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Abstract. We study the linear and nonlinear stability of stationary solutions
of the forced two-dimensional Navier-Stokes equations on the domain [0, 2π]×
[0, 2π/α], where α ∈ (0, 1], with doubly periodic boundary conditions. For the
linear problem we employ the classical energy–enstrophy argument to derive
some fundamental properties of unstable eigenmodes. From this it is shown
that forces of pure x2-modes having wavelengths greater than 2π do not give
rise to linear instability of the corresponding primary stationary solutions. For
the nonlinear problem, we prove the equivalence of nonlinear stability with
respect to the energy and enstrophy norms. This equivalence is then applied
to derive optimal conditions for nonlinear stability, including both the high-
and low-Reynolds-number limits.

1. Introduction. We consider 2D incompressible fluid flow in a doubly periodic
rectangular domain T 2 = [0, 2π]× [0, 2π/α], where α ∈ (0, 1]. The fluid is assumed
to be driven by a monoscale forcing and damped by various dissipation mechanisms
including Ekman drag (a linear mechanical friction), hypoviscosity, molecular vis-
cosity, and hyperviscosity. The 2D Navier-Stokes equations which govern the fluid
motion are written in an abstract form in a function space H as

du

dt
+ B(u, u) + Aηu = f, u(t = 0) = u0. (1)

A detailed description of the functional analysis setting for (1) is given in [1, 9, 10].
We recall that H is the L2-space of periodic, non-divergent functions representing
the velocity u with vanishing average in T 2. B(u, u) = P ((u · ∇)u) where P is the
orthogonal projection in L2 onto H , and A = −P∆ = −∆P . The number η will be
called the degree of viscosity. When η = 1 we have the usual molecular viscosity,
while η = 0 corresponds to Ekman drag. The cases η > 1 and η < 1 correspond to
hyperviscosity and hypoviscosity, respectively. Note that the generalized viscosity
coefficient is taken to be unity.

The eigenfunctions of A which form an orthonormal basis of H are given by (see
[6, 7])

ek =

√
α√

2π|k|
k′ cos k · x, (2)
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e′k =

√
α√

2 π|k|
k′ sin k · x, (3)

where k = (k1, αk2)
T , k1 and k2 are integers satisfying either k1 > 0 or k1 = 0 and

k2 > 0, and k′ = (αk2,−k1)
T . For convenience this set of wavevectors k will be

denoted by K. We denote by Hγ the domain of definition of Aγ/2 for real γ. The
(degenerate) eigenvalues of A are |k|2 and the eigenspace corresponding to |k|2 is
denoted by H(|k|). We will occasionally refer to |k| as a wavenumber and 2π/|k| as
the length scale (or wavelength) associated with the wavenumber |k|. In this study
f is assumed to be a monoscale body force; i.e., f ∈ H(|s|) for some wavenumber
|s|. Further restrictions on f for the particular cases considered in this article will
be stated in due course.

The Fourier representation of u is given by

u =
∑

k∈K

(ukek + u′
ke′k). (4)

To facilitate the linear analysis we allow uk and u′
k to take complex values. The

scalar product and the norm in Hγ are given respectively by

(u, v)γ =

∫

T 2

u∗ · Aγv dx =
∑

k∈K

|k|2γ(u∗
kvk + u′∗

kv′k), (5)

||u||γ = (u, u)1/2
γ =

(

∑

k∈K

|k|2γ(|uk|2 + |u′
k|2)

)1/2

. (6)

The cases where γ = 0, 1 are special and the corresponding H-norm (superscript
and subscript ‘0’ are omitted in this case) and H1-norm are known in the literature
as the energy and enstrophy norm, respectively. A geometric constraint, referred
to as the Poincaré inequality, is

||u||2γ+β ≥ λγ
min ||u||

2
β (7)

for non-negative γ, where λ
1/2
min (which generally depends on u) is the minimum

wavenumber in the Fourier representation of u. In order to apply to arbitrary u
one must take λmin = α2, being the first eigenvalue of A. The inequality reverses
direction for non-positive γ.

