 2x+ 2 = t2 − 2tx+ x2, so that

x =
t2 − 2

2(t+ 1)
, dx =

2t(t+ 1)− (t2 − 2)

2(t+ 1)2
dt =

t2 + 2t+ 2

2(t+ 1)2
dt.

The integral becomes

∫
t2 + 2t+ 2(

1 + t− t2−2
2(t+1)

)
2(t+ 1)2

dt =

∫
t2 + 2t+ 2

(t2 + 4t+ 4)(t+ 1)
dt =

∫
t2 + 2t+ 2

(t+ 2)2(t+ 1)
dt,

which we can then solve with the method of partial fractions. Decomposing

t2 + 2t+ 2

(t+ 1)(t+ 2)2
=

A

t+ 1
+

B

t+ 2
+

C

(t+ 2)2
,

we see that

t2+2t+2 = A(t+2)2+B(t+1)(t+2)+C(t+1) = A(t2+4t+4)+B(t2+3t+2)+C(t+1).

The solution to the resulting system of equations,

t0 : 2 = 4A+ 2B + C,
t1 : 2 = 4A+ 3B + C ⇒ B = 0,
t2 : 1 = A+B ⇒ A = 1,

is A = 1, B = 0, and C = −2. Thus

I =

∫
dt

t+ 1
− 2

∫
dt

(t+ 2)2
= log |t+ 1|+ 2

t+ 2
+ C

= log
∣∣∣x+ 1 +

√
x2 + 2x+ 2

∣∣∣+
2

x+ 2 +
√
x2 + 2x+ 2

+ C.

7.G Strategy for Integration
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1. Simplify the integrand.

2. Look for an obvious substitution: see if you can write the integral in the form
∫
f(g(x))g′(x) dx.

If so, try the substitution u = g(x).

3. Classify the integrand.

(a) Trigonometric functions: exploit trigonometric identities to find integrals
of the form 




∫
sinn x cosm x dx∫
tann x secm x dx∫
cotn x cscm x dx



 .

As a last resort, use the universal substitution t = tan x
2
.

(b) Rational functions: use the Method of Partial Fractions.

(c) Polynomials (including 1) × transcendental functions (e.g. Trigonometric,
exponential, logarithmic, and inverse functions): use Integration by Parts.

(d) Radicals:

(i)
√
±x2 ± a2 : use a trigonometric substitution

(ii) n

√
ax+b
cx+d

: t = n

√
ax+b
cx+d

For n
√
g(x) : t = n

√
g(x) sometimes helps.

4. Try again (maybe use several methods combined).

Problem 7.17: (a) Find ∫
x√

1 + x2/3
dx.

Substituting first y = x2/3 and then t = y + 1 we find

∫
x√

1 + x2/3
dx =

∫
y3/2

√
1 + y

3

2
y1/2 dy =

3

2

∫
y2

√
1 + y

dy =
3

2

∫
(t− 1)2

√
t

dt

=
3

2

∫
t3/2 − 2t1/2 + t−1/2 dt =

3

2

(
2

5
t5/2 − 4

3
t3/2 + 2t1/2

)
+ C

=
3

5

(
1 + x2/3

)5/2
− 2
(

1 + x2/3
)3/2

+ 3
(

1 + x2/3
)1/2

+ C

=
1

5

(
1 + x2/3

)1/2
[
3
(

1 + x2/3
)2
− 10

(
1 + x2/3

)
+ 15

]
+ C

=
1

5

(
1 + x2/3

)1/2(
8− 4x2/3 + 3x4/3

)
+ C.
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Alternatively, substituting y = x1/3, then sinh t = y, and finally u = cosh t =
√

1 + y2 =√
1 + x2/3 (which could be used as a more direct substitution), we find

∫
x√

1 + x2/3
dx =

∫
y3

√
1 + y2

3y2 dy = 3

∫
y5

√
1 + y2

dy = 3

∫
sinh5 t

cosh t
cosh t dt

= 3

∫
(u2 − 1)2 du = 3

∫
(u4 − 2u2 + 1) du

= 3

(
u5

5
− 2

u3

3
+ u

)
+ C

=
u

5

(
3u4 − 10u2 + 15

)
+ C

=
1

5

(
1 + x2/3

)1/2(
8− 4x2/3 + 3x4/3

)
+ C.

(b) Find ∫ 4

1

√
x cos

√
x dx.

Let u =
√
x, so that du = dx/(2

√
x) = dx/(2u). The integral becomes

2

∫ 2

1
u2 cosu du.

Integrating by parts, we first compute the indefinite integral

∫
u2 cosu du = u2 sinu− 2

∫
u sinu du = u2 sinu− 2

(
−u cosu+

∫
cosu du

)

= u2 sinu+ 2u cosu− 2 sinu+ C.

Thus the original integral evaluates to

2
[
(u2 − 2) sinu+ 2u cosu

]2
1

= 4 sin 2 + 8 cos 2 + 2 sin 1− 4 cos 1.

7.H Numerical Approximation of Integrals

There are many continuous functions such as

ex

x
,
sinx

x
, and ex

2

,

for which the antiderivative cannot be expressed in terms of the elementary functions
introduced so far. For applications where one needs only the value of a definite
integral, one possibility is to approximate the integral numerically.
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To illustrate the numerical evaluation of definite integrals, it is helpful to consider
an integral for which we know the exact answer, such as

∫ 1

0
f , where f(x) = x2. For

the partition P = {0, 1
2
, 1} we find

L(P, f) = 0

(
1

2

)
+

1

4

(
1

2

)
=

1

8
= 0.125,

U(P, f) =
1

4

(
1

2

)
+ 1

(
1

2

)
=

5

8
= 0.625.

We know that

L(P, f) ≤
∫ 1

0

x2 dx ≤ U(P, f),

but neither L nor U provides us with a very good approximation to the integral.
Notice that the average of L and U , namely (L+U)/2 = 3/8 = 0.375, is much closer
to the exact value (1/3) of the definite integral and that since f is increasing, L(P, f)
is identical to the left Riemann sum SL(P, f) =

∑2
i=1 f(xi−1)(xi − xi−1) and U(P, f)

is the right Riemann sum SR(P, f) =
∑2

i=1 f(xi)(xi − xi−1). This suggests that it
may be better to approximate the integral by using the Trapezoidal Rule

T (Pn, f)
.
=
SL(Pn, f) + SR(Pn, f)

2
=

n∑

i=1

f(xi−1) + f(xi)

2
(xi − xi−1),

Remark: For a uniform partition with fixed a, b, and f , T (Pn, f) depends only on
the number n of points in the partition Pn.

Q. How accurately does T (Pn, f), where Pn is a uniform partition of [a, b] into n

subintervals, approximate
∫ b
a
f? How does the error depend on n?

A. First, we look at a special case of this question where there is only one subinterval.

Theorem 7.3 (Linear Interpolation Error): Let f be a twice-differentiable function
on [0, h] satisfying |f ′′(x)| ≤M for all x ∈ [0, h]. Let

L(x) = f(0) +
f(h)− f(0)

h
x.

Then ∫ h

0

|L(x)− f(x)| dx ≤ Mh3

12
.
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Proof: Let x ∈ (0, h) and

ϕ(t) = L(t)− f(t)− Ct(t− h),

where C is chosen so that ϕ(x) = 0. Then

ϕ(0) = L(0)− f(0) = 0,

ϕ(h) = L(h)− f(h) = 0.

From Rolle’s Theorem, we then know that there exists x1 ∈ (0, x) and x2 ∈ (x, h)
such that

ϕ′(x1) = ϕ′(x2) = 0.

Again by Rolle’s Theorem, we know that there exists c ∈ (x1, x2) such that

0 = ϕ′′(c) = −f ′′(c)− 2C,

noting that L is linear. Therefore C = −f ′′(c)/2 and since ϕ(x) = 0,

L(x)− f(x) =
−1

2
f ′′(c)x(x− h),

where c ∈ (0, h) depends on x. That is, for every x ∈ [0, h] we have

|L(x)− f(x)| ≤ 1

2
Mx(h− x),

so
∫ h

0

|L(x)− f(x)| dx ≤ M

2

∫ h

0

x(h− x) dx =
M

2

[
x2h

2
− x3

3

]h

0

=
Mh3

12
.

Corollary 7.3.1 (Trapezoidal Rule Error): Let P be a uniform partition of [a, b] into
n subintervals of width h = (b− a)/n, and f be a twice-differentiable function on

[a, b] satisfying |f ′′(x)| ≤M for all x ∈ [a, b]. Then the error ETn
.
= T (Pn, f)−

∫ b
a
f

of the uniform Trapezoidal Rule

T (Pn, f) = h
n∑

i=1

f(xi−1) + f(xi)

2

satisfies ∣∣ETn
∣∣ ≤ nMh3

12
=
M(b− a)3

12n2
.

Proof: We need to add up the contribution to the error from each subinterval.
If we temporarily relabel the endpoints of each subinterval 0 and h, we may apply

Theorem 7.3 to obtain a contribution,
∣∣∣
∫ h

0
L−

∫ h
0
f
∣∣∣ ≤

∫ h
0
|L− f | ≤ Mh3/12, from

each of the n subintervals.
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Remark: We can rewrite the Trapezoidal Rule as

T (Pn, f) =
h

2
[f(x0) + 2f(x1) + . . .+ 2f(xn−1) + f(xn)].

• We can use the Trapezoidal Rule to approximate
∫ 2

1
1
x
dx with n = 5 subintervals

of width h = 1/5:

∫ 2

1

1

x
dx ≈ T (Pn, f) =

1

10

[
1

1
+

2

1.2
+

2

1.4
+

2

1.6
+

2

1.8
+

1

2

]

≈ 0.6956.

The exact value of the integral is log 2 = 0.6931 . . ..

Remark: Typically, a more accurate method than the Trapezoidal Rule is the Midpoint
Rule

M(Pn, f) =
n∑

i=1

f

(
xi−1 + xi

2

)
(xi − xi−1),

which has the additional advantage of requiring one less function evaluation.

Problem 7.18: Show that the Midpoint Rule has an error EMn
.
= M(Pn, f) −

∫ b
a
f

satisfying
∣∣EMn

∣∣ ≤ M(b− a)3

24n2
.

Notice that this bound is a factor of 2 smaller than the error bound for the Trape-
zoidal Rule.

• Let us use the Midpoint Rule to approximate
∫ 2

1
1
x
dx with n = 5 subintervals of

width h = 1/5:

∫ 2

1

1

x
dx ≈ M(Pn, f) =

1

5

[
1

1.1
+

1

1.3
+

1

1.5
+

1

1.7
+

1

1.9

]

≈ 0.6919,

which is indeed closer than T (Pn, f) to the exact value of log 2 (by roughly a factor
of 2).
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Remark: Even better are the higher-order methods, such as Simpson’s Rule, which
fits parabolas rather than line segments to the data values f(x0), f(x1), . . . , f(xn),
where n is even. This approximation is given by

S(Pn, f) =
h

3
[f(x0)+4f(x1)+2f(x2)+4f(x3)+ . . .+2f(xn−2)+4f(xn−1)+f(xn)],

with an error ESn
.
= S(Pn, f) −

∫ b
a
f satisfying (cf. [Muldowney 1990, p. 277] with

n→ 2n)
∣∣ESn

∣∣ ≤ K(b− a)5

180n4
if
∣∣f (4)(x)

∣∣ ≤ K ∀x ∈ [a, b].

The formula for S(Pn, f) is obtained by dividing [a, b] into n uniform subintervals
of width h = (b − a)/n with endoints xk = a + kh, where k = 0, . . . , n. In each
fixed interval [x2k, x2k+2], where k ∈ {0, . . . , n

2
− 1}, we fit a parabola of the form

y = A(x− x2k+1)2 +B(x− x2k+1) + C to the data values y2k, y2k+1, and y2k+2:

y2k = Ah2 −Bh+ C,

y2k+1 = C,

y2k+2 = Ah2 +Bh+ C.

On letting u = x − x2k+1, the area under the curve in this subinterval can then be
expressed as

∫ h

−h
(Au2 +Bu+ C) du = 2

∫ h

0

(Au2 + C) du = 2

[
Au3

3
+ Cu

]h

0

=
2Ah3

3
+ 2Ch =

h

3
(2Ah2 + 6C) =

h

3
(y2k + 4y2k+1 + y2k+2).

Thus

∫ b

a

f(x) dx ≈
n
2
−1∑

k=0

h

3
(y2k + 4y2k+1 + y2k+2)

=
h

3
(y0 + 4y1 + y2) +

h

3
(y2 + 4y3 + y4) + . . .+

h

3
(yn−2 + 4yn−1 + yn)

=
h

3
(y0 + 4y1 + 2y2 + 4y3 + . . .+ 2yn−2 + 4yn−1 + yn),

so that

S(Pn, f) =
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)].
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• Let f(x) = 1/x and partition [1, 2] into n = 4 subintervals. Then

log 2 =

∫ 2

1

1

x
dx ≈ S(P4, f) ≡ 1

3

(
1

4

)[
f(1) + 4f

(
5

4

)
+ 2f

(
3

2

)
+ 4f

(
7

4

)
+ f(2)

]

=
1

12

[
1 +

16

5
+

4

3
+

16

7
+

1

2

]
≈ 0.6932,

is very close to the exact value of log 2. In fact, since
∣∣∣∣
d4

dx4

(
1

x

)∣∣∣∣ =

∣∣∣∣
24

x5

∣∣∣∣ ≤ 24 ∀x ∈ [1, 2],

the error ESn in the above result can be no more than 24/(180 · 44) = 0.0005.

Problem 7.19: For uniform partitions, show that

S(P2n, f) =
2

3
(T (Pn, f) + 2M(Pn, f)).

Problem 7.20: Consider the function f(x) = 1/(1+x2) on [0, 1]. Let P be a uniform
partition on [0, 1] with 2 subintervals of equal width.

(a) Compute the lower sum L(P, f).
Since the partition is uniform,

L(P, f) =
1

2

(
4

5
+

1

2

)
=

13

20
.

(b) Compute the upper sum U(P, f).

U(P, f) =
1

2

(
1 +

4

5

)
=

9

10
.

(c) Use your results in part (a) and (b) to find lower and upper bounds for π.
We see that

13

20
= L(P, f) ≤ π

4
=

∫ 1

0

1

1 + x2
dx ≤ U(P, f) =

9

10
.

Thus
13

5
≤ π ≤ 18

5
.

(d) Use the Trapezoidal Rule to find a numerical estimate for π.
We find that π is approximately

4

(
1

2

)(
1 + 4

5

2
+

4
5 + 1

2

2

)
= 2

(
9

10
+

13

20

)
=

31

10
.
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(e) Obtain a better rational estimate for π by using the Midpoint Rule.
We find that π is approximately

4

(
1

2

)(
f

(
1

4

)
+ f

(
3

4

))
= 2

(
16

17
+

16

25

)
= 32

(
1

17
+

1

25

)
= 32

(
42

425

)
=

1344

425
.



Chapter 8

Applications of Integration

8.A Areas between curves

The area A between two continuous functions y = f(x) and y = g(x) on [a, b], where
f(x) ≥ g(x), is given by the difference of the respective areas between these functions
and the x axis:

A =

∫ b

a

f(x)−
∫ b

a

g(x) dx =

∫ b

a

[f(x)− g(x)] dx.

