1. Prove that $\sqrt{3}$ is irrational.

Suppose that there existed integers p and q such that $p^2 = 3q^2$. Without loss of generality we may assume that p and q are not both divisible by 3 (otherwise we could cancel out the common factor of 3). We note that p^2 is divisible by 3.

Express $p = 3n + r$ where $r = 0, 1, 2$. Then $p^2 = 9n^2 + 6nr + r^2$. If $r = 1$ or $r = 2$, then p^2 is not a multiple of 3. The only way that p^2 can be divisible by 3 is if p is itself a multiple of 3. (Alternatively, consider the prime factorization of p. Since 3 is prime, the only way it can be a factor of p^2 is if it is also a factor of p.)

Hence $9n^2 = 3q^2$, or $3n^2 = q^2$. Replacing p by q in the above argument, we see that q is also divisible by 3. This contradicts the fact that p and q are not both divisible by 3.

2. Let r and s be rational numbers.

(a) Is $r + s$ necessarily a rational number? (Prove or provide a counterexample.)

Yes, let $r = p/q$ and $s = m/n$, where $p, m \in \mathbb{Z}$ and $q, n \in \mathbb{N}$; we may always write

$$\frac{p}{q} + \frac{m}{n} = \frac{pn + mq}{qn}.$$

(b) Is $r - s$ necessarily a rational number?

Yes, we may always write

$$\frac{p}{q} - \frac{m}{n} = \frac{pm - mq}{qn}.$$

(c) Is rs necessarily a rational number?

Yes, we may always write

$$\frac{pm}{qn} = \frac{pm}{qn}.$$

(d) Is r/s necessarily a rational number?

No, consider $r = 1$, $s = 0$. There is no rational number r/s.

3. Let x and y be irrational numbers. Prove or provide a counterexample:

(a) Is $x + y$ necessarily an irrational number?

No, consider $x = \sqrt{2}$, $y = -\sqrt{2}$.
(b) Is $x - y$ necessarily an irrational number?
No, consider $x = \sqrt{2}$, $y = \sqrt{2}$.

(c) Is xy necessarily an irrational number?
No, consider $x = \sqrt{2}$, $y = \sqrt{2}$.

(d) Is x/y necessarily an irrational number?
No, consider $x = \sqrt{2}$, $y = \sqrt{2}$.

4. Let r be a rational number and x be an irrational number. Prove or provide a counterexample:

(a) Is $r + x$ necessarily an irrational number?
Yes, let $y = r + x$; if y were rational then $y - r$ would be rational.

(b) Is $r - x$ necessarily an irrational number?
Yes, let $y = r - x$; if y were rational then $r - y$ would be rational.

(c) Is rx necessarily an irrational number?
No, consider $r = 0$, $x = \sqrt{2}$.

(d) Is r/x necessarily an irrational number?
No, consider $r = 0$, $x = \sqrt{2}$.

5. Prove that if the decimal expansion of a real number ends in a repeating pattern of digits, the number must be rational.

(a) First show that numbers of the form $0.d_1d_2d_3\ldots d_n$, are rational, where d_i, $i = 1 \ldots n$, are decimal digits. Hint: what happens when you multiply such a number by 10^n?

Let x be a number of this form. Then $10^n x = d_1d_2d_3\ldots d_n + x$. Solving for x, we find that x is the ratio of the integer with digits $d_1d_2d_3\ldots d_n$ to the integer $10^n - 1$. Hence x is a rational number.

(b) Now generalize your result in part (a) to show that the statement holds for any real number that has a decimal expansion ending in a repeating pattern.

Denote the number by x and express its decimal expansion as

$$x = a_1a_2\ldots a_kb_1b_2\ldots b_l d_1d_2d_3\ldots d_n.$$

From part (a), we know that $0.d_1d_2d_3\ldots d_n = p/q$ for some integers p and q. Upon multiplying x by 10^k we see that

$$10^k x = a_1a_2\ldots a_kb_1b_2\ldots b_l + p/q.$$

Hence

$$x = \frac{(a_1a_2\ldots a_kb_1b_2\ldots b_l) \times q + p}{10^k q},$$

so x is indeed a rational number.
6. (a) Consider the quadratic equation $ax^2 + bx + c = 0$, where a, b, and c are real numbers. For which values of a, b, and c does this equation have (i) one root x; (ii) two roots; (iii) no roots; (iv) infinitely many roots? For cases (i) and (ii), derive the formula that determines the roots. Hint: complete the square.