Let β, β′ ∈ < and κ > 0. Let φ ∈ Hγ where γ = Max{β, β′, β + β′}. We define
(see also [12])

G(β, β′, κ, φ) =
∑

|k|

(κ2β − |k|2β)(κ2β′ − |k|2β′

) ||P (|k|)φ||2 , (8)

where P (|k|)φ is the projection of φ onto the eigenspace H(|k|). Note that G(β, β ′, κ, φ)
is positive (negative) if and only if ββ′ > 0 (ββ′ < 0) and if φ 6∈ H(κ) if κ2 happens
to be an eigenvalue of A. This means that when ββ′ 6= 0, G(β, β′, κ, φ) = 0 if and
only if κ2 is an eigenvalue of A and φ ∈ H(κ). By rearranging terms we obtain

G(β, β′, κ, φ) = ||φ||2β+β′ − κ2β′ ||φ||2β − κ2β(||φ||2β′ − κ2β′ ||φ||2). (9)

In particular,

G(1, η, |s|, φ) = ||φ||21+η − |s|2 ||φ||2η − |s|2η(||φ||21 − |s|2 ||φ||2). (10)
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The following identities are well-known for real u, v, w and are used repeatedly
in what follows. The bilinear operator B(·, ·) satisfies

(Au, B(v, v)) + (Av, B(v, u)) + (Av, B(u, v)) = 0 (11)

for u, v ∈ H2, and

(u, B(v, w)) = −(w, B(v, u)) (12)

for u, w ∈ H1 and v ∈ H . These identities arise by virtue of the non-divergent and
periodic properties of the velocity field. In particular, we have

(u, B(v, u)) = 0, (13)

(Au, B(u, u)) = 0. (14)

We shall collectively refer to the above identities as the orthogonality properties of
the nonlinear term. In the absence of forcing and viscosity, they give rise to the
conservation of energy and enstrophy.

2. Linear stability. Equation (1) possesses the stationary solution

ū = |s|−2ηf, (15)

which will be referred to as the primary stationary solution. A stationary solution
other than ū (if it exists) will be referred to as a secondary stationary solution.
(The existence of such a solution for the traditional 2D Navier-Stokes system under
suitable conditions is demonstrated in [4].) Let the solution of (1) be written in the
form

u = ū + v. (16)

Then the governing equation for the deviation v from ū reads

dv

dt
= −B(ū, v) − B(v, ū) − B(v, v) − Aηv. (17)

Let the linear operator in the above eq. be denoted by L(ū), viz.,

L(ū)v = −B(ū, v) − B(v, ū) − Aηv. (18)

For the linear stability problem the focus is on the eigenvalue problem

L(ū)w = σw, (19)

where a positive (negative) real part of σ corresponds to an unstable (stable) eigen-
mode.

We now consider the special case f = f0e
′
s which corresponds to the stationary

solution ū = ūse
′
s = |s|−2ηf0e

′
s, where f0 > 0. Let an eigenvector be written in the

Fourier representation (4). Then with reference to Liu’s lemma in the appendix,
it is seen that the odd and even components of the disturbance are separable and
both satisfy the eigenvalue problem (19). Hence, it is sufficient to consider either
one, say the even part in which case w =

∑

k∈K wkek. Substituting this into (19),
using Liu’s lemma with l = s, and noting that s′ · s = 0, we obtain the relation

(|k|2η + σ)wk − ūs
√

α k′ · s
2
√

2π|k||s|

[ |k − s|2 − |s|2
|k − s| wk−s −

|k + s|2 − |s|2
|k + s| wk+s

]

= 0. (20)

This equation gives a three-term recurrence relation between wk0+(n−1)s, wk0+ns,
and wk0+(n+1)s for a given k0. (Note that when k−s 6∈ K then this mode appears as
s−k ∈ K with wk−s = −ws−k because ek−s = −es−k; see Figure 1.) Equation (20)
is derived (for slightly different forms of ū) and employed in studying the unstable
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k · x̂2

k · x̂1

k0

k0 + s

k0 + 2s

s

s − k0

2s − k0

k0 − s

Figure 1. The wavevectors in the sequence kn = k0 + ns of an
unstable eigenmode. The domain K consists of the right half-
plane, minus the lower half of the ordinate and the origin. When
kn 6∈ K (for n ≤ −1 in this figure) then −kn appears in the Fourier
series of the unstable eigenmode. k0 is designated as the member
of the sequence with the smallest wavenumber. The semicircle has
radius |s|. At most two of the members of this sequence can lie
within the semicircle (k0 and −k−1 in this figure).

manifold, eigenvalue problem, and the bifurcation of ū via the continued fraction
method in [4, 5, 6, 7, 8].