• Find the area bounded by f(x) = x2 + 1 and g(x) = x between x = 0 and x = 1.

A =

∫ 1

0

[f(x)− g(x)] dx =

∫ 1

0

[x2 + 1− x] dx

=

[
x3

3
+ x− x2

2

]1

0

=
1

3
+ 1− 1

2
=

5

6
.

Sometimes we are not given a and b, but we can determine them from the points
of intersections of the two curves.

• Find the area enclosed by the curves f(x) = 2x− x2 and g(x) = x2. Here a and b
are determined by the points of intersection of f(x) and g(x),

f(x) = g(x)

2x− x2 = x2

⇒ 2x = 2x2 ⇒ 0 = 2x2 − 2x = 2x(x− 1)

⇒ x = 0 or x = 1.

196
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Thus

A =

∫ 1

0

[f(x)− g(x)] dx =

∫ 1

0

(2x− x2 − x2) dx =

∫ 1

0

(2x− 2x2) dx

= 2

∫ 1

0

(x− x2) dx = 2

[
x2

2
− x3

3

]1

0

= 2

(
1

2
− 1

3

)
=

1

3
.

Q. What happens when f(x) ≥ g(x) for some values of x but g(x) ≥ f(x) for other
values?

A. We simply take the absolute value of the integrand before integrating. That is,
the general formula for the area A of the region bounded by two continuous
functions f and g and the vertical lines x = a and x = b is

A =

∫ b

a

|f(x)− g(x)| dx,

where

|f(x)− g(x)| =
{
f(x)− g(x) when f(x) ≥ g(x),
g(x)− f(x) when f(x) < g(x).

For continuous functions f and g, the regions where f(x) > g(x) and f(x) <
g(x) are separated by the points where f(x) = g(x).

• Find the area bounded by the curves y = sinx, y = cosx, x = 0 and x = π/2. The
intersection points occur when

sinx = cosx⇒ tanx = 1⇒ x =
π

4
.

We need to split the integration interval [0, π/2] into two parts:

A =

∫ π
2

0

|cosx− sinx| dx =

∫ π
4

0

(cosx− sinx) dx+

∫ π
2

π
4

(sinx− cosx) dx

= [sin x+ cosx]
π
4
0 + [− cosx− sinx]

π
2
π
4

=
1√
2

+
1√
2
− 0− 1− 0− 1 +

1√
2

+
1√
2

= 2
√

2− 2.
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• To find the area of the region bounded by f(x) = x and g(x) = x3, we first solve
for the intersection points:

f(x) = g(x)

⇒ x = x3

⇒ 0 = x3 − x = x(x2 − 1) = x(x− 1)(x+ 1)

⇒ x = −1, 0, 1.

On [−1, 0] we see that f(x) ≤ g(x) and on [0, 1] we see that f(x) ≥ g(x). Thus

A =

∫ 1

−1

|f(x)− g(x)| dx =

∫ 0

−1

[g(x)− f(x)] dx+

∫ 1

0

[f(x)− g(x)] dx

=

∫ 0

−1

(x3 − x) dx+

∫ 1

0

(x− x3) dx =

[
x4

4
− x2

2

]0

−1

+

[
x2

2
− x4

4

]1

0

= 0−
(

1

4
− 1

2

)
+

(
1

2
− 1

4

)
− 0 =

1

4
+

1

4
=

1

2
.

Q. In the above example, what would happen if we tried to compute

∫ 1

−1

[f(x)− g(x)] dx

without first taking the absolute value of the integrand?

A. We would find

∫ 1

−1

[x− x3] dx =

[
x2

2
− x4

4

]1

−1

=

(
1

2
− 1

4

)
−
(

1

2
− 1

4

)
= 0.

In general, whenever f(x)− g(x) is an odd function we will find

∫ 1

−1

[f(x)− g(x)] dx =

∫ 0

−1

[f(x)− g(x)] dx+

∫ 1

0

[f(x)− g(x)] dx = 0,

because the two contributions are of opposite sign, even though the geometric
area of the region bounded by the two functions will (normally) be positive.

• If the function is defined piecewise, we can integrate it in two pieces. For example,
to find the area bounded by y = h(x) and y = 0 between x = 0 and x = 2, where

h(x) =

{
x if 0 ≤ x ≤ 1,
2− x if 1 < x ≤ 2,
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we would perform the integral over [0, 1] and [1, 2] separately:

∫ 2

0

|h(x)| dx =

∫ 1

0

x dx+

∫ 2

1

(2− x) dx =

[
x2

2

]1

0

+

[
−(2− x)2

2

]2

1

=
1

2
+

1

2
= 1.

However, it is even easier to determine the area of this region by finding the area
between the inverse functions x = f(y) = 2 − y and x = g(y) = y, where y varies
from 0 to 1:

∫ 1

0

|f(y)− g(y)| dy =

∫ 1

0

|(2− y)− y| dy = 2

∫ 1

0

(1− y) dy = 2

[
−(1− y)2

2

]1

0

= 1.

8.B Arc Length

Suppose x(t) and y(t) are functions on [a, b] with continuous derivatives. The equa-
tions

x = x(t), y = y(t)

provide a parametric representation of a smooth curve (x(t), y(t)) in R2 in terms of
the parameter t.

As a special case, we could take x(t) = t and y(t) = f(t). The points (t, f(t))
describe the familiar graph of the function f(t). However, the parametric representa-
tion allows us to describe relations, such as circles, that are not the graph of a single
function.

Q. What is the length of such a curve?

A. To answer this question, we must first define the notion of what we mean by
the “length” of a smooth curve. What we seek is an extension of Pythagoras’
Theorem, which allows us to calculate the length of line segments in terms of
their endpoints, to general curves.

Definition: The arc length or path length s(t) of a smooth curve (x(t), y(t)) on [a, b]
is the unique differentiable function s(t) (if it exists) that satisfies s(a) = 0 and the
property that

(8.1)lim
h→0+

s(t+ h)− s(t)√
[x(t+ h)− x(t)]2 + [y(t+ h)− y(t)]2

= 1

for all t ∈ [a, b). That is, the difference between the path lengths s(t+ h) and s(t)
to any points P = (x(t), y(t)) and Q = (x(t+h), y(t+h)) on the curve, respectively,
should reduce to the length of the straight line segment joining P and Q in the
limit h→ 0 (in which case Q→ P ).
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y

x

x(t+ h)− x(t)

y(t+ h)− y(t)

a b

s(a) = 0

s(t)

s(t+ h)
s(b) = L

P = (x(t), y(t))

Q = (x(t+ h), y(t+ h))

Upon dividing the numerator and denominator on the left-hand side of Eq. (8.1)
by h we see that

lim
h→0+

s(t+ h)− s(t)
h√

lim
h→0+

[
x(t+ h)− x(t)

h

]2

+ lim
h→0+

[
y(t+ h)− y(t)

h

]2
= 1.

This gives us a formula for the derivative of s(t) for every t ∈ [a, b],

(8.2)s′(t) =
√

[x′(t)]2 + [y′(t)]2.

Upon integrating this result from a to b, we find an expression for the arc length
L = s(b) of a curve (x(t), y(t)) on [a, b]. Since s(a) = 0, we have

s(b) = s(b)− s(a) =

∫ b

a

s′(t) dt =

∫ b

a

√
[x′(t)]2 + [y′(t)]2 dt.

Remark: One can think of each point on the curve (x(t), y(t)) as the position of a
point in R2 at each time t. The integrand

√
[x′(t)]2 + [y′(t)]2 is just the magnitude

|v| of the velocity vector v = (x′(t), y′(t)). The arc length, being the integral of
the speed |v| with respect to time, is then seen to be the distance travelled by the
point (x(t), y(t)) over the time interval [a, b].

Remark: An easy way to remember the arc-length formula is to multiply Eq. (8.2)
formally by dt and square the result:

ds2 = dx2 + dy2.

This can be thought of as a statement of Pythagoras’ Theorem for differentials.
The arc length can then be computed by integrating ds between t = a and t = b,
remembering that dx = x′(t) dt and dy = y′(t) dt.
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• Although we defined π to be the area of the unit circle, it is also possible to express
the circumference of the unit circle in terms of π. A circle of radius r ≥ 0 centered
on the origin can be described either by the equation x2 + y2 = r2 or in parametric
form as (r cos t, r sin t) for t ∈ [0, 2π]. The circumference of the circle is then given
by

∫ 2π

0

√
[x′(t)]2 + [y′(t)]2 dt =

∫ 2π

0

√
r2 sin2 t+ r2 cos2 t dt =

∫ 2π

0

r dt = 2πr.

That is, π can equivalently be defined as the ratio of the circumference of a circle
of radius r to its diameter 2r.

Remark: If the curve (x(t), y(t)) for t ∈ [a, b] can be described by a differentiable
function y = f(x), then

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ x(b)

x(a)

√
1 +

(
dy

dx

)2

dx =

∫ x(b)

x(a)

√
1 + [f ′(x)]2 dx.

• We could also compute the circumference of a circle as twice the arc length of the
function f(x) =

√
r2 − x2 on [−r, r]:

2

∫ r

−r

√
1 + [f ′(x)]2 dx = 2

∫ r

−r

√
1 +

( −2x

2
√
r2 − x2

)2

dx = 4

∫ r

0

√
1 +

x2

r2 − x2
dx

= 4

∫ r

0

√
r2

r2 − x2
dx = 4r

∫ r

0

1√
r2 − x2

dx

= 4r

∫ 1

0

1√
1− u2

du = 4r[arcsinu]10 = 2πr,

where we have used the substitution u = x/r.

Remark: Of course, we can also express arc length as an integral in y:

s =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ y(b)

y(a)

√(
dx

dy

)2

+ 1 dy.

• Find the arc length L of the parabola y2 = x between (0, 0) and (1, 1).

Since dx/dy = 2y, we know that L =
∫ 1

0

√
(2y)2 + 1 dy. Let 2y = tan θ, so that

2 dy = sec2 θ dθ. Then
∫ √

4y2 + 1 dy =
1

2

∫
sec3 θ dθ =

1

4
(sec θ tan θ + log |sec θ + tan θ|) + C,

using a result from page 171. Thus

L =
1

4

[
2y
√

4y2 + 1 + log
∣∣∣
√

4y2 + 1 + 2y
∣∣∣
]1

0
=

1

4

[
2
√

5 + log
(√

5 + 2
)]
.
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8.C Volumes by Cross Sections

Single-variable calculus can sometimes be used to calculate more than just lengths
and areas. If an expression for the cross-sectional area of an object is known, it is
possible to compute its volume by the method of cross sections (also known as the
method of slabs or slices).

For example, we can of course easily compute the volume of a loaf of bread, where
each slice has same shape and size, using the definition

volume = area× length.

But what if the slices of bread don’t all have the same size (or even the same shape)?
Maybe we have a conical loaf!

Q. What is the volume of such a strange loaf of bread?

A. Slice up the loaf and sum up the area (height × width) × thickness (xi − xi−1)
of each slice to form the Riemann sum

n∑

i=1

A(xi)(xi − xi−1),

where A(x) is the area of a cross section at x obtaining by slicing perpendicular
to the x-axis and xi is a point in [xi−1, xi] Assuming that A(x) is integrable on
[a, b], we can use restrict our attention to uniform partitions and then take the
limit as n→∞ to find the volume:

V = lim
n→∞

n∑

i=1

A(xi)(xi − xi−1) =

∫ b

a

A(x) dx.

• For a conical loaf of bread of length L, the middle slice, at x = L/2 has 1/2 the
height and 1/2 the width of the largest slice, so its area is 1/4 the area of the
largest slice. If we put the apex of the cone at x = 0 and the largest slice, with
area A at x = L, we see by similar triangles that the slice located at x has area
A(x) = (x/L)2A. Thus

V =

∫ L

0

A(x) dx =

∫ L

0

x2

L2
Adx

=
A

L2

∫ L

0

x2 dx =
A

L2

[
x3

3

]L

0

=
A

L2

L3

3
=

1

3
AL.

We have thus established the formula:

Vcone =
1

3
base area× altitude.
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• We can compute the volume enclosed by a sphere of radius R, described by the
equation x2 +y2 +z2 = R2, by partitioning the x axis. This produces circular cross
sections of radius r = r(x) > 0. The value of r is the maximum possible value of y,
which occurs when z = 0:

x2 + y2 = R2 ⇒ y = ±
√
R2 − x2.

That is, r(x) =
√
R2 − x2, so that A(x) = πr2 = π(R2 − x2). Thus

V =

∫ R

−R
π(R2 − x2) dx = 2π

∫ R

0

(R2 − x2) dx = 2π

[
R2x− x3

3

]R

0

=
4

3
πR3.

• Find the volume of the solid obtained by rotating the area bounded by the curves
y =
√
x and y = 0 from 0 to 1 about the x axis.

Since the radius of revolution is given by r(x) = y =
√
x, the cross-sectional area

is given by

A(x) = πr2 = π
(√

x
)2

= πx.

Thus

V =

∫ 1

0

A(x) dx =

∫ 1

0

πx dx = π

[
x2

2

]1

0

=
π

2
.

• We could instead compute the volume of the funnel-shaped object generated by
rotating the region bounded by y =

√
x, x = 0, and y = 1 about the y axis. For

the method of cross sections, we always slice the rotation axis (in this case the y
axis) and express everything else in terms of the corresponding variable (y). We
see that the radius of each circular cross section is r(y) = x = y2, so that the
cross-sectional area is A(y) = πr2 = πy4. The resulting volume of revolution is
thus

V =

∫ 1

0

A(y) dy = π

∫ 1

0

y4 dy = π

[
y5

5

]1

0

=
π

5
.


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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• We could also rotate the region bounded by the curves y =
√
x, y = 0, and x = 1

about the y axis. If we slice the y axis, each cross section is just an annulus of
outer radius rout(y) = 1 and inner radius rin(y) = x = y2, with area A(y) =
πrout

2 − πrin
2 = π(1− y4). The volume of the resulting object is then

V =

∫ 1

0

A(y) dy = π

∫ 1

0

(1− y4) dy = π

[
y − y5

5

]1

0

=
4π

5
.

Problem 8.1: Explain why the volumes calculated in the previous two examples add
up to π, the volume of a cylinder of unit radius and unit height.

• If we rotate the region bounded by f(x) = x and g(x) = x2 between x = 0 and
x = 1 about the x axis,
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we need to find the area of the annular region with outer radius rout(x) = f(x) = x
and inner radius rin(x) = g(x) = x2:

A(x) = πrout
2 − πrin

2 = π
[
x2 − (x2)2

]
= π(x2 − x4).

Thus

V =

∫ 1

0

[π(x2 − x4)] dx = π

[
x3

3
− x5

5

]1

0

= π

(
1

3
− 1

5

)
=

2π

15
.

• We could also rotate the same area about the line y = 2 instead of y = 0.

Now

A(x) = πrout
2 − πrin

2 = π
(
2− x2

)2 − π(2− x)2 = π(x4 − 5x2 + 4x).
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The generated volume is then

V =

∫ 1

0

A(x) dx = π

∫ 1

0

(x4 − 5x2 + 4x) dx = π

[
x5

5
− 5x3

3
+

4x2

2

]1

0

= π

(
1

5
− 5

3
+ 2

)
=

8π

15
.