If $a \neq 0$, we can divide both sides of the equation $ax^2 + bx + c = 0$ by a to obtain

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

We now “complete the square” by writing the first two terms as a perfect square minus a constant:

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0.$$

On solving for x we obtain

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

This is the quadratic formula.

Also, if $a = 0$ and $b \neq 0$, then $bx + c = 0$ has the single root $x = -c/b$. Finally, in the case $a = b = 0$ there are infinitely many solutions when $c = 0$ and no solutions when $c \neq 0$.

To summarize:

(i) $a \neq 0$, $b^2 - 4ac = 0$ or $a = 0$, $b \neq 0$;
(ii) $a \neq 0$, $b^2 - 4ac > 0$;
(iii) $a \neq 0$, $b^2 - 4ac < 0$ or $a = b = 0$, $c \neq 0$;
(iv) $a = b = c = 0$.

(b) A rectangular sheet of paper is cut along a line parallel to one side. One of the resulting pieces is square. The other piece has the same aspect ratio (length/width) as the original piece. If the width (shortest dimension) of the original sheet of paper was 1, what was its length?

Denote the length of the original sheet of paper by L. We are told that

$$\frac{L - 1}{1} = \frac{1}{L}.$$

Hence $L^2 - L - 1 = 0$. Of the two root to this quadratic equation,

$$L = \frac{1 \pm \sqrt{5}}{2},$$

only the solution $L = \frac{1 + \sqrt{5}}{2}$ is greater than the width 1. This number, which differs from its reciprocal by 1, is the famous golden ratio.
7. Let a and b be real numbers satisfying $0 < a < b$.

(a) Show that $a^2 < b^2$.

On multiplying the inequality $a < b$ respectively by the positive numbers a and b, we find that $a^2 < ab$ and $ab < b^2$, so that $a^2 < b^2$.

Alternatively, consider that $0 < (b - a)(b + a) = b^2 - a^2$.

(b) Show that $\sqrt{a} < \sqrt{b}$.

If $\sqrt{a} > \sqrt{b}$, then part (a) would imply that $a > b$. If $\sqrt{a} = \sqrt{b}$, then $a = b$. Given that $a < b$, we can then be sure that $\sqrt{a} < \sqrt{b}$.

Alternatively consider that $0 < b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})$. Hence $0 < \sqrt{b} - \sqrt{a}$ (since the reciprocal of a positive number is positive).

(c) Show that

\[
ab < \frac{a^2 + b^2}{2}.
\]

\[
0 < (a - b)^2 = a^2 - 2ab + b^2
\]

\[
\Rightarrow 2ab < a^2 + b^2,
\]

from which we deduce the desired result.

(d) Show that

\[
a < \sqrt{ab} < \frac{a + b}{2} < b.
\]

We have shown in class that

\[
a < \frac{a + b}{2} < b,
\]

so all we have left to establish is that

\[
a < \sqrt{ab} < \frac{a + b}{2}.
\]

We know from part (b) that $\sqrt{a} < \sqrt{b}$. On multiplying this inequality by \sqrt{a}, we deduce $a < \sqrt{ab}$. Finally, from part (c),

\[
2ab < a^2 + b^2 \Rightarrow 4ab < a^2 + 2ab + b^2 = (a + b)^2 \Rightarrow ab < \frac{(a + b)^2}{4} \Rightarrow \sqrt{ab} < \frac{(a + b)}{2},
\]

again using part (b).
8. Use induction to prove the formula, for \(n \in \mathbb{N} \),

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}.
\]

Step 1: We see for \(n = 1 \) that \(1 = 1(1 + 1)(2 + 1)/6 \).

Step 2: Suppose

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6} = S_n.
\]

(where \(\doteq \) denotes a definition). Then

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2
\]

\[
= \frac{n(n + 1)(2n + 1)}{6} + (n + 1)^2 = \frac{(n + 1)}{6}[n(2n + 1) + 6(n + 1)]
\]

\[
= \frac{(n + 1)}{6}(2n^2 + 7n + 6) = \frac{(n + 1)(n + 2)(2n + 3)}{6} = S_{n+1}.
\]

By induction, we see that the given formula holds for all \(n \in \mathbb{N} \).