Let σr denote the real part of σ. We see that for σr ≥ 0 (20) has no non-trivial
solutions when k′ · s = 0. Thus, for unstable eigenmodes w must take the form

w(k0) =
∑

n

wnekn
, (21)

where n is an integer and where kn = k0 + ns for some k0 ∈ K with k′
0 · s 6= 0.

Without loss of generality we may designate |k0| as the smallest wavenumber of
the sequence {|kn|}. We observe that there exist at most two wavenumbers ≤ |s|
in the sequence {|kn|} (see Figure 1). One of these smallest wavenumbers is, by
definition, |k0| and the other is either |k1| or |k−1|, depending on the angle between
s and k0. From the observation in this paragraph two important properties of the
eigenvalue problem (19) follow.

First, the Fourier series of an unstable eigenmode is not terminating, i.e.,

wn 6= 0, ∀n. (22)
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Indeed, suppose otherwise that there is an N such that wN = 0. We then write
w = p + q, where p =

∑

n<N wnekn
and q =

∑

n>N wnekn
. Since only |k0| and

either |k−1| or |k1| can be ≤ |s|, either p or q consists of no Fourier modes of
wavenumbers < |s|. Let us therefore assume, without loss of generality, that p
satisfies this condition. Taking the scalar product of p with (19) in H and H1,
respectively, we obtain (noting the separability of p and q)

σ ||p||2 + ||p||2η = (ū, B(pr, pr) + B(pi, pi)) (23)

−i(pr, B(ū, pi) + B(pi, ū)) + i(pi, B(ū, pr) + B(pr, ū)),

σ ||p||21 + ||p||21+η = (Aū, B(pr, pr) + B(pi, pi)) (24)

−i(Apr, B(ū, pi) + B(pi, ū)) + i(Api, B(ū, pr) + B(pr, ū)),

where the orthogonality properties have been employed for the real (pr) and imag-
inary parts (pi) of p. Multiplying (23) by |s|2 and subtracting (24), noting that the
real parts on the right-hand sides of (23) and (24) cancel, we obtain

σr(|s|2 ||p||2 − ||p||21) = ||p||21+η − |s|2 ||p||2η . (25)

For p 6= 0 the right-hand side of (25) is positive due to the Poincaré inequality.
Likewise, the difference in the brackets on the left-hand side of (25) is negative.
So, σr ≥ 0 requires that p = 0. From the recurrence relation it is easy to see
that p = 0 =⇒ q = 0. Hence, the Fourier series of an unstable eigenmode of ū is
non-terminating.

Second, there exist no nontrivial unstable solutions (21) to (19) for |k0| ≥ |s|.
To see this we repeat the steps leading to (25) with p replaced by w and obtain

σr(|s|2 ||w||2 − ||w||21) = ||w||21+η − |s|2 ||w||2η . (26)

For w 6= 0 the right-hand side of (26) is positive due to the Poincaré inequality.
Likewise, the difference in the brackets on the left-hand side of (26) is negative.
Hence, for σr ≥ 0 there is no non-trivial solution to (19) in this case. As a conse-
quence of this, it is interesting to note that ū possesses no unstable eigenmodes for
the special case s = (0, αs2)

T , where αs2 ≤ 1, as there exist no k0 ∈ K such that
|k0| < |s| and k′

0 · s 6= 0.
When there exists an unstable eigenmode w, (26) implies that the signs of

(|s|2 ||w||2 − ||w||21) and (||w||21+η − |s|2 ||w||2η) are the same. When η = 0, (26)
leads directly to

|s|2 ||w||2 − ||w||21 = 0. (27)

When η > 0, (10) together with G(1, η, |s|, w) > 0 (since w 6∈ H(|s|)) rules out the
possibility of a negative sign, leading to

|s|2 ||w||2 − ||w||21 > 0 and ||w||21+η − |s|2 ||w||2η > 0. (28)

In conclusion, we have proven the following

Theorem 2.1. (I) The primary stationary flow ū = ūse
′
s of the Navier-Stokes

system, for s = (0, αs2)
T with αs2 ≤ 1, is linearly stable for arbitrary values of ūs.

(II) Unstable eigenvectors of the eigenvalue problem L(ū)w = σw satisfy (27)
for η = 0 or (28) for η > 0. Moreover, the real part of the eigenvalue, σr, is given
by

σr =
||w||21+η − |s|2 ||w||2η
|s|2 ||w||2 − ||w||21

, (29)
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for η > 0.