Problem 8.2: Find the volume generated by rotating the region bounded by f(x) = x
and g(x) = x2 between x = 0 and x = 1 about the line x = −1.

• Consider the three-dimensional object formed by erecting an equilateral triangle,
with altitude perpendicular to the x–y plane, on every chord x = const of the circle
x2 + y2 = 1.

To find the volume of this object, we only need to find the cross-sectional area A(x)
of each equilateral triangle obtained by slicing the object along the planes x = const.
The length of the base of this triangle, which has endpoints (x,−y) and (x, y), where
x2 + y2 = 1, is 2y. Pythagoras’ Theorem tell us that the altitude h of this equilateral
triangle is

√
(2y)2 − y2 =

√
3y. Hence

A(x) =
1

2
(2y)h =

√
3y2 =

√
3(1− x2).
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The volume of the object is then easily computed:

V =

∫ 1

−1

A(x) dx =

∫ 1

−1

√
3(1−x2) dx = 2

∫ 1

0

√
3(1−x2) dx = 2

√
3

[
x− x3

3

]1

0

=
4
√

3

3
.

• Consider the volume of one of the two wedge-shaped regions bounded by the cylinder
x2 + y2 = 16 and the plane containing the x axis and oriented at an angle of
30◦ = π/6 to the x–y plane. If we slice this object in the x direction, we obtain
triangular cross sections with base length y and altitude y tan(π/6) = y/

√
3. Thus

A(x) =
1

2
y

(
y√
3

)
=

16− x2

2
√

3
,

so that

V =

∫ 4

−4

16− x2

2
√

3
dx = 2

∫ 4

0

16− x2

2
√

3
dx =

1√
3

[
16x− x3

3

]4

0

=
128

3
√

3
.

8.D Volume by Shells

Suppose we wish to rotate the area under the curve y = f(x) = 2x2 − x3 about the
y axis. The method of cross sections requires that we slice the y axis and express all
quantities as functions of y. Finding the radii rin and rout amounts to inverting the
equation y = 2x2 − x3 to find two distinct values of x for every y within the limits of
integration.
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In general, performing this kind of inversion can be a difficult problem. In this
example, f has roots only at x = 0 and x = 2 and f(x) > 0 on (0, 2). We can easily
see that the maximum value of f must occur at 4/3, since f ′(x) = 4x−3x2 = x(4−3x).
However, it is much more difficult (although in this case not impossible) to find for
each y the two values rin and rout such that f(rin) = f(rout) = y.

For such cases, there is an easier alternative, the method of cylindrical shells ,
where one computes the volume using Riemann sums of volumes of cylindrical shells:

1. Partition an axis that is perpendicular to the rotation axis. For each subinterval of
the partition, compute the volume of the cylindrical shell generated by revolving
the portion of the curve that lies in that subinterval around the rotation axis.

2. To find the total volume, add up the volumes of all shells and take the limit as
the width of the subintervals goes to 0.

We readily see that the volume of a cylindrical shell of inner radius r1 and outer
radius r2 and height h is given by

πr2
2h− πr2

1h = πh(r2
2 − r2

1) = πh(r2 + r1)(r2 − r1) = (2πr)h∆r,

where r
.
= (r1 + r2)/2 is the mean radius and ∆r

.
= r2 − r1 is the width of the

subinterval.
When the area under the curve y = f(x) is rotated about the y axis, we can

use a uniform partition to form a Riemann sum for the volume by approximating
the height h of the cylindrical shell on each subinterval [xi−1, xi] by the value of the
function f at the mean radius xi = (xi−1 + xi)/2. Then

V = lim
n→∞

n∑

i=1

2πxif(xi)(xi − xi−1) = 2π

∫ b

a

xf(x) dx.

Note here that 0 ≤ a ≤ b.
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• We can compute the volume formed by rotating the region under y = f(x) =
2x2 − x3 about the y axis very easily now, using the method of cylindrical shells:

V =

∫ 2

0

2πx(2x2 − x3) dx = 2π

∫ 2

0

(2x3 − x4) dx

= 2π

[
2x4

4
− x5

5

]2

0

= 2π

(
8− 32

5

)
=

16π

5
.

In general, the volume of the object generated by rotating the region bounded by
the functions f(x) and g(x) about the y axis is given by

V =

∫ 1

0

2πx︸︷︷︸
circumference

|f(x)− g(x)|︸ ︷︷ ︸
height

dx︸︷︷︸
width

,

where we have given a geometric interpretation for each factor.

• When the region bounded by the functions f(x) = x and g(x) = x2 and the lines
x = 0 and x = 1 is rotated about the y axis,
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the volume generated is

V = 2π

∫ 1

0

x(x− x2) dx = 2π

[
x3

3
− x4

4

]1

0

= 2π

(
1

3
− 1

4

)
=
π

6
.

Alternatively, we could have obtained the same answer with the method of cross sections
by slicing the y axis. Since rout =

√
y and rin = y, we see that

V = π

∫ 1

0

(rout
2 − rin

2) dy = π

∫ 1

0

[
(
√
y)2 − y2

]
dy = π

[
y2

2
− y3

3

]1

0

=
π

6
.

• We can of course also rotate a region about the x axis. The region bounded by
y =
√
x, y = 0, x = 0, and x = 1

would generate the volume

V =

∫
2πy︸︷︷︸

circumference

(1− x)︸ ︷︷ ︸
height

dy︸︷︷︸
width

= 2π

∫ 1

0

y(1− y2) dy

= 2π

[
y2

2
− y4

4

]1

0

= 2π

(
1

2
− 1

4

)
=
π

2
,

in agreement with the result we previously obtained using the method of cross sections.

8.E Work

Mechanical work W is defined as the product of force F times distance D:

W = FD, where F = ma,
(work=force× distance) (force=mass× acceleration)
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according to Newton’s Second Law. Suppose you lift 1 kg vertically 1 m, against the
force of gravity (where the acceleration a due to gravity is g = 9.8 m/s2). The force
required is

F = 1kg× 9.8
m

s2
= 9.8

kg ·m
s2

= 9.8 N (Newtons).

The work required is W = FD = 9.8 N× 1 m = 9.8 N ·m = 9.8 J (Joules). Often, the
force F is not constant and we must integrate the force over the entire distance D:

W =

∫ D

0

F (x) dx.

In general, the work required to move an object from x = a to x = b is

W =

∫ b

a

F (x) dx.

For example, the force F required to stretch a spring is proportional to the extension x
relative to its unstretched (equilibrium) position L. That is, F (x) = kx, where k is a
constant.

L

L+ x

Sometimes, the value of k is not given explicitly, but its value can be calculated from
specified force and extension values.

• The force required to stretch a spring from its equilibrium length of 10 cm to 15 cm
is 40 N. Calculate the additional work required to stretch the spring an additional 3
centimeters, to a final length of 18 cm.

Converting all distances to SI (m, k, s) units, we find

40N = k 0.05 m⇒ k =
800 N

m
.

Thus, the work required to stretch the spring from 0.05 m to 0.08 m beyond its
equilibrium length is

W =

∫ 0.08

0.05

kx dx =
1

2
kx2

∣∣∣∣
0.08

0.05

=
1

2

(
800

N

m

)(
0.0064m2 − 0.0025m2

)
= 1.56 J.

Sometimes the force varies due to a nonconstant volume.
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• Suppose, for example, that we want to calculate the work required to pump all of
the water out of an inverted cone (apex down) of height 10 m and radius 4 m, if
the initial water level is 2 m below the top surface of the cone. We could pump out
the water layer by layer, using the method of cross sections.

If we use the variable x to represent height above the apex of the cone, the initial
water level is at 8 m. The area of each cross section of radius r is A(x) = πr2 and the
value of r can be determined in terms of the height x of the cross section by similar
triangles:

r

x
=

4

10
=

2

5
.

Thus A(x) = π(2x/5)2, and the volume of water that we need to pump out is

V =

∫ 8

0

A(x) dx︸ ︷︷ ︸
volume element

=
4

25
π

∫ 8

0

x2 dx.

The mass M of this volume of water can then be expressed in terms of the density of
water, ρ:

M =

∫ 8

0

ρA(x) dx︸ ︷︷ ︸
mass element

= ρV.

It is often a good approximation to assume that the density of water is constant
(independent of depth), with the value ρ = 1000 kg/m3.

The total force needed to lift all of the water is given by Newton’s Second Law:

F = ρg

∫ 8

0

A(x) dx.

However, the distance in meters that we need to raise each layer of water located at
height x to the upper surface, located at height 10, varies with x as 10 − x. Thus,
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the work required to pump all of the water out is given by

W = ρg

∫ 8

0

(10− x)A(x) dx =
4

25
πρg

∫ 8

0

(10− x)x2 dx =
4

25
πρg

∫ 8

0

(10x2 − x3) dx

=
4

25
πρg

[
10x3

3
− x4

4

]8

0

=
4

25
π
(

9.8
m

s2

)(
1000

kg

m3

)(
10

3
− 8

4

)
83 m4

= 3.36× 106 J.

8.F Hydrostatic Force

Integration is often useful for calculating hydrostatic forces, such as the outward
force on one wall of a swimming pool. The hydrostatic force F on a horizontal area
A submerged under water to a depth D is given by the weight of water (of volume
V = AD) above the area: F = ρV g = ρADg. The pressure P , or force per unit area,
arising from this weight of water is given by P = F/A = ρgD. Being independent of
the area, the pressure provides a useful means of computing the hydrostatic force on
an area that is not at a constant depth.

To compute the hydrostatic force on a wall, divide the wall up into infinitesimal
horizontal strips at depth D(y) of width w(y) and height dy, where y is a variable
in the vertical direction. It is often convenient to set up the y axis so that y = 0
corresponds to the surface and with y increasing downwards (with increasing depth)
so that D(y) = y. The force on each horizontal infinitesimal strip at depth D(y)
is then given by the product of the pressure ρgD(y) at that depth times the area
w(y) dy of the strip. The total force on the wall is then given by the integral

F =

∫
ρgD(y)w(y) dy.

• To compute the hydrostatic force on a semicircular wall of radius a which forms
the end of a swimming pool filled with water, between depth y = 0 and y = a, we
note that D(y) = y and compute

F = ρg

∫ a

0

yw(y) dy,

assuming that the density ρ and gravitational acceleration g are both constant.

If (x, y) is a point on the semicircular edge of the wall, then x2 + y2 = a2. Hence
w(y) = 2x = 2

√
a2 − y2. Thus

F = ρg

∫ a

0

2y
√
a2 − y2 dy = ρg

[
−2

3
(a2 − y2)3/2

]a

0

=
2

3
ρga3.

For example, for a = 1 m we find F = 6.67× 103 N.
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8.G Surfaces of Revolution

We have already discussed methods for finding the volume of an object that results
when we rotate a smooth curve about an axis. We now consider how to find the
surface area of such an object.

• If we revolve a line segment L about an axis parallel to itself, we obtain a cylinder.
If we cut this cylinder along L and unfold it, we see immediately that its surface
area is given by the product of its circumference 2πr and length L: A = 2πrL.

L L

2πr

r

In three dimensions, the green shaded region can be wrapped into a cylinder:

• Similarly, the surface area of a cone of slant height ` and radius r is given by

A =

(
2πr

2π`

)

︸ ︷︷ ︸
fraction
of circle

π`2

︸︷︷︸
area of
circle of
radius `

= πr`.
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2πr

`

In three dimensions, the two blue lines in the above figure can be joined by wrapping
the green shaded region into a cone:

• A conical band (frustum) is obtained by removing from a large cone of radius r1

and slant height `1 a smaller cone of radius r2 < r1 and slant height `2 with the
same axis of symmetry,

`1

r1

`2

r2

such that (by similar triangles)
`1

r1

=
`2

r2

.
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The surface area of a conical band may be computed as the difference of the
respective surface areas A1 and A2 of the large and small cones. We may express this
area as

A = A1 − A2 = πr1`1 − πr2`2 = π(r1`1 − r2`2) = π(r1 + r2)(`1 − `2)
.
= 2πr`

since r1`2 − r2`1 = 0, where r
.
= (r1 + r2)/2 is the mean radius and `

.
= `1 − `2 is the

length of the sloped edge of the band.

Remark: Thus, the surface area generated by rotating a straight line segment of
length ` about an axis a mean distance r away is just 2πr`.

We can now calculate the surface area of the object formed by rotating any smooth
curve about an axis.

Definition: The surface area of the object formed by rotating the smooth curve
(x(t), y(t)) on [a, b] is the unique differentiable function A(t) that satisfies A(a) = 0
and the property that

lim
h→0+

A(t+ h)− A(t)

2π

(
r(t) + r(t+ h)

2

)√
[x(t+ h)− x(t)]2 + [y(t+ h)− y(t)]2

= 1,

for all t ∈ [a, b), where r(t) is the distance of (x(t), y(t)) from the axis of rotation.

Hence
A′(t) = 2πr(t)

√
[x′(t)]2 + [y′(t)]2,

so that

A(b) = A(b)− A(a) = 2π

∫ b

a

r(t)
√

[x′(t)]2 + [y′(t)]2 dt.

Remark: An easy way to remember this result is to integrate the product of the
circumference 2πr (associated with a complete revolution of a point on the curve
about the axis) and the infinitesimal arc length ds =

√
dx2 + dy2.

• The area generated by revolving the curve y = f(x) for x ∈ [a, b] about the x axis is

2π

∫
|y| ds = 2π

∫ b

a

|f(x)|
√

1 + [f ′(x)]2 dx.

• The area generated by revolving the curve y = f(x) for x ∈ [a, b] about the y axis is

2π

∫
|x| ds = 2π

∫ b

a

|x|
√

1 + [f ′(x)]2 dx.
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• The surface area of a sphere of radius a can be computed by revolving the curve
y =
√
a2 − x2 for x ∈ [−a, a] about the x axis. Since dy/dx = −x/

√
a2 − x2, the

surface area is seen to be

2π

∫
y ds = 2π

∫ a

−a
y

√
1 +

x2

a2 − x2
dx = 2π

∫ a

−a

√
a2 − x2

(
a√

a2 − x2

)
dx = 4πa2.

• Alternatively, the surface area of a sphere of radius a can be computed using the
parametric representation (a cos t, a sin t) of a half circle, with t ∈ [0, π]. If we
rotate this curve about the x axis, the surface area is seen to be

2π

∫
y ds = 2π

∫ π

0

a sin t
√
a2 sin2 t+ a2 cos2 t dt = 2πa2

∫ π

0

sin t dt = 2πa2[− cos t]π0 = 4πa2.

• The surface area generated by rotating the section of the parabola y = x2 from
(1, 1) to (2, 4) about the y axis can be computed from the formula 2π

∫
x ds =

2π
∫
x
√
dx2 + dy2:

2π

∫ 2

1

x

√
1 +

(
dy

dx

)2

dx = 2π

∫ 2

1

x
√

1 + 4x2 dx

= 2π

[
2

3

(
1 + 4x2

) 3
2

1

8

]2

1

=
π

6

(
17

3
2 − 5

3
2

)
.

8.H Centroids and Pappus’s Theorems

In mechanics, one often needs to find the point at which an object will balance under
its own weight.

Q. At what position should the fulcrum (pivot point) of a (massless) lever be placed
so that a mass m at position x and a mass M at position X are in balance?