Remark 1. The arguments leading to wn 6= 0, ∀n do not make use of the dissi-
pation term in an essential manner. In particular, if the right-hand side of (25) is
identically zero (i.e., the dissipation term is absent), then σr > 0 still implies p = 0,
and the subsequent arguments follow. Hence, for the inviscid case, the Fourier se-
ries of an unstable eigenmode of the basic flow ū is non-terminating. Furthermore,
the spectrum of such an unstable eigenmode satisfies

|s|2 ||w||2 − ||w||21 = 0. (30)

Since the eigenmode cannot be entirely in H(|s|), for which (30) would hold trivially,
this implies that an unstable disturbance must have a component with a wavenumber
smaller than |s|. This recovers a well-known result in the inviscid linear problem
(see, for example, [2, 3]).

Remark 2. A basic flow of mode (0, αs2)
T is an x1-directed flow of cross-flow (x2)

wavelength 2π/αs2. There are N such linearly stable basic flows where N is the
largest integer ≤ 1/α. We note that αs2 ≤ 1 corresponds to a wavelength in x2

that is greater than or equal to the domain size in x1. As noted in the previous
remark, an unstable mode must have a component with a wavenumber smaller than
|s| (and k′

0 · s 6= 0). This constraint is consistent with the well-known arguments
of [2] regarding energy transfers in two-dimensional Euler flows. Basic flows with
αs2 ≤ 1 cannot satisfy this constraint, which explains their stability: all disturbances
with k′

0 · s 6= 0 are of smaller scale.

3. Nonlinear stability. We now present the main result in the nonlinear stability
analysis. In this section, the term nonlinear stability means asymptotic (global)
stability.

Unlike the nonlinear stability problem for finite-dimensional systems in which
all norms are equivalent, a nonlinear stability analysis for an infinite-dimensional
system requires a specified norm. A stationary solution of an infinite-dimensional
system that is shown to be nonlinearly stable with respect to a given norm may
not necessarily be stable with respect to another norm. The present problem turns
out to be an exceptional case in which the stability of ū with respect to the energy
norm implies the stability of ū with respect to the enstrophy norm, and vice versa.
In particular, we will prove the following

Lemma 3.1. The following conditions are equivalent:
(I) ū is nonlinearly stable with respect to the energy norm.
(II) ū is nonlinearly stable with respect to the enstrophy norm.

Proof. (II) automatically implies (I) because of the Poincaré inequality. For the
other direction the proof goes as follows. Taking the scalar product of (17) with v
in H and H1 and noting the orthogonality properties of B(·, ·) we obtain

1

2

d

dt
||v||2 − (ū, B(v, v)) + ||v||2η = 0, (31)

1

2

d

dt
||v||21 − (Aū, B(v, v)) + ||v||21+η = 0. (32)

It is easy to see that if v ∈ H(|s|) at some time then v belongs to H(|s|) for all time
since H(|s|) is invariant, because B(v, v) = 0 if v ∈ H(|k|) for all k ∈ K. Moreover,
||v||γ → 0, in H(|s|), ∀γ. Hence, we assume v 6∈ H(|s|) for the rest of this proof.
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Since Aū = |s|2ū we can multiply the energy equation (31) by |s|2 and subtract the
enstrophy equation (32) to obtain

1

2

d

dt

{

|s|2 ||v||2 − ||v||21
}

+
{

|s|2 ||v||2η − ||v||21+η

}

= 0. (33)

Using (10), this equation can be rewritten in terms of the function G(1, η, |s|, v) as

1

2

d

dt

{

|s|2 ||v||2 − ||v||21
}

+ |s|2η
{

|s|2 ||v||2 − ||v||21
}

= G(1, η, |s|, v). (34)

Since G(1, η, |s|, v) ≥ 0 for η ≥ 0, (34) implies

lim inf
t→∞

{

|s|2 ||v||2 − ||v||21
}

≥ 0. (35)

Hence, (I) implies (II) and the proof of the lemma is complete.

Remark 3. For a secondary stationary solution, denoted by ū′ if it exists, we have
|s| ||ū′|| = ||ū′

1|| for η = 0 and |s| ||ū′|| > ||ū′||1 for η > 0 (see [11, 12]). However, a
disturbance from ū′ does not necessarily obey the same equality or inequality as ū′

does, as t → ∞. Hence (I) does not necessarily imply (II).
We now derive a sufficient condition for the stability of ū in the special case

s = (0, αs2)
T . We also consider only the case of molecular viscosity, η = 1, for the

remainder of the paper. We have from (31) that

1

2

d

dt
||v||2 = (ū, B(v, v)) − ||v||21 = ūs(e

′
s, B(v, v)) − ||v||21 . (36)

We evaluate the trilinear form in (36) by expanding B(v, v) as in the appendix.
Since, for s = (0, αs2)

T , there exist no triads in K satisfying k + l = s, and because
of the orthogonality of the basis functions, the trilinear form (e′s, B(v, v)) reduces
to

(e′s, B(v, v)) =
∑

k−l=s

√
α k′ · l(|k|2 − |l|2)
2
√

2π|k||l||s|
(vkvl + v′kv′l). (37)

The factors in the coefficients of vkvl and v′kv′l are given by

k′ · l = k1αs2 = l1αs2

|k|2 − |l|2 = |l + s|2 − |l|2 = α2s2
2 + 2α2s2l2

|k||l||s| = αs2(l
2
1 + (αs2 + αl2)

2)1/2(l21 + α2l22)
1/2.

Therefore,

k′ · l(|k|2 − |l|2)
|k||l||s| =

l1αs2(αs2 + 2αl2)

(l21 + (αs2 + αl2)2)1/2(l21 + α2l22)
1/2

. (38)

Upon substitution of the above identity the trilinear form then reads

(e′s, B(v, v)) =

∞
∑

l1=1

∞
∑

l2=−∞

√
α l1αs2(αs2 + 2αl2)(vlvl+s + v′lv

′
l+s)

2
√

2 π(l21 + (αs2 + αl2)2)1/2(l21 + α2l22)
1/2

. (39)

Note that each vl (v′l), for l 6= (0, αl2)
T , appears exactly twice in the above sum.

Meanwhile, the dissipation term can be majorized according to

||v||21 =
∑

k

|k|2(v2
k + v′

2
k) ≥

∑

k

|k||k + s|(|vkvk+s| + |v′kv′k+s|). (40)
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Substituting (39) and (40) into the energy equation (36) then yields (note the
change of the dummy indices l1 and l2 to k1 and k2)

1

2

d

dt
||v||2 ≤

∞
∑

k1=1

∞
∑

k2=−∞

(

Uk1αs2|αs2 + 2αk2|
2(k2

1 + (αs2 + αk2)2)1/2(k2
1 + α2k2

2)
1/2

(41)

(k2
1 + (αs2 + αk2)

2)1/2(k2
1 + α2k2

2)
1/2

)

(|vkvk+s| + |v′kv′k+s|),

where U = ūs
√

α/(
√

2 π) is the amplitude of ū. Nonlinear stability of ū follows
provided the right-hand side of (41) is non-positive. This condition is satisfied
when

Uk1αs2|αs2 + 2αk2|
2(k2

1 + (αs2 + αk2)2)(k2
1 + α2k2

2)
≤ 1, (42)

for all positive integers k1 and all integers k2. Since the left-hand side of (42) is
greatest when k1 = 1 for each k2, the stability condition reduces to

Uαs2|αs2 + 2αk2|
2(1 + (αs2 + αk2)2)(1 + α2k2

2)
≤ 1. (43)

The problem of determining the nonlinear stability condition for ū now reduces to
determining the greatest value of the left-hand side of (42) for all integers k2 and
setting it ≤ 1. For that purpose, let us determine the maximum of the function

g(x) =
|c + 2x|

(1 + x2)(1 + (c + x)2)
,

where c is a positive parameter and x is a continuous real variable. It can be
seen that g(x) is symmetric about the line x = −c/2; therefore, the translation
x → x + c/2 helps reduce the problem to finding the maximum of

h(x) =
2x

(1 + (x − c/2)2)(1 + (x + c/2)2)
, x > 0.