A. Archimedes noticed that the masses will be in balance if the product of each mass
times its respective distance from the fulcrum is the same. Such products are
known as moments .

m M

ˆ
x

x̄

X
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Let x denote the position of the fulcrum. Then

m(x− x) = M(X − x)

⇒ (M +m)x = MX +mx

⇒ x =
MX +mx

M +m
.

The position x is known as the center of mass of this system of two masses.
In general, if you have n objects with masses mi located at xi, for i = 1, 2, . . . , n,

they will balance at the point

x =

n∑

i=1

mixi

n∑

i=1

mi

.

The expression
∑n

i=1mixi in the numerator is known as the first moment of the
system. We recognize the expression in the denominator as the total mass of the
system.

Remark: In three dimensions, the center of mass (x, y, z) of a system of n particles
of mass mi located at (xi, yi, zi) is given by

x =

n∑

i=1

mixi

n∑

i=1

mi

, y =

n∑

i=1

miyi

n∑

i=1

mi

, z =

n∑

i=1

mizi

n∑

i=1

mi

.

In we define the total mass M =
∑n

i=1mi, we see that the moments of the whole
system about each axis are the same as those of a single particle of mass M located
at the center of mass (x, y, z).

For a continuum one-dimensional mass distribution, such as a thin wire, mi →
dm

.
= ρ dx, where ρ is the mass density , and

x =

∫
xρ dx

∫
ρ dx

=
1

M

∫
xρ dx,

where M =
∫
ρ dx is the total mass of the system. Given a uniform mass distribution

over the interval [a, b], for which ρ is constant, the center of mass becomes the centroid :

x =

∫ b

a

x dx

∫ b

a

dx

=
1
2
(b2 − a2)

b− a =
a+ b

2
.
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If a wire of length L =
∫
ds is bent to form a smooth curve (x(t), y(t)), then

dm = ρ dx→ ρ ds, so the coordinates (x, y) of the center of mass are

x =

∫
ρx ds

∫
ρ ds

, y =

∫
ρy ds

∫
ρ ds

.

If the wire is of uniform density (ρ = constant), we obtain the coordinates of its
centroid:

x = L−1

∫
x ds, y = L−1

∫
y ds.

Problem 8.3: A piece of wire of length L is bent into a semicircle. Compute the
coordinates of its centroid.

In two dimensions, the centroid (balance point) of a plane area of constant density
(e.g, a uniform plate) can be calculated by splitting the region into infinitesimal strips
of width dx, height `(x), and mass dm = ρ`(x) dx. As we have seen above, the centroid
of each infinitesimal strip is located at its midpoint, say (x, ỹ). The coordinates of
the centroid (x, y) are thus given by

x =

∫
x`(x)dx∫
`(x)dx

, y =

∫
ỹ`(x)dx∫
`(x)dx

.

• To find the centroid (x, y) of the region bounded by the continuous functions y =
f(x) and y = g(x) between x = a and x = b,

a b

f(x)

g(x)

(
x, f(x)+g(x)

2

)

we note that `(x) = |f(x)− g(x)| and ỹ = (f(x) + g(x))/2. Thus

x =
1

A

∫ b

a

x |f(x)− g(x)| dx,
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y =
1

A

∫ b

a

(
f(x) + g(x)

2

)
|f(x)− g(x)| dx,

where A =
∫ b
a
|f(x)− g(x)| dx. In the case where f(x) ≥ g(x), the expression for

y simplifies to

y =
1

2A

∫ b

a

[f 2(x)− g2(x)] dx.

Problem 8.4: Prove the symmetry principle for centroids: the centroid of an object
remains fixed if we flip an object about a line of symmetry.

• The centroid of the semicircular region bounded by f(x) =
√
a2 − x2 and g(x) = 0,

with area A = πa2/2, is (0, y), where

y =
1

2A

∫ a

−a
(a2 − x2) dx =

2

πa2

∫ a

0

(a2 − x2) dx =
2

πa2

[
a2x− x3

3

]a

0

=
4a

3π
.

The following theorem sometimes provides an easier way of computing centroids.

Theorem 8.1 (Pappus’s Theorems): Let L be a line in a plane.

(i) If a curve lying entirely on one side of L is rotated about L, the area of the
surface generated is the length of the curve times the distance travelled by the
centroid.

(ii) If a region lying entirely on one side of L is rotated about L, the volume of
the solid generated is the area of the region times the distance travelled by the
centroid.

Proof:

(i) If we rotate a curve of length L =
∫
ds by an angle α about L (instead of a full

rotation by an angle 2π), the surface area generated is

A =

∫
αx ds = α

∫
x ds = αx

∫
ds = (αx)L,

where x represents the distance of each length element from L and x = L−1
∫
x ds

is the component of the centroid of the curve perpendicular to L. Note that αx
is the distance travelled by the centroid.

(ii) Let `(x) be the length of an infinitesimal strip of the region, parallel to L and
at a distance x from L. Using the method of shells, we find that the volume
generated by rotating the region of area A =

∫
`(x) dx by an angle α about L

is

V =

∫
αx`(x) dx = α

∫
x`(x) dx = αx

∫
`(x) dx = (αx)A,

where x = A−1
∫
x`(x) dx is the centroid of the region.
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• To find the centroid (0, y) of the semicircular region {(x, y) : x2 + y2 ≤ a2, y ≥ 0},
we may use Pappus’s Second Theorem and the volume 4

3
πa3 of a sphere:

4

3
πa3 =

1

2
πa2(2πy)⇒ y =

4a

3π
,

in agreement with our previous result obtained by direct integration.

• By Pappus’s Second Theorem, the volume of a torus of major radius R and minor
radius a is (2πR)(πa2) = 2π2Ra2.

8.I Polar Coordinates

Polar coordinates (r, θ) are related to the usual Cartesian coordinates (x, y) by

x = r cos θ,

y = r sin θ.

Remark: Polar coordinates are not unique:

x = r cos(θ + 2mπ),

y = r sin(θ + 2mπ),

specify the same point ∀m ∈ Z. Also, the points (r, θ+π) and (−r, θ) are identical
and (0, θ) denotes the origin for all θ.

• Describe the circle (x− a)2 + y2 = a2 in polar coordinates.

x2 + y2 − 2ax = 0

⇒ r2 − 2ra cos θ = 0

⇒ r(r − 2a cos θ) = 0

⇒ r = 0 or r = 2a cos θ.

Remark: Thus, a point on the circle (x−a)2 + y2 = a2 is either the origin (r = 0) or
else it lies on the curve r = 2a cos θ. In fact, since the origin is already contained
in the second solution r = 2a cos θ (at θ = π/2), this equation alone generates the
entire curve.

y

x

θ

r cos θ

r sin θ

(x, y)

r

(a, 0) (2a, 0)
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Remark: Notice that θ varies from 0 to 2π, the point (r, θ) moves twice around
the circle (this corresponds to an elementary result from geometry that the angle
subtended by an arc measured at the center of a circle is twice that measured on
the circumference). Therefore, in order to compute the arc length of the circle
r(θ) = 2a cos θ, we should only integrate from 0 to π.

Q. How can we, using polar coordinates, find the arc length of a curve r = r(θ) for
θ ∈ [a, b]?

A. Use the fact that x(θ) = r(θ) cos θ and y(θ) = r(θ) sin θ:

∫
ds =

∫ √
dx2 + dy2 =

∫ b

a

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ

=

∫ b

a

√
[r′(θ) cos θ − r(θ) sin θ]2 + [r′(θ) sin θ + r(θ) cos θ]2 dθ

=

∫ b

a

√
r′2 + r2 dθ.

• The circumference of the circle r = 2a cos θ (which has radius a), is
∫ π

0

√
4a2 sin2 θ + 4a2 cos2 θ dθ = π(2a) = 2πa.

As noted above, we only integrate from θ = 0 to θ = π.

Q. Can we also compute the area of a region bounded by a continuous curve, say
r = f(θ) ≥ 0 for θ ∈ [a, b], in polar coordinates?

A. Yes. Let P be a partition of [a, b]. If f is continuous, there exists points θ∗
and θ∗ where f takes on its minimum and maximum values, respectively, in
each subinterval of P .

y

x

θ∗ θ∗
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The area contribution ∆A from each subinterval of width ∆θ must lie between
the areas r2∆θ/2 bounded by the circular arcs r = f(θ∗) and r = f(θ∗):

f 2(θ∗)
∆θ

2
≤ ∆A ≤ f 2(θ∗)

∆θ

2

⇒ lim
∆θ→0

f 2(θ∗)

2
≤ lim

∆θ→0

∆A

∆θ

≤ lim
∆θ→0

f 2(θ∗)

2
.

Since lim
∆θ→0

f 2(θ∗) = lim
∆θ→0

f 2(θ∗) = f 2(θ), we see from the Squeeze Principle for Functions

that
dA

dθ
=

1

2
f 2(θ)⇒ A =

1

2

∫
f 2(θ) dθ.

• The area enclosed by the cardioid r = a(1 + cos θ)

x

y

(a, 0) (2a, 0)

is given by

A =
1

2

∫ 2π

0

a2(1+cos θ)2 dθ =
a2

2

∫ 2π

0

(1+2 cos θ+cos2 θ) dθ =
a2

2
(2π+π) =

3πa2

2
.



Chapter 9

Improper Integrals and Infinite
Series

Until now, we have only defined the Riemann integral for bounded functions on
closed intervals. In this chapter, we discuss situations where these restrictions may
be somewhat relaxed.

9.A Improper Integrals

First, we extend the notion of integration to certain bounded functions on infinite
intervals.

Definition: Let f be a function that is integrable on every closed subinterval [a, T ]
of [a,∞). We define the improper integral

∫ ∞

a

f(x) dx
.
= lim

T→∞

∫ T

a

f(x) dx.

If this limit exists and is finite we say that
∫∞
a
f(x) dx converges ; otherwise we say

that
∫∞
a
f(x) dx diverges .

• For which values of p does
∫∞

1
x−p dx exist? To answer this question, we first

compute the definite integral

∫ T

1

dx

xp
=





[
x1−p

1− p

]T

1

if p 6= 1,

[log |x|]T1 if p = 1.

But lim
T→∞

T 1−p exists only when p ≥ 1. Also, lim
T→∞

log T =∞. Thus

∫ ∞

1

dx

xp
= lim

T→∞

∫ T

1

dx

xp
=





1

p− 1
if p > 1,

∞ if p ≤ 1.

224
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Problem 9.1: Show that
∫∞

0
sinx dx diverges.

Problem 9.2: Let f : R→ R be integrable on every closed interval. Show that
∫ ∞

a

f(x) dx ∈ C ⇒
∫ ∞

b

f(x) dx ∈ C

for any real numbers a and b.

Definition: Let f be a function that is integrable on every closed subinterval [T, a]
of (−∞, a]. Define ∫ a

−∞
f(x) dx

.
= lim

T→−∞

∫ a

T

f(x) dx.

Problem 9.3: Evaluate

∫ 0

−∞
xex dx.

Q. Sometimes an explicit form for the antiderivative of an integrable function f is
unavailable. Are there other ways to determine whether the improper integral∫∞
a
f(x) dx converges?

A. Yes. The following theorem, which is essentially a function analog of Theorem 2.3,
will help us develop convergence tests for improper integrals.

Theorem 9.1 (Increasing Functions: Bounded ⇐⇒ Asymptotic Limit Exists): Let
f be a monotonic increasing function on [a,∞). Then f is bounded on [a,∞) ⇐⇒
lim
x→∞

f exists.

Proof:

“⇒” The set S = {f(x) : x ≥ a} is non-empty and bounded, so we may
define L = supS. Given ε > 0, we know that L − ε is not a supremum
of S, so there exists X ≥ a such that f(X) > L− ε. Then

x > X ⇒ L− ε < f(X) ≤ f(x) ≤ L.

That is, lim
x→∞

f(x) = L.

“⇐” Let ε = 1. There exists X ∈ R such that

x > X ⇒ L− 1 < f(x) < L+ 1.

For a ≤ x ≤ X, we have f(a) ≤ f(x) ≤ f(X). Hence f is bounded by
max(f(X), L+ 1) and min(f(a), L− 1).
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Corollary 9.1.1 (Improper Integrals of Non-Negative Functions): Let f be a non-
negative function that is integrable on [a, T ] for all T ≥ a. If there exists a bound B

such that
∫ T
a
f ≤ B for all T ≥ a, then

∫∞
a
f converges.

Proof: Apply Theorem 9.1 to the increasing function F (x) =
∫ x
a
f , noting that

y ≥ x⇒ F (y)− F (x) =

∫ y

x

f ≥ 0.

Definition: If
∫∞
a
f converges, we say

∫∞
a
f ∈ C, the set of convergent improper

integrals. Otherwise, we say
∫∞
a
f ∈ D, the set of divergent improper integrals.

Corollary 9.1.2 (Comparison Test): Suppose 0 ≤ f(x) ≤ g(x) and
∫ T
a
f and

∫ T
a
g

exist for all T ≥ a. Then

(i)
∫∞
a
g ∈ C ⇒

∫∞
a
f ∈ C;

(ii)
∫∞
a
f ∈ D ⇒

∫∞
a
g ∈ D.

Proof: Note that 0 ≤
∫ T
a
f ≤

∫ T
a
g and both integrals are monotonic increasing

functions of T . Apply Theorem 9.1.

• To decide on whether ∫ ∞

1

1

1 + x3
dx

converges, we could first find

∫ T

1

dx

1 + x3
and then check that the limit as T →∞

exists. However, it is much easier to use Corollary 9.1.2 (i), noting that

0 ≤ 1

1 + x3
≤ 1

x2

for all x ≥ 1. That is,
∫ ∞

1

1

x2
dx ∈ C ⇒

∫ ∞

1

1

1 + x3
dx ∈ C.

• We may use the previous result to establish that
∫ ∞

0

1

1 + x3
dx

exists, even though 1/x2 is not bounded (and hence
∫∞

0
x−2 dx does not exist).

This is seen by writing
∫ ∞

0

1

1 + x3
dx = lim

T→∞

∫ T

0

1

1 + x3
dx = lim

T→∞

(∫ 1

0

1

1 + x3
dx+

∫ T

1

1

1 + x3
dx

)

=

∫ 1

0

1

1 + x3
dx+

∫ ∞

1

1

1 + x3
dx.
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• To show that ∫ ∞

1

e−x
2

dx

converges we note on [1,∞) that x ≤ x2 so that −x2 ≤ −x and hence

0 ≤ e−x
2 ≤ e−x.

On noting that
∫ ∞

1

e−x dx = lim
T→∞

[
−e−x

]T
1

= lim
T→∞

(
e−1 − e−T

)
=

1

e
,

we make use of the Comparison Test:
∫ ∞

1

e−x dx converges ⇒
∫ ∞

1

e−x
2

dx converges.

• We may use the previous result to establish that
∫ ∞

0

e−x
2

dx

converges:

∫ ∞

0

e−x
2

dx = lim
T→∞

∫ T

0

e−x
2

dx = lim
T→∞

(∫ 1

0

e−x
2

dx+

∫ T

1

e−x
2

dx

)

=

∫ 1

0

e−x
2

dx+

∫ ∞

1

e−x
2

dx.

Problem 9.4: Use the fact that

∫ ∞

1

1

ex
dx converges to show that

∫ ∞

1

1

x+ ex
dx

converges.