Differentiating h(x) with respect to x, setting the derivative to zero, and solving
the resulting equation for x in terms of c one obtains the single real solution

x =

(

c2 − 4 + 2(c4 + 4c2 + 16)1/2

12

)1/2

,

which corresponds to a maximum of h(x). Therefore, g(x) peaks at

x = − c

2
+

(

c2 − 4 + 2(c4 + 4c2 + 16)1/2

12

)1/2

,

with the maximum value

ḡ(c) =

(

c2 + 2
3 ((c4 + 4c2 + 16)1/2 − c2 − 2)

)1/2

1 +
(

c2 + 1
3 ((c4 + 4c2 + 16)1/2 − c2 − 2)

)

+ 1
36 ((c4 + 4c2 + 16)1/2 − c2 − 2)2

.

With this result ū is nonlinearly stable when

Uαs2ḡ(αs2) ≤ 2. (44)

This is a sufficient condition for the nonlinear stability of ū.
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There is a feature of ḡ(αs2) in (44) which leads to an interesting difference
between the conditions for stability for αs2 � 1 and for αs2 � 1. In the former
case, ḡ(αs2) ∼ 3

√
3/8 so (44) reduces to

Uαs2 ≤ 16

3
√

3
. (45)

In the latter case, ḡ(αs2) becomes

ḡ(αs2) ∼
1

αs2
,

and the nonlinear stability of ū therefore prevails when

U ≤ 2. (46)

The above analysis concerns only the stability of ū with respect to the energy
norm. A similar approach is now applied to derive a sufficient condition for the
stability of ū with respect to the enstrophy norm. Because of the equivalence of
the two normed stability conditions a comparison between them can be made and
an optimal condition deduced. Now,

1

2

d

dt
||v||21 = (Aū, B(v, v)) − ||v||22 = |s|2ūs(e

′
s, B(v, v)) − ||v||22 . (47)

The global stability of ū is established if the right-hand side of (47) is negative.
The trilinear form has already been estimated above. Meanwhile, the dissipation
term can be majorized according to

||v||22 =
∑

k

|k|4(v2
k + v′

2
k) ≥

∑

k

|k|2|k + s|2)(|vkvk+s| + |v′kv′k+s|). (48)

Substituting (39) and (48) into the enstrophy equation (47) then yields

1

2

d

dt
||v||21 ≤

∞
∑

k1=1

∞
∑

k2=−∞

(

Uk1α
3s3

2 |αs2 + 2αk2|
2(k2

1 + (αs2 + αk2)2)1/2(k2
1 + α2k2

2)
1/2

(49)

(k2
1 + (αs2 + αk2)

2)(k2
1 + α2k2

2)

)

(|vkvk+s| + |v′kv′k+s|).

Nonlinear stability of ū follows provided the right-hand side of (49) is non-positive.
This condition is satisfied when

Uα3s3
2 k1|αs2 + 2αk2|

2(k2
1 + (αs2 + αk2)2)3/2(k2

1 + α2k2
2)

3/2
≤ 1, (50)

for all positive integers k1 and all integers k2. Since the left-hand side of (50) is
greatest when k1 = 1 for each k2, the stability condition reduces to

Uα3s3
2 |αs2 + 2αk2|

2(1 + (αs2 + αk2)2)3/2(1 + α2k2
2)

3/2
≤ 1. (51)

Similar to the previous calculation for the energy norm, the present problem
reduces to determining the maximum of the function

g1(x) =
|c + 2x|

(1 + x2)3/2(1 + (c + x)2)3/2
,

or equivalently the maximum of

h1(x) =
2x

(1 + (x − c/2)2)3/2(1 + (x + c/2)2)3/2
, x > 0,
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where c is a positive parameter and x is a continuous real variable. It turns out
that g1(x) peaks at

x = − c

2
+

(

2c2 − 8 + (9c4 − 12c2 + 144)1/2

20

)1/2

,

with the maximum value

ḡ1(c) =
20
(

c2 − 4 + 1
2 (9c4 − 12c2 + 144)1/2

)1/2

(

2 + 7c2 + (9c4 − 12c2 + 144)1/2 + 1
40 (3c2 + 8 − (9c4 − 12c2 + 144)1/2)2

)3/2
.

With this result ū is nonlinearly stable when

Uα3s3
2 ḡ1(αs2) ≤ 2. (52)

When αs2 � 1, ḡ1(αs2) ∼ 25
√

5/108 so (52) reduces to

Uα3s3
2 ≤ 25

√
5

54
. (53)

For αs2 � 1, ḡ(αs2) becomes

ḡ(αs2) ∼
1

α2s2
2

,

and the nonlinear stability of ū therefore prevails when

Uαs2 ≤ 2. (54)

A comparison between (45) and (53) indicates that the latter is optimal, while a
comparison between (46) and its counterpart (54) favours the former.