Remark: A few useful improper integrals that can be used with the Comparison Test
are listed in Table 9.1.

Corollary 9.1.3 (Limit Comparison Test): Let f and g be positive integrable func-
tions satisfying

lim
x→∞

f(x)

g(x)
= L.

(i) For 0 < L <∞ we have
∫∞
a
g ∈ C ⇐⇒

∫∞
a
f ∈ C.

(ii) When L = 0 we can only say
∫∞
a
g ∈ C ⇒

∫∞
a
f ∈ C.
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Convergent Divergent

∫ ∞

1

1

xp
dx (p > 1)

∫ ∞

1

1

xp
dx (p ≤ 1)

∫ ∞

0

e−αx dx (α > 0)

∫ ∞

0

e−αx dx (α ≤ 0)

∫ 1

0+

1

xp
dx (p < 1)

∫ 1

0+

1

xp
dx (p ≥ 1)

∫ 1

0+
log x dx

∫ π/2−

0

tanx dx

Table 9.1: Useful integrals for Comparison Test.

Proof:

(i) For x sufficiently large, we have (taking ε = L/2 > 0),

L

2
g(x) ≤ f(x) ≤ 3L

2
g(x).

From Corollary 9.1.2 we then deduce
∫ ∞

a

g ∈ C ⇐⇒
∫ ∞

a

f ∈ C.

(ii) Exercise.

• Since

lim
x→∞

x3 − 1

x3
= 1,

we see immediately that
∫ ∞

2

1

x3
dx ∈ C ⇒

∫ ∞

2

1

x3 − 1
dx ∈ C.

Remark: When L = 0, it is possible for
∫∞

1
f ∈ C but

∫∞
1
g ∈ D. For example,

consider f(x) = 1/x2 and g(x) = 1/x, for which lim
x→∞

f(x)/g(x) = lim
x→∞

1/x = 0.

Remark: Integration may thus be extended to bounded functions of x that converge
to zero sufficiently fast as x → ∞. We now see that it is even possible to extend
our notion of improper Riemann integration to certain unbounded functions.
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Definition: If f is integrable on [a, t] for all t ∈ (a, b) we define

∫ b−

a

f = lim
t→b−

∫ t

a

f.

We say that
∫ b−
a
f converges if the limit exists; otherwise it diverges . Similarly, we

define ∫ b

a+
f = lim

t→a+

∫ b

t

f

if f is integrable on [t, b] for all t ∈ (a, b).

• Let

f(x) =





1√
x

if 0 < x ≤ 1,

0 if x = 0.

We know that
∫ 1

0
f does not exist, since f is not bounded. However, the improper

integral
∫ 1

0+
f does exist:

∫ 1

0+
f = lim

t→0+

∫ 1

t

f = lim
t→0+

∫ 1

t

1√
x
dx = lim

t→0+

[
2x

1
2

]1

t
= lim

t→0+

(
2− 2t

1
2

)
= 2.

Remark: If f is Riemann integrable on [a, b], we know from Corollary 5.5.3 that

∫ b−

a

f =

∫ b

a

f =

∫ b

a+
f.

• For which values of p is
∫∞

0+
x−p dx convergent?

Since ∫ 1

0+

1

xp
dx ∈ D for p ≥ 1,

∫ ∞

1

1

xp
dx ∈ D for p ≤ 1,

we see that ∫ ∞

0+

1

xp
dx ∈ D ∀p.

Theorem 9.2 (Cauchy Criterion for Improper Integrals): Let f be a function.

(i) Suppose
∫ t
a
f exists for all t ∈ (a, b). Then

∫ b−
a
f ∈ C ⇐⇒ ∀ε > 0, ∃δ > 0

such that

x, y ∈ (b− δ, b)⇒
∣∣∣∣
∫ y

x

f

∣∣∣∣ < ε;
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(ii) Suppose
∫ T
a
f exists for all T > a. Then

∫∞
a
f ∈ C ⇐⇒ ∀ε > 0, ∃T such that

T2 ≥ T1 ≥ T ⇒
∣∣∣∣
∫ T2

T1

f

∣∣∣∣ < ε.

Proof:

(i) Apply the Cauchy Criterion, Corollary 3.1.2, to F (t) =
∫ t
a
f .

(ii) Exercise.

Definition: Let f be a function that is integrable on every finite interval [c, d] of R.
If the improper integrals

∫ a

−∞
f(x) dx and

∫ ∞

a

f(x) dx

both converge for some a ∈ R, then we say that the improper interval

∫ ∞

−∞
f(x) dx

.
=

∫ a

−∞
f(x) dx+

∫ ∞

a

f(x) dx

converges.

Problem 9.5: Show that if
∫∞
−∞ f(x) dx exists for one a ∈ R, it will exist for all

a ∈ R and its value will not depend on the choice of a.

Remark: We cannot simplify this definition to

∫ ∞

−∞
f(x) dx = lim

T→∞

∫ T

−T
f(x) dx.

For example, while

lim
T→∞

∫ T

−T
x dx = lim

T→∞
0 = 0,

the improper integrals

∫ a

−∞
x dx and

∫ ∞

a

x dx

do not converge for any a ∈ R. That is,
∫∞
−∞ x diverges.
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Remark: However, if
∫∞
−∞ f ∃ then

lim
T→∞

∫ T

−T
f ∃ =

∫ ∞

−∞
f

since, by the properties of limits,
∫ ∞

−∞
f = lim

T→∞

∫ a

−T
f + lim

T→∞

∫ T

a

f = lim
T→∞

[∫ a

−T
f +

∫ T

a

f

]
= lim

T→∞

∫ T

−T
f.

Problem 9.6: Evaluate

∫ ∞

−∞

1

1 + x2
dx.

Remark: Before blindly applying the Fundamental Theorem of Calculus to an in-
tegral, it is important to check first whether the integrand is bounded. If the
integrand is unbounded at some point within the interval of integration, one must
split the integral up into two improper integrals and check that both pieces con-
vergence. For example, the integral

∫ 3

0

1

x− 1
dx

does not evaluate to [log |x− 1|]30 = log 2 − log 1 = log 2 because the improper

integrals
∫ 1−

0
1

x−1
dx and

∫ 3

1+
1

x−1
dx do not converge.

Definition: Let f be defined and continuous everywhere on an interval [a, b] except
possibly at a point c ∈ [a, b]. If f is unbounded on [a, b] we know that the Riemann
integral of f on [a, b] does not exist. Nevertheless, it is sometimes convenient to
define the improper integral

∫ b

a

f
.
= lim

t→c−

∫ t

a

f + lim
t→c+

∫ b

t

f.

If both limits exist, we say that the improper Riemann integral
∫ b
a
f converges.

Problem 9.7: Do the following improper integrals converge or diverge? Evaluate
those that converge.

(a) ∫ 2

−2

1

(x− 1)2/3
dx.

(b) ∫ 2

−2

1

(x− 1)4/3
dx.
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Problem 9.8: Use the fact that

∫ 1

0+

1√
x
dx converges to show that

∫ 1

0+

e−x
2

√
x
dx con-

verges.

Problem 9.9: Use the fact that

∫ 1

0+

1

x
dx diverges to show that

∫ 1

0+

1

x sin2 x
dx di-

verges.

Problem 9.10: In polar coordinates, (x, y) = (r cos θ, r sin θ), consider the curve

r(θ) =
1

1 + θ
for θ ∈ [0,∞).

(a) Sketch this curve on an x–y graph.

y

x
(1, 0)

(b) Express the arc length of this curve as an improper integral.
Since r′(θ) = −1/(1 + θ)2,

∫ ∞

0

√
1

(1 + θ)4
+

1

(1 + θ)2
dθ =

∫ ∞

1

√
1

u4
+

1

u2
du =

∫ ∞

1

1

u

√
1

u2
+ 1 du.

(c) Does this curve have finite length? Justify your answer.
No, the integral diverges:

0 ≤ 1

u
≤ 1

u

√
1

u2
+ 1

and

∫ ∞

1

1

u
du diverges, so we know from the Comparison Test that

∫ ∞

1

1

u

√
1

u2
+ 1 du

also diverges.

Problem 9.11: Use the Comparison Test to show that
∫ ∞

0+

2 + sin x√
x

dx

diverges.
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9.B Infinite Series

Definition: Let Sn =
∑n

k=1 ak. If lim
n→∞

Sn exists and equals a real number S, we say

that the infinite series
∞∑

k=1

ak

converges , with sum S, and write
∑∞

k=1 ak ∈ C. Otherwise, we say
∑∞

k=1 ak is
divergent and write

∑∞
k=1 ak ∈ D.

Definition: The finite sum Sn =
∑n

k=1 ak is a partial sum of the series
∑∞

k=1 ak.

Problem 9.12: Prove that the geometric series
∑∞

k=0 r
k converges if and only if

|r| < 1, with sum 1/(1− r). Hint: Show that

Sn =
n∑

k=0

rk =
1− rn+1

1− r

by considering the telescoping sum rSn − Sn.

• Consider

0.4 = 0.444 . . . = lim
n→∞

n∑

k=1

4

(
1

10k

)
=

(
4

10

)
lim
n→∞

n∑

k=0

(
1

10

)k
=

(
4

10

)
1

1− 1
10

=
4

9
.

Theorem 9.3 (Cauchy Criterion for Infinite Series): The infinite series
∑∞

k=1 ak
converges if and only if for each ε > 0, there exists N ∈ N such that

m > n > N ⇒
∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

Proof: Apply the Cauchy Criterion to {Sn}∞n=1, noting that

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ = |Sm − Sn−1| .

• Thus ∞∑

k=1

(−1)k ∈ D since |Sn+1 − Sn| = |an+1| = 1 ∀n.
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• Recall that the harmonic series is divergent:

∞∑

k=1

1

k
∈ D since |S2n − Sn| =

∣∣∣∣∣
2n∑

k=n+1

1

k

∣∣∣∣∣ =
1

n+ 1
+ . . .+

1

2n︸ ︷︷ ︸
n terms

> n

(
1

2n

)
=

1

2
.

• However,
∞∑

k=1

1

k(k + 1)

converges to the value 1 since

Sn =
n∑

k=1

1

k(k + 1)
=

n∑

k=1

(
1

k
− 1

k + 1

)
=

n∑

k=1

1

k
−

n+1∑

k=2

1

k
= 1− 1

n+ 1
.

Problem 9.13: Let α > 0. Evaluate

∞∑

k=0

1

(α + k)(α + k + 1)
.

We can compute the partial sums using partial fraction decomposition:

n∑

k=0

1

(α+ k)(α+ k + 1)
=

n∑

k=0

1

α+ k
−

n∑

k=0

1

α+ k + 1

=
n∑

k=0

1

α+ k
−
n+1∑

k=1

1

α+ k

=
1

α
− 1

α+ n+ 1
.

As n→∞, the sum converges to 1/α.

Theorem 9.4 (Divergence Test): If
∞∑

k=1

ak ∈ C then lim
n→∞

an = 0.

Proof: In terms of the convergent sequence of partial sums {Sn}∞n=1 we may express

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn−1 − lim
n→∞

Sn = 0.



9.B. INFINITE SERIES 235

Remark: The contrapositive of Theorem 9.4 states

lim
n→∞

an 6= 0⇒
∞∑

k=1

ak ∈ D.

However,

lim
n→∞

an = 0 6⇒
∞∑

k=1

ak ∈ C.

For example,
∞∑

k=1

1

k
∈ D even though lim

k→∞

1

k
= 0.

Theorem 9.5 (Non-Negative Terms: Convergence ⇐⇒ Bounded Partial Sums): If
ak ≥ 0 and Sn =

∑n
k=1 ak then

∑∞
k=1 ak ∈ C ⇐⇒ {Sn}∞n=1 is a bounded sequence.

Proof: Since Sn+1 = Sn + an+1 ≥ Sn we know that {Sn}∞n=1 is an increasing
sequence. It then follows from Theorem 2.3 that {Sn}∞n=1 is convergent ⇐⇒ {Sn}∞n=1

bounded.

Corollary 9.5.1 (Comparison Test): If 0 ≤ ak ≤ bk for k ∈ N then

(i)
∞∑

k=1

bk ∈ C ⇒
∞∑

k=1

ak ∈ C;

(ii)
∞∑

k=1

ak ∈ D ⇒
∞∑

k=1

bk ∈ D.

Proof:

(i) Let Sn =
∑n

k=1 ak and Tn =
∑n

k=1 bk. Since 0 ≤ Sn ≤ Tn,

∞∑

k=1

bk ∈ C ⇒ {Tn}∞n=1 bounded ⇒ {Sn}∞n=1 bounded ⇒
∞∑

k=1

ak ∈ C.

(ii) This is just the contrapositive of (i).

Remark: The condition “0 ≤ ak” in Corollary 9.5.1 cannot be dropped. Consider
the counterexample given by ak = −1, bk = 0.

Corollary 9.5.2 (Limit Comparison Test): Suppose ak ≥ 0 and bk > 0 for all k ∈ N
and lim

k→∞
ak/bk = L. Then



236 CHAPTER 9. IMPROPER INTEGRALS AND INFINITE SERIES

(i) if 0 < L <∞:
∞∑

k=1

ak ∈ C ⇐⇒
∞∑

k=1

bk ∈ C;

(ii) if L = 0:
∞∑

k=1

bk ∈ C ⇒
∞∑

k=1

ak ∈ C.

Proof:

(i) This follows from Corollary 9.5.1 since for all sufficiently large k,

0 <
L

2
<
ak
bk
<

3L

2
⇒ 0 <

(
L

2

)
bk < ak <

(
3L

2

)
bk.

(ii) If L = 0 then for sufficiently large k, 0 ≤ ak/bk < ε = 1⇒ 0 ≤ ak < bk. Apply
Corollary 9.5.1.

Remark: When L = 0 it is possible that
∑∞

k=1 ak ∈ C but
∑∞

k=1 bk ∈ D. Consider

ak =
1

k(k + 1)
, bk =

1

k
, lim

k→∞

ak
bk

= lim
k→∞

1

k + 1
= 0.

• Since

lim
k→∞

k2

k(k + 1)
= 1,

we see that ∞∑

k=1

1

k(k + 1)
∈ C ⇒

∞∑

k=1

1

k2
∈ C.

• Since

lim
k→∞

2k − 1

2k
= 1,

we see that ∞∑

k=1

1

2k
∈ C ⇒

∞∑

k=1

1

2k − 1
∈ C.

Corollary 9.5.3 (Ratio Comparison Test): If ak > 0 and bk > 0 and

ak+1

ak
≤ bk+1

bk

for all k ≥ N , then
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(i)
∞∑

k=1

bk ∈ C ⇒
∞∑

k=1

ak ∈ C;

(ii)
∞∑

k=1

ak ∈ D ⇒
∞∑

k=1

bk ∈ D.

Proof: For k ≥ N we have

ak+1

ak
≤ bk+1

bk
⇒ ak+1

bk+1

≤ ak
bk
⇒ ak

bk
≤ aN
bN

.
= M.

Thus 0 < ak ≤Mbk for all k ≥ N and the result follows from Corollary 9.5.1.

Corollary 9.5.4 (Ratio Test): Suppose ak > 0.

(i) If ∃ a number x ∈ (0, 1) such that ak+1

ak
≤ x for all k ≥ N , then

∑∞
k=1 ak ∈ C.

(ii) If ∃ a number x ≥ 1 such that ak+1

ak
≥ x for all k ≥ N , then

∑∞
k=1 ak ∈ D.

Proof: Let bk = xk. Then bk+1

bk
= x and recall that





∞∑

k=1

bk ∈ C if |x| < 1,

∞∑

k=1

bk ∈ D if |x| ≥ 1.

Apply Corollary 9.5.3.

Corollary 9.5.5 (Limit Ratio Test): Suppose ak > 0 for all k ∈ N and

lim
k→∞

ak+1

ak
= r.

Then

(i) 0 ≤ r < 1⇒
∞∑

k=1

ak ∈ C,

(ii) r > 1⇒
∞∑

k=1

ak ∈ D,

(iii) r = 1⇒ ?

Proof: (i) Choose ε = (1− r)/2. Then for sufficiently large k, we know that

ak+1

ak
< r + ε =

1 + r

2
< 1.

Apply the Ratio Test.
(ii) Exercise.
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Problem 9.14: Find examples corresponding to each of the three cases in Corol-
lary 9.5.5.

The next theorem, illustrated in Fig. 9.1, sheds some light on why
∞∑

k=1

1

kp
and

∫ ∞

1

dx

xp
both diverge for p = 1 and converge for p = 2.

y

x1 2 . . . k k + 1 . . .

f(x)

Figure 9.1: The Integral Test

Theorem 9.6 (Integral Test): Let f : [1,∞) → R be decreasing, non-negative, and
integrable on every finite interval [1, T ]. Then

∞∑

k=1

f(k) ∈ C ⇐⇒
∫ ∞

1

f ∈ C.

Proof: Since f is monotonic we know from Theorem 5.7 that it is integrable on
[k, k + 1]. For x ∈ [k, k + 1] we have f(k) ≥ f(x) ≥ f(k + 1). Corollary 5.5.1 implies

f(k) · 1 ≥
∫ k+1

k

f(x) dx ≥ f(k + 1) · 1.

We then sum this result k = 1 to k = n to obtain

Sn
.
=

n∑

k=1

f(k) ≥
∫ n+1

1

f ≥
n∑

k=1

f(k + 1) =
n+1∑

k=2

f(k) = Sn+1 − f(1).

“⇒” By Corollary 9.1.1,

lim
n→∞

Sn ∃ ⇒ lim
n→∞

∫ n+1

1

f ∃ ⇒ lim
T→∞

∫ T

1

f ∃
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since
∫ T

1
f is an increasing function of T .

“⇐”

lim
T→∞

∫ T

1

f ∃ ⇒ lim
n→∞

∫ n+1

1

f ∃ ⇒ {Sn+1}∞n=1 bounded⇒ {Sn}∞n=1 bounded.

But f(x) ≥ 0⇒ {Sn}∞n=1 is increasing ⇒ lim
n→∞

Sn ∃ by Theorem 2.3.

Problem 9.15: Use the Integral Test to show that

∞∑

k=1

1

kp

converges if p > 1.

For p > 1, the Riemann-integrable function f(x) = 1/xp is decreasing and non-negative.
Moreover, we have seen that the improper integral

∫ ∞

1

1

xp
dx,

converges when p > 1.
By the Integral Test, we therefore know that

∞∑

k=1

1

kp

converges only when p > 1.

Problem 9.16: Use the Integral Test to show that

∞∑

k=2

1

k log k

diverges.

We first consider the improper integral
∫ ∞

2

1

x log x
dx.

On letting u = log x, the integral becomes
∫ ∞

log 2

1

u
du,

which diverges. Noting that the Riemann-integrable function f(u) = 1/u is decreasing and
non-negative, the Integral Test tells us that

∞∑

k=1

1

k log k

diverges as well.
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Remark: While the Integral Test is useful for establishing the convergence of a series,

it does not tell us anything about its value. For example,

∫ ∞

1

1

x2
dx = 1 but it

can be shown that
∞∑

k=1

1

k2
= π2/6. Often a closed-form expression for a series is

unavailable and one must resort to numerical computation of the partial sums up
to a certain value of n. The following related theorem can be used to estimate the
error in such approximations.

Theorem 9.7 (Remainder Estimate): Let f be integrable on any closed interval and

decreasing and non-negative on [1,∞). Then the remainder
∞∑

k=n+1

f(k) of
∞∑

k=1

f(k)

that results on truncating the series after n terms satisfies
∫ ∞

n+1

f ≤
∞∑

k=n+1

f(k) ≤
∫ ∞

n

f.

Proof: In the proof of the Integral Test we saw that

f(k + 1) ≤
∫ k+1

k

f

On summing from k = n to ∞ we thus find that
∞∑

k=n+1

f(k) =
∞∑

k=n

f(k + 1) ≤
∞∑

k=n

∫ k+1

k

f =

∫ ∞

n

f.

We also saw that ∫ k+1

k

f ≤ f(k).

On summing from k = n+ 1 to ∞ we obtain
∫ ∞

n+1

f =
∞∑

k=n+1

∫ k+1

k

f ≤
∞∑

k=n+1

f(k).

• The partial sum S10 =
10∑

k=1

1

k2
≈ 1.5498 underestimates

∞∑

k=1

1

k2
by a remainder that

lies between ∫ ∞

11

1

x2
dx =

1

11

and ∫ ∞

10

1

x2
dx =

1

10
.

Indeed, we see that the difference between the exact value
∑∞

k=1
1
k2

= π2/6 and S10

is approximately 0.095, which indeed lies between 1/11 and 1/10.
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Q. What happens when some of the terms ak are negative?

A. In these situations, the following concept is sometimes helpful.

Definition: A series
∑∞

k=1 ak is absolutely convergent if
∑∞

k=1 |ak| is convergent. In
this case, we write

∞∑

k=1

ak ∈ Abs C.

• The sequence
∞∑

k=1

sin k

k2
is absolutely convergent by the Comparison Test since

|sin k| ≤ 1 and
∞∑

k=1

1

k2
is convergent. That is,

∞∑

k=1

|sin k|
k2

is convergent.

The following theorem establishes that the original series
∞∑

k=1

sin k

k2
is itself con-

vergent.

Theorem 9.8 (Absolute Convergence): An absolutely convergent series is convergent.

Proof: By the Triangle Inequality we know that

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ ≤
m∑

k=n

|ak| .

The result then follows by applying the Cauchy Criterion, Theorem 9.3.

Remark: The converse of Theorem 9.8 need not be true: the alternating harmonic

series
∞∑

k=1

(−1)k

k
is convergent but not absolutely convergent: the harmonic series

∞∑

k=1

1

k
diverges.

Definition: A series is conditionally convergent if is convergent but not absolutely
convergent.

• The alternating harmonic series
∞∑

k=1

(−1)k

k
is conditionally convergent.
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Problem 9.17: Show that the alternating series
∞∑

k=1

(−1)k√
k

is conditionally conver-

gent.

Problem 9.18: Show that the alternating series
∞∑

k=1

(−1)k log k√
k

is conditionally con-

vergent.

The following summation by parts formula is useful for developing tests of condi-
tional convergence.

Lemma 9.1 (Abel’s Lemma):

m∑

k=n

fk(gk+1 − gk) = fm+1gm+1 − fngn −
m∑

k=n

(fk+1 − fk)gk+1

Proof:

m∑

k=n

fk(gk+1 − gk) =
m∑

k=n

fkgk+1 −
m∑

k=n

fkgk =
m∑

k=n

fkgk+1 + fm+1gm+1 −
m+1∑

k=n+1

fkgk − fngn

= fm+1gm+1 − fngn +
m∑

k=n

fkgk+1 −
m∑

k=n

fk+1gk+1

= fm+1gm+1 − fngn −
m∑

k=n

(fk+1 − fk)gk+1.

Definition: An alternating series is of the form

∞∑

k=1

(−1)kak,

where ak ≥ 0 for k ∈ N.

Definition: A sequence {ak}∞k=1 is of bounded variation if
∑∞

k=1 |ak+1 − ak| ∈ C.

Problem 9.19: Show that a monotonic bounded sequence is always of bounded
variation.
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Remark: By Theorem 9.8, if a sequence {ak}∞k=1 is of bounded variation, then
∞∑

k=1

(ak+1 − ak) ∈ C. It follows that lim
n→∞

an = lim
n→∞

an+1 = a1 + lim
n→∞

n∑

k=1

(ak+1 − ak)

exists.

Theorem 9.9 (Dirichlet Test): Let Sn =
n∑

k=1

bk. Suppose

(i) {Sn}∞n=1 is a bounded sequence.

(ii) lim
n→∞

an = 0 and {ak}∞k=1 is of bounded variation.

Then
∞∑

k=1

akbk ∈ C.

Proof: We know from (i) that there exists a number B > 0 such that |Sn|≤ B for
all n ∈ N. Given ε > 0, we know from (ii) and the Cauchy Criterion for Infinite Series
that there exists N > 0 such that

n > N ⇒ |an| <
ε

3B

and

m > n > N ⇒
m∑

k=n

|ak+1 − ak| <
ε

3B
.

Using Abel’s Lemma we then find that∣∣∣∣∣
m∑

k=n

akbk

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n

ak(Sk − Sk−1)

∣∣∣∣∣

=

∣∣∣∣∣am+1Sm − anSn−1 −
m∑

k=n

(ak+1 − ak)Sk
∣∣∣∣∣

≤ |am+1|B + |an|B +B

m∑

k=n

|ak+1 − ak|

<
ε

3
+
ε

3
+
ε

3
= ε.

On applying the Cauchy Criterion for Infinite Series again, we see that
∞∑

k=1

akbk con-

verges.

Corollary 9.9.1 (Leibniz Alternating Series Test): The alternating series
∞∑

k=1

(−1)kak

is convergent if the sequence {ak}∞k=1 decreases monotonically to 0.

Proof: Apply the Dirichlet Test with bk = (−1)k, using the fact that the bounded
monotone sequence ak is of bounded variation.
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• Applying the Leibniz Alternating Series Test with ak =
1

k
and bk = (−1)k shows

that
∞∑

k=1

(−1)k

k
∈ C.

• The alternating series
∞∑

k=1

(−1)k
k2

k3 + 1
converges since the function f(x) =

x2

x3 + 1

decreases monotonically to zero on [2,∞).

Problem 9.20: Prove the Leibniz Remainder Estimate: if ak is a monotone decreas-
ing sequence that converges to 0, the alternating sum S =

∑∞
k=1(−1)kak can be

approximated by the nth partial sum Sn =
∑n

k=1(−1)kak with an error of at most
an+1:

|Sn − S| ≤ |Sn+1 − Sn| = |an+1| .
That is, ∣∣∣∣∣

∞∑

k=n+1

(−1)kak

∣∣∣∣∣ ≤ an+1.

Let Sn =
∑n

k=1(−1)kak and S =
∑∞

k=1(−1)kak. Since {S2n−1}∞n=1 is increasing and
{S2n}∞n=1 is decreasing, we see that S2n−1 ≤ S ≤ S2n for all n ≥ 1. Since an − an+1 ≥ 0,
we then find that

0 ≤ S − S2n−1 =
∞∑

k=2n

(−1)kak = a2n − (a2n+1 − a2n+2) + . . . ≤ a2n

and

0 ≤ S2n − S = −
∞∑

k=2n+1

(−1)kak = a2n+1 − (a2n+2 − a2n+3) + . . . ≤ a2n+1.

For either odd or even n the error in approximating S by Sn is seen to be less than the
magnitude of the first neglected term:

∣∣∣∣∣
∞∑

k=n+1

(−1)kak

∣∣∣∣∣ = |S − Sn| ≤ an+1.

Remark: If the magnitude of the terms of an alternating Taylor series decreases
monotonically to zero, it is much easier to use the Leibniz Remainder Estimate
rather than explicitly estimating the remainder using Taylor’s Theorem: the error
is simply less than the magnitude of the very next term!
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Problem 9.21: Evaluate
∞∑

k=1

(−1)k

k!
to within 0.001.

If we sum up the first 6 terms we obtain the estimate

−1 + 1/2− 1/6 + 1/24− 1/120 + 1/720 = −0.63194,

which overestimates the sum by at most 1/5040 < 0.0002 (since the next term can only

reduce the sum). So the infinite sum evaluates to approximately −0.632.

Problem 9.22:

(a) Suppose for a sequence of positive numbers {ak}∞k=1 that k
√
ak ≤ q for all

sufficiently large k. If 0 < q < 1, use the Comparison Test to show that
∞∑

k=1

ak

converges.
For sufficiently large k we are given that

0 ≤ ak ≤ qk.

Since the geometric series
∞∑

k=1

qk converges for 0 < q < 1, we know that
∞∑

k=1

ak converges.

(b) Prove the Root Test : Suppose λ = lim
k→∞

k
√
ak exists. If λ < 1, show that

∞∑

k=1

ak

converges.
This would imply for sufficiently large k that

k
√
ak <

1 + λ

2
< 1.

(e.g. ε = (1− λ)/2⇒ λ+ ε = (1 + λ)/2) and hence part (a) implies that

∞∑

k=1

ak converges.

(c) If lim
k→∞

k
√
ak > 1, show that

∞∑

k=1

ak diverges.

This would imply for sufficiently large k that ak > 1, which violates the convergence

condition lim
k→∞

ak = 0 (Theorem 9.4).

(d) Does
∞∑

k=2

1

(log k)k
converge or diverge?

Since lim
k→∞

1

log k
= 0 < 1, we know from the Root Test that the series converges.

Problem 9.23: In this problem we show that the function

f(x) =
∞∑

n=0

4−n 〈4nx〉 ,

where 〈x〉 denotes the distance of x to a nearest integer, is continuous for all real x
but differentiable nowhere.
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(a) Sketch the graph of 〈x〉.
(b) Find the minimum and maximum values of {〈x〉 : x ∈ R}.
(c) Use the Comparison Test to show that series expression given for f(x) con-

verges at all x.
(d) Establish for all real x and a the overestimate |〈x〉 − 〈a〉| ≤ 1.
(e) Show that |〈x〉 − 〈a〉| ≤ min(|x− a| , 1).
Hint: let X be a nearest integer to x and A be a nearest integer to a. First

establish the result in the case where X = A. Then consider y = x+ A−X.
(f) If |x− a| < 4−m for m ∈ N, use the fact that

|f(x)− f(a)| ≤
∞∑

n=0

4−n |〈4nx〉 − 〈4na〉| ≤
∞∑

n=0

4−n min(|4nx− 4na| , 1)

<
∞∑

n=0

4−n min(4n−m, 1) =
∞∑

n=0

min(4−m, 4−n) =
m∑

n=0

4−m +
∞∑

n=m+1

4−n

to show that f is continuous at any a ∈ R.
(g) Show that f(x+ 1) = f(x) for all x ∈ R.
(h) Let us represent a ∈ [0, 1) with the base-4 digits ai ∈ {0, 1, 2, 3} for i ∈ N:

a = 0.a1a2a3 . . . ,

avoiding, for uniqueness, infinite patterns of repeating threes. Let

hm =

{
4−m if am = 0 or 1;
−4−m if am = 2 or 3.

If n ≥ m show that
〈4n(a+ hm)〉 − 〈4n(a)〉 = 0.

(i) We now compute
f(a+ hm)− f(a)

hm

and show that the result diverges asm→∞. This will require evaluating 〈4n(a+ hm)〉−
〈4na〉, which can be done as follows.

If n < m express 4na = N + xn where xn = 0.an+1an+2 . . . am . . .. We know
that 4nhm = 4n−m ∈ (0, 1/4] when am = 0 or 2 and 4nhm = −4n−m ∈ [−1/4, 0)
when am = 1 or 3. The digits 0, 1, 2, 3 in the mth place of xn thus get mapped by
xn → xn+4nhm to the digits 1, 0, 3, 2 respectively. This means that xn and xn+4nhm
either both belong to [0, 1/2) or both belong to [1/2, 1), so that

〈4n(a+ hm)〉 − 〈4na〉 = 〈xn + 4nhm〉 − 〈xn〉 =





4nhm if am = 0 or 2,

−4nhm if am = 1 or 3.
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Show using this result together with part (h) that

lim
m→∞

f(a+ hm)− f(a)

hm

does not exist at any real a, even though f is continuous everywhere.

9.C Power Series

Let f be a function with derivatives of all orders at a point a ∈ R. Recall that the
Taylor expansion of f at x about a to order n is given by

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
+ . . .+ f (n−1)(a)

(x− a)n−1

(n− 1)!
+Rn(x).

Q. Is it always true that lim
n→∞

Rn(x) = 0, so that the Taylor series

∞∑

k=0

f (k)(a)

k!
(x− a)k

converges to f(x)?

A. No, although this statement holds for polynomials, ex, sinx, cosx, and many
other familiar functions, the Taylor series need not in general converge. Even
when it does converge, the limit is not necessarily f(x).

Definition: A power series about the expansion point a is an infinite series of the
form

∑∞
k=0 ck(x− a)k, where the coefficients ck are independent of x.

Remark: By definition, (x− a)0 = 1 for all x, even at x = a.

Remark: It is often convenient to shift the variable x by a, so that the power series
takes the form

∑∞
k=0 ckx

k.

Remark: A power series always converges at its expansion point.

• We have seen that the geometric series

∞∑

k=0

xk

converges for any x ∈ (−1, 1) to the function
1

1− x .
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• If we apply the Limit Ratio Test to the series

∞∑

k=0

k!xk,

we see for x 6= 0 that

lim
k→∞

∣∣(k + 1)!xk+1
∣∣

|k!xk| = lim
k→∞

(k + 1) |x| =∞.

Thus, the series converges absolutely only at x = 0.

• In contrast, the Limit Ratio Test tells us that the series

∞∑

k=0

xk

k!

converges absolutely for all real x:

lim
k→∞

|x|k+1

(k + 1)!
· k!

|x|k
= lim

k→∞

|x|
(k + 1)

= 0 < 1.

Remark: The following theorem tells us that every power series converges absolutely
strictly inside some closed interval (which could be a point or all of R) and diverges
strictly outside that closed interval. It does not say anything about what happens
at the endpoints themselves.

Theorem 9.10 (Radius of Convergence): For each power series
∑∞

k=0 ckx
k there

exists a number R, called the radius of convergence, with 0 ≤ R ≤ ∞, such that

∞∑

k=0

ckx
k ∈





Abs C if |x| < R,
D if |x| > R,
? if |x| = R.

Proof: Suppose
∑∞

k=0 ckx
k
0 ∈ C for some real value x0. Theorem 9.4 implies

lim
k→∞

ckx
k
0 = 0; in particular, there exists a positive number M such that

∣∣ckxk0
∣∣ ≤ M

for all k. Now
∣∣ckxk

∣∣ =
∣∣ckxk0

∣∣
∣∣∣∣
x

x0

∣∣∣∣
k

≤M

∣∣∣∣
x

x0

∣∣∣∣
k

,

and we know for |x| < |x0| that the geometric sum
∑∞

k=0M
∣∣∣ xx0
∣∣∣
k

converges. We then

deduce from Corollary 9.5.1 that
∑∞

k=0

∣∣ckxk
∣∣ ∈ C whenever |x| < |x0|. That is,

∞∑

k=0

ckx
k
0 ∈ C ⇒

∞∑

k=0

ckx
k ∈ Abs C whenever |x| < |x0| .
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Consider now the set S = {r ≥ 0 :
∑∞

k=0 ckr
k ∈ C}. Notice that 0 ∈ S. If S is

unbounded, then
∑∞

k=0 ckx
k ∈ Abs C for all real x; that is, the desired result holds

with R =∞.
Otherwise, let R = supS ≥ 0. Given x ∈ (−R,R), there must be at least one

element r ∈ S greater than |x| (otherwise |x| < R would be an upper bound for S).
Since

∑∞
k=0 ckr

k ∈ C, we deduce that
∑∞

k=0 ckx
k ∈ Abs C for |x| < R.

Now suppose that
∑∞

k=0 ckx
k
0 ∈ C for some x0 with |x0| > R ≥ 0. Consider any

r ∈ (R, |x0|). We know that
∑∞

k=0 ckr
k ∈ Abs C and hence

∑∞
k=0 ckr

k ∈ C. But then
r ∈ S, which contradicts r > R. We conclude that

∑∞
k=0 ckx

k ∈ D whenever |x| > R.

• The Taylor series for f(x) = ex, that is,
∑∞

k=0 x
k/k!, converges to ex for all x ∈ R,

by the Limit Ratio Test, since lim
k→∞
|x| /(k + 1) = 0 < 1.

Problem 9.24: For what values of x does the series
∑∞

k=1
(x−1)k

k
converge?

The Limit Ratio Test tells us that the series converges absolutely if

lim
k→∞

|x− 1|k+1

(k + 1)
· k

|x− 1|k
= lim

k→∞
k

(k + 1)
|x− 1| = |x− 1| < 1,

that is, when −1 < x − 1 < 1 or in other words, 0 < x < 2. Furthermore, we see that the

series converges at x = 0 (where it reduces to the alternating harmonic series and diverges

at x = 2 (where it reduces to the harmonic series). The Limit Ratio Test tell us that the

series does not converge absolutely for |x− 1| > 1; that is, when x > 2 or x < 0. The

interval of convergence is thus [0, 2) and the radius of convergence is 1.

• Find the radius of convergence R of
∞∑

k=2

xk

log k
.

The ratio of consecutive terms has limit

lim
k→∞

∣∣∣∣
xk+1

log(k + 1)
· log k

xk

∣∣∣∣ = |x| lim
k→∞

log k

log(k + 1)
= |x| lim

u→∞

1
u
1

u+1

= |x| ,

using L’Hôpital’s Rule, where u ∈ R. The Limit Ratio Test then implies that
R = 1.

• Consider the Taylor series for the function

f(x) =

{
e−1/x2 if x 6= 0,
0 if x = 0,

about the point a = 0: it is readily shown, using L’Hôpital’s Rule, that f (k)(0) = 0
for all k ∈ N. That is, the Taylor series of f converges to zero for all x ∈ R (it
has an infinite radius of convergence), even though f(x) 6= 0 for nonzero x. This
example emphasizes that the Taylor series for an infinitely differentiable function
f does not necessarily converge to f , even within its radius of convergence!
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Remark: To determine the actual interval of convergence, we need to determine R
and then test for convergence at x = a+R and x = a−R by other means.

Problem 9.25: Consider the power series
∑∞

k=0 ckx
k.

(a) Suppose that lim
k→∞

∣∣∣∣
ck+1

ck

∣∣∣∣ exists. Use the Limit Ratio Test to show that the

radius of convergence of the power series is given by

R =
1

lim
k→∞

∣∣∣∣
ck+1

ck

∣∣∣∣
.

If the limit of the ratio of successive terms
∣∣∣ ck+1

ck
x
∣∣∣ is less than 1 (i.e. if |x| < R) the

series
∑∞

k=0

∣∣ckxk
∣∣ converges and if it is bigger than 1 (i.e. if |x| > R) the series diverges.

Hence R is indeed the radius of convergence.

(b) Suppose that lim
k→∞

k
√
|ck| exists. Use the Root Test to show that

R =
1

lim
k→∞

k
√
|ck|

is another expression for the radius of convergence.

If lim
k→∞

k

√
|ckxk| is less than 1 (i.e. if |x| < R), the series

∑∞
k=0

∣∣ckxk
∣∣ converges, and

if it is bigger than 1 (i.e. if |x| > R), the series diverges. Hence R is indeed the radius of

convergence.

Problem 9.26: Determine the radius of convergence, interval of convergence, and
expansion point for the power series

∞∑

k=0

(3x+ 4)k

5k
.

From the ratio test we see that the series converges whenever
∣∣3x+4

5

∣∣ < 1; that is, when

−5 < 3x+ 4 < 5. This corresponds to the interval (−3, 1/3), a radius of convergence of

5/3, and an expansion point of −4/3. Note that the series diverges at both x = −3 and

x = 1/3.

9.D Representation of Functions as Power Series

The closed form sum of a geometric series

1

1− x =
∞∑

k=0

xk, |x| < 1

can be used to sum up other power series.
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• On substituting −x2 for x, we find

1

1 + x2
=
∞∑

k=0

(−x2)k =
∞∑

k=0

(−1)kx2k, |x| < 1.

• On substituting −x/2 for x, we find

1

2 + x
=

1

2

(
1

1 + x
2

)
=

1

2

∞∑

k=0

(
−x

2

)k
=
∞∑

k=0

(−1)k

2k+1
xk, |x| < 2.

• On multiplying
1

2 + x
by x2 we find

x2

2 + x
=
∞∑

k=0

(−1)k

2k+1
xk+2, |x| < 2.

Theorem 9.11 (Derivative and Integral of a Power Series): The power series

(i)
∞∑

k=0

ckx
k,

(ii)
∞∑

k=0

kckx
k−1,

(iii)
∞∑

k=0

ck
xk+1

k + 1

all have the same radius of convergence.

Proof: For k ≥ |x|, note that
∣∣ckxk

∣∣ = |x|
∣∣ckxk−1

∣∣ ≤
∣∣kckxk−1

∣∣ .

We thus see from the Comparison Test that if (ii) converges absolutely, so does (i). On
the other hand, suppose (i) converges absolutely at some x0 6= 0. The Divergence Test
implies that

∣∣ckxk0
∣∣ is bounded by some positive number M for all k. Thus

∣∣kckxk−1
∣∣ =

∣∣ckxk0
∣∣ k

|x0|

∣∣∣∣
x

x0

∣∣∣∣
k−1

≤ M

|x0|
k

∣∣∣∣
x

x0

∣∣∣∣
k−1

.

We know from the Limit Ratio Test that
∞∑

k=0

k

∣∣∣∣
x

x0

∣∣∣∣
k−1

is convergent for |x| < |x0|.

The absolute convergence of (ii) then follows from the Comparison Test. On noting
that (i) is just the result of formally differentiating (iii), we see that (i) and (iii) also
have the same radius of convergence.
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Remark: Suppose that the Taylor series
∞∑

k=0

f (k)(0)

k!
xk converges to f(x) for |x| < R.

Theorem 9.11 tells us that the term-by-term differentiated series

∞∑

k=0

f (k)(0)

k!
kxk−1 =

∞∑

k=1

f (k)(0)

(k − 1)!
xk−1 =

∞∑

k=0

f (k+1)(0)

k!
xk,

which we note is just the Taylor series for f ′, has the same radius of convergence
as the Taylor series for f . This means that we may differentiate (or integrate) a
power series term-by-term within its radius of convergence: if

∑∞
k=0 ckx

k converges
to f(x) for |x| < R, then

∑∞
k=1 kckx

k−1 converges to f ′(x) for |x| < R.

• For |x| < 1, we may differentiate the geometric series

1

1− x =
∞∑

k=0

xk

term-by-term to find that

1

(1− x)2
=
∞∑

k=1

kxk−1 = 1 + 2x+ 3x2 + 4x3 + . . . , |x| < 1.

• For |x| < 1, we may integrate the geometric series

1

1 + x
=
∞∑

k=0

(−x)k

term-by-term to find

log(1 + x) =
∞∑

k=0

(−1)k
xk+1

k + 1
= x− x2

2
+
x3

3
+ . . . ,

where we see that the constant of integration vanishes since both sides evaluate
to zero when x = 0. While both series converge for |x| < 1, notice that the
Leibniz Alternating Series Test guarantees that the differentiated series also con-
verges at x = 1. That is, the interval of convergence of the differentiated series is
(−1, 1]. On taking the limit as x→ 1, we see from the above closed-form expression
that the alternating harmonic series converges to − log 2.
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• For |x| < 1, we may integrate the geometric series

1

1 + x2
=
∞∑

k=0

(−x2)k

term-by-term to find

tan−1 x =
∞∑

k=0

(−1)k
x2k+1

2k + 1
= x− x3

3
+
x5

5
+ . . . .

Again, the constant of integration is seen to vanish (for the principal branch of the
arctangent).

• We can use power series to integrate functions that we cannot integrate by elemen-
tary means:

∫ t

0

e−x
2

dx =

∫ t

0

∞∑

k=0

(−x2)k

k!
dx =

∞∑

k=0

(−1)kt2k+1

(2k + 1)k!
= t− t3

3
+
t5

10
+ . . . .

Remark: If
∑∞

k=0 akx
k =

∑∞
k=0 bkx

k whenever |x| < R, on setting x = 0 we see that
a0 = b0, so that

∑∞
k=1 akx

k =
∑∞

k=1 bkx
k. On differentiating each side with respect

to x and again setting x = 0, we see that a1 = b1. On repeating this procedure, we
deduce that ak = bk for k = 0, 1, 2, . . .. That is, the coefficients of a power series
are unique, just like the coefficients of a polynomial.

Remark: If
∑∞

k=0 ckx
k converges to f(x) for |x| < R, the uniqueness of power series

guarantees that
∑∞

k=0 ckx
k is the Taylor series for f ; that is ck = f (k)(0)/k!.

Remark: Within their radii of convergence, power series can be added, subtracted,
multiplied, divided, differentiated, and integrated just like polynomials.

• For |x| < 1 we may expand

f(x) =
ex

1 + x

=

(
1 + x+

x2

2
+ . . .

)(
1− x+ x2 + . . .

)

=
(
1− x+ x2 + . . .

)
+ x
(
1− x+ x2 + . . .

)
+
x2

2

(
1− x+ x2 + . . .

)

=
(
1− x+ x2 + . . .

)
+
(
x− x2 + . . .

)
+
x2

2
+ . . .

= 1 +
x2

2
+ . . . .

From Taylor’s theorem, we immediately see that f(0) = 1, f ′(0) = 0, and f ′′(0) = 1.
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Problem 9.27: Using long division, show that

tanx = x+
x3

3
+

2

15
x5 + . . . .

• Another important series is the Binomial Series : for |x| < 1 and any real number n,
the Taylor Series for the function f(x) = (1 + x)n evaluates to (see Problem 4.15)

∞∑

k=0

(
n

k

)
xk,

where

(
n

k

)
=





1 if k = 0,

n(n− 1) . . . (n− k + 1)

k!
if k ≥ 1.

The Limit Ratio Test tell us that the series converges when

lim
k→∞

|n− k|
k + 1

|x| = |x| < 1.

To see that the series actually converges to f(x) define

g(x) =
∞∑

k=0

(
n

k

)
xk

and consider

h(x) = (1 + x)−ng(x).

Note that

h′(x) = −n(1 + x)−n−1g(x) + (1 + x)−ng′(x) = (1 + x)−n−1[−ng(x) + (1 + x)g′(x)].

On using the identity

k

(
n

k

)
= k

n(n− 1) . . . (n− k + 1)

k!
= n

(n− 1) . . . (n− k + 1)

(k − 1)!
= n

(
n− 1

k − 1

)
,
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and Pascal’s Triangle Law, we find that

(1 + x)g′(x) = (1 + x)
∞∑

k=1

(
n

k

)
kxk−1

= (1 + x)n
∞∑

k=1

(
n− 1

k − 1

)
xk−1

= n
∞∑

k=0

(
n− 1

k

)
xk + n

∞∑

k=1

(
n− 1

k − 1

)
xk

= n+ n
∞∑

k=1

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
xk

= n+ n
∞∑

k=1

(
n

k

)
xk

= ng(x).

Thus h′(x) = 0 and since h(0) = g(0) = 1, we see that h(x) = 1 for all x ∈ (−1, 1).
Thus for |x| < 1 we find

(1 + x)n =
∞∑

k=0

(
n

k

)
xk = 1 + nx+

n(n− 1)

2
x2 +

n(n− 1)(n− 2)

3!
x3 + . . . .

• For n = 1/2 and |x| < 1, we find that

√
1 + x =

∞∑

k=0

(
1/2

k

)
xk

= 1 +
∞∑

k=1

1/2(1/2− 1)(1/2− 2) . . . (1/2− k + 1)

k!
xk

= 1 +
∞∑

k=1

1(1− 2)(1− 4) . . . (1− 2k + 2)

2kk!
xk

= 1 +
x

2
+
∞∑

k=2

(−1)(−3) . . . (3− 2k)

2kk!
xk

= 1 +
x

2
+
∞∑

k=2

(−1)k−1 1 · 3 · . . . · (2k − 3)

2kk!
xk.



Appendix A

Complex Numbers

To complete our proof that the method of partial fraction decomposition can be used
to integrate any rational function, it will be helpful to first extend our number system
beyond the real numbers R.

Recall that z is a root of the polynomial P (x) if P (z) = 0.

Q. Do all polynomials have at least one root z ∈ R?

A. No, consider P (x) = x2 + 1. It has no real roots: P (x) ≥ 1 for all x.

The complex numbers C are introduced precisely to circumvent this problem. If we
replace “z ∈ R” by “z ∈ C”, we can answer the above question affirmatively.

The complex numbers consist of ordered pairs (x, y) together with the usual
component-by-component addition rule (e.g. which one has in a vector space)

(x, y) + (u, v) = (x+ u, y + v),

but with the unusual multiplication rule

(x, y) · (u, v) = (xu− yv, xv + yu).

Note that this multiplication rule is associative, commutative, and distributive. Since

(x, 0) + (u, 0) = (x+ u, 0) and (x, 0) · (u, 0) = (xu, 0),

we see that (x, 0) and (u, 0) behave just like the real numbers x and u. In fact, we
can map (x, 0) ∈ C to x ∈ R:

(x, 0) ≡ x.

Hence R ⊂ C.

Remark: We see that the complex number z = (0, 1) satisfies the equation z2+1 = 0.
That is, (0, 1) · (0, 1) = (−1, 0).
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Definition: Denote (0, 1) by the letter i. Then any complex number (x, y) can be
represented as (x, 0) + (0, 1)(y, 0) = x+ iy.

Remark: Unlike R, the set C = {(x, y) : x ∈ R, y ∈ R} is not ordered; there is no
notion of positive and negative (greater than or less than) on the complex plane.
For example, if i were positive or zero, then i2 = −1 would have to be positive
or zero. If i were negative, then −i would be positive, which would imply that
(−i)2 = i2 = −1 is positive. It is thus not possible to divide the complex numbers
into three classes of negative, zero, and positive numbers.

Remark: The frequently appearing notation
√
−1 for i is misleading and should be

avoided, because the rule
√
xy =

√
x
√
y (which one might anticipate) does not hold

for negative x and y, as the following contradiction illustrates:

1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i2 = −1.

Furthermore, by definition
√
x ≥ 0, but one cannot write i ≥ 0, since C is not

ordered.

Remark: We may write (x, 0) = x+ i0 = x since i0 = (0, 1) · (0, 0) = (0, 0) = 0.

Definition: The complex conjugate (x, y) of (x, y) is (x,−y). That is,

x+ iy = x− iy.

Definition: The complex modulus |z| of z = x+ iy is given by
√
x2 + y2.

Remark: If z ∈ R then |z| =
√
z2 is just the absolute value of z.

We now establish some important properties of the complex conjugate. Let z =
x+ iy and w = u+ iv be elements of C. Then

(i)
zz = (x, y)(x,−y) = (x2 + y2, yx− xy) = (x2 + y2, 0) = x2 + y2 = |z|2 ,

(ii)
z + w = z + w,

(iii)
zw = z w.
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Problem A.1: Prove properties (ii) and (iii).

Remark: Property (i) provides an easy way to compute reciprocals of complex num-
bers:

1

z
=

z

zz
=

z

|z|2 .

Remark: Properties (i) and (iii) imply that

|zw|2 = zwzw = zzww = |z|2 |w|2 .

Thus |zw| = |z| |w| for all z, w ∈ C.

Lemma A.1 (Complex Conjugate Roots): Let P be a polynomial with real coeffi-
cients. If z is a root of P , then so is z.

Proof: Suppose P (z) =
∑n

k=0 akz
k = 0, where each of the coefficients ak are real.

Then

P (z) =
n∑

k=0

ak(z)k =
n∑

k=0

akzk =
n∑

k=0

akzk =
n∑

k=0

akzk = P (z) = 0 = 0.

Thus, complex roots of real polynomials occur in conjugate pairs , z and z.

Remark: There is a remarkable similarity between the complex multiplication rule

(x, y) · (u, v) = (xu− yv, xv + yu)

and the trigonometric angle sum formulae. Notice that

(cos θ, sin θ) · (cosφ, sinφ) = (cos θ cosφ− sin θ sinφ, cos θ sinφ+ sin θ cosφ)

= (cos(θ + φ), sin(θ + φ)).

That is, multiplication of 2 complex numbers on the unit circle x2 + y2 = 1 cor-
responds to addition of their angles of inclination to the x axis. In particular, the
mapping f(z) = z2 doubles the angle of z = (x, y) and f(z) = zn multiplies the
angle of z by n.

These statements hold even if z lies on a circle of radius r 6= 1,

(r cos θ, r sin θ)n = rn(cosnθ, sinnθ);

this is known as deMoivre’s Theorem.
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Remark: If we allow θ to vary from 0 to 2π, then when we raise z = (r cos θ, r sin θ)
to the nth power, we move around a circle of radius rn exactly n times.

We are now ready to prove an important theorem of complex analysis.

Theorem A.1 (Fundamental Theorem of Algebra): Any non-constant polynomial
P (z) with complex coefficients has a root in C.

Proof: Because lim|z|→∞ |P (z)| = ∞ and |P (z)| is a continuous function in both
x and y, a two-dimensional version of Theorem 3.4 on the set {z : |z| ≤ R}, for R
sufficiently large, can be used to show that |P (z)| must achieve a minimum value at
some point z0 = (x0, y0) ∈ C.

We now show that P (z0) = 0. Let n = degP (z) ≥ 1. If z = z0 + r(cos θ, sin θ),
with r sufficiently small, then P (z) will encircle P (z0) at least once as θ is varied
from 0 to 2π. If P (z0) 6= 0, then there exists a z1 ∈ C such that P (z1) is closer to the
origin than P (z0). This contradicts the fact that |P (z)| has a minimum value at z0.
Hence P (z0) = 0.

Corollary A.1.1 (Polynomial Factorization): Every complex polynomial P (z) of
degree n ≥ 0 has exactly n complex roots z1, z2, . . ., zn and can be factorized as
P (z) = A(z − z1)(z − z2) . . . (z − zn), where A ∈ C.

Proof: Apply Theorem A.1 and Lemma 7.1 recursively n times. (Recall that the
degree of the zero polynomial, which has infinitely many roots, is −∞.)

Corollary A.1.2 (Real Polynomial Factorization): Every polynomial with real coef-
ficients can be factorized as

P (x) = A(x− a1)n1 . . . (x− ak)nk(x2 + γ1x+ λ1)m1 . . . (x2 + γ`x+ λ`)
m` .

Proof: Since the coefficients of P (x) are real, Lemma A.1 ⇒ any complex roots
must occur in conjugate pairs, say a + ib and a − ib, with b 6= 0. We can combine
these conjugate pairs into irreducible quadratic factors with real coefficients:

[x− (a+ ib)][x− (a− ib)] = x2 − (a+ ib)x− (a− ib)x+ (a+ ib)(a− ib)
= x2 − 2ax+ (a2 + b2),

with (2a)2 − 4(a2 + b2) = −4b2 < 0. The real roots form the linear factors (x− aj).
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bounded variation, 242
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Cauchy Criterion, 50
Cauchy Criterion for Functions, 69
Cauchy Criterion for Improper Integrals,

229
Cauchy Criterion for Infinite Series, 233
Cauchy Criterion for Integrability, 127
Cauchy Mean Value Theorem, 100
Cauchy Sequence, 50
center of mass, 218
centroid, 218
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Change of Variables, 158
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closed, 29
closure under +, 14
closure under ·, 14
commutative, 12, 13
Comparison Test, 226, 235
complete, 10
completeness axiom, 31
Complex Conjugate Roots, 258
complex modulus, 257
complex numbers, 256
composition, 55
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conditionally convergent, 241
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conjugate pairs, 258
Constant functions, 54
contains, 7
continuous, 71
continuous extension, 137
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continuous from the right, 74
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converge, 32
convergent, 33
converges, 224, 229, 233

converse, 11
convex, 107
cos, 56
cosh, 153
cot, 56
coth, 153
critical, 98
cross sections, 202
csc, 56
csch, 153

decreasing, 40, 96
definite integral, 138
degree, 54
degrees, 57
deMoivre’s Theorem, 258
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derivative, 80
Derivative Notation, 85
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differentiable, 80
Dirichlet Test, 243
Dirichlet’s Box Principle, 11
discontinuous, 71
discriminant, 174
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Divergence Test, 234
divergent, 233
diverges, 33, 224, 229
domain, 32

e, 42
Euler substitutions, 186
even, 55
expansion point, 247
exponential, 147
exponentiation, 147
Extrema, 92
extremum, 91

family, 139
First Convexity Criterion, 108
First Derivative Test, 98
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first moment, 218
for all, 18
frustum, 215
FTC, 137
function, 32, 54
Fundamental Theorem of Algebra, 259
Fundamental Theorem of Calculus, 137

g.l.b., 30
geometric series, 233
global extrema, 92
global maximum, 91
global minimum, 91
Global Second Derivative Test, 109
graph, 199
greatest lower bound, 30

harmonic series, 52, 234
horizontal line test, 112
Horse-Race Theorem, 97
Hyperbolic functions, 153

identity, 12, 13
implicit differentiation, 119
implicit equation, 119
improper integral, 224, 231
increasing, 40, 96
indefinite integral, 139
inf, 30
infimum, 30
Infinite limits, 52
infinite series, 233
inflection point, 107
instantaneous velocity, 81
Integrability, 125
Integral Test, 238
Integration by Parts, 161
interior local extremum, 91
interior local maximum, 91
interior local minimum, 91
interior point, 71
Intermediate Value Theorem, 75
intersection, 8

inverse, 12, 13, 112
invertible, 112
irrational, 10
is an element of, 8
IVT, 75

L’Hôpital’s Rule for 0
0
, 100

L’Hôpital’s Rule for ∞∞ , 102
l.u.b, 30
least upper bound, 30
left Riemann sum, 190
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Leibniz Remainder Estimate, 244
Leibniz’s formula, 99
lemma, 15
Limit Comparison Test, 227, 235
Limit Ratio Test, 237
Limit Superior and Limit Inferior, 52
linear, 81
linear interpolation, 107
local extremum, 91
locally convex, 109
lower, 122
lower bound, 29
lower integral, 123

Maclaurin Series, 105
mass density, 218
Mathematical Induction, 17
max, 30
maximum, 30
Mean Value Theorem, 94
Mean Value Theorem for Integrals, 141
method of cross sections, 202
method of cylindrical shells, 208
Midpoint Lemma, 15
Midpoint Rule, 192
min, 31
minimum, 31
moments, 217
monotone, 40
monotonic, 96
multiplicative identity, 13
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natural logarithm, 145
necessary, 91
noninvertible, 112
nonlinear, 81

odd, 55
one-to-one, 112
open, 29
ordered, 10

Pappus’s Theorems, 220
parameter, 199
parametric form, 108
parametric representation, 199
partial fraction decomposition, 173
partial sum, 233
partition, 122
Partition Refinement, 122
Pascal’s Triangle Law, 24
path length, 199
piecewise, 55
Piecewise Integration, 128
Pigeon-Hole Principle, 11
Polar coordinates, 221
Polynomial Factorization, 259
Polynomials, 54
power series, 247
pressure, 213
principal branch, 116
proof by contradiction, 10
proper form, 174
Pythagoras’ Theorem, 9

radians, 57
Radius of Convergence, 248
radius of convergence, 248
range, 32
Ratio Comparison Test, 236
Ratio Test, 237
Rational functions, 55
reciprocals, 258

reduction formula, 165
refinement, 122
relatively prime, 10
remainder, 103, 240
Remainder Estimate, 240
Riemann integrable, 124
Riemann integral, 124
Riemann sum, 130
right Riemann sum, 190
Rolle’s Theorem, 93
root, 45
Root Test, 245

sec, 56
secant line, 80
sech, 153
Second Convexity Criterion, 108
second derivative, 98
Second Derivative Test, 99
sequence, 32
Sequence Limit Ratio Test, 48
set, 7
shells, 207
Simpson’s Rule, 193
sin, 56
singleton, 21
sinh, 153
slope, 80
smooth curve, 199
speed, 200
Squeeze Principle, 34
Squeeze Principle for Functions, 70
strictly decreasing, 40, 96
strictly increasing, 40, 96
subsequence, 43
subset, 7
Substitution Rule, 158
sufficient, 91
summation by parts, 242
Summation Notation, 22
sup, 30
supremum, 30
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surface area, 216
symmetry principle, 220

Tan, 116
tan, 56
tangent, 80
tanh, 153
Taylor expansion, 103
Taylor Series, 105
Taylor series, 247
Taylor’s Theorem, 103
Telescoping sum, 23
there exists, 31
therefore, 13
transcendental, 148
transcendental functions, 188
transitive, 14
Trapezoidal Rule, 190
Triangle Inequality, 16
Trichotomy Law, 14
Trigonometric functions, 56

unbounded, 30
unbounded above, 29
unbounded below, 29
uniform, 218
uniform continuity, 95
uniform partition, 126
uniformly continuous, 134
union, 8
unique, 12
Uniqueness of Limits, 34
unit circle, 57
universal substitution, 171
upper, 122
upper bound, 29
upper integral, 123

vanish, 93
velocity, 200
vertical line test, 54

Weierstrass Max/Min Theorem, 77
work, 210
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