It is not hard to see that ḡ(αs2) and ḡ1(αs2) are of the same order when αs2 ∼ 1.
In that case either (44) or (52) may be taken as a sufficient condition for the stability
of ū. The linearly marginal case (αs2 = 1) is particularly interesting, so we will
derive an explicit criterion for its nonlinear stability. Evaluating ḡ(αs2) and ḡ1(αs2)
at αs2 = 1 we obtain ḡ(1) > ḡ1(1) = 0.3589 · · · . Therefore, (52) is optimal and we
have the following stability criterion for this case:

U ≤ 5.572 · · · . (55)

In summary, we have the following optimal conditions for nonlinear stability of
ū

Theorem 3.1. Consider (1) for η = 1 and f = f0e
′
s, where s = (0, αs2)

T . The
corresponding primary stationary solution ū is asymptotically (globally) stable when

U ≤ 2 for αs2 � 1, (56)

U ≤ 5.572 · · · for αs2 = 1, (57)

and

Uα3s3
2 ≤ 25

√
5

54
for αs2 � 1, (58)

where U is the amplitude of ū.
The remarks below provide some physical interpretations of the conditions for

nonlinear stability.
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Remark 4. Since the basic flow length scale is 2π/(αs2) and the viscosity is unity,
the Reynolds number is given by Re = 2πU/(αs2). In the regime αs2 � 1, which
is stable to linear dynamics, (58) gives nonlinear stability for

Re ≤ 25
√

5π

27α4s4
2

(

� 25
√

5π

27

)

. (59)

Hence flows with Re � 1 are stable for sufficiently small αs2.

Remark 5. In the regime αs2 � 1 where linear stability is not established, from
(56) we get

Re ≤ 4π

αs2
(� 4π) (60)

so Re must be very small. This is definitely the viscous limit.

Appendix. The bilinear form B(v, v). We shall give an explicit form of B(v, v) which
is employed in this paper. The lemma below is taken from [6, 7] (note that α = 1 in these
articles).

Lemma 3.2. For every k and l in the definition of ek and e′k (k 6= l)

B(ek, el) + B(el, ek) =

√
α k′ · l(|k|2 − |l|2)

2
√

2 π|k||l|

(

e′k+l

|k + l| +
e′k−l

|k − l|

)

,

B(e′k, e
′

l) + B(e′l, e
′

k) = −
√

α k′ · l(|k|2 − |l|2)
2
√

2 π|k||l|

(

e′k+l

|k + l| −
e′k−l

|k − l|

)

,

B(ek, e
′

l) + B(e′l, ek) = −
√

α k′ · l(|k|2 − |l|2)
2
√

2 π|k||l|

(

ek+l

|k + l| −
ek−l

|k − l|

)

.

Proof. It suffices to give a proof for one of the equations. The others are proven in exactly
the same manner. It is found by direct calculation that

(ek · ∇)el = −α(k′ · l)l′
2π2|k||l| cos k · x sin l · x,

(el · ∇)ek = −α(l′ · k)k′

2π2|k||l| cos l · x sin k · x. (A-1)

Adding the equations of (A-1) and noting that k′ · l = −l′ · k one finds

(ek · ∇)el + (el · ∇)ek = − α(k′ · l)
2π2|k||l| ×

(

l
′ cos k · x sin l · x − k

′ cos l · x sin k · x
)

(A-2)

= − α(k′ · l)
4π2|k||l| ×

(

(l′ − k
′) sin(k + l) · x − (l′ + k

′) sin(k − l) · x
)

.

The right hand side of (A-2) is identically zero for l = k. When l 6= k it can be projected
onto H to yield

B(ek, el) + B(el, ek) = −
√

α k′ · l
2
√

2 π|k||l|
×

(

(l′ − k′) · (k′ + l′)

|k + l| e
′

k+l −
(l′ + k′) · (k′ − l′)

|k − l| e
′

k−l

)

=

√
α k′ · l(|k|2 − |l|2)

2
√

2 π|k||l|

(

e′k+l

|k + l| +
e′k−l

|k − l|

)

, (A-3)
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where the projection P of the vector sum involved onto H has been performed term by
term via

P (m sin l · x) =

√
2 πm · l′√

α |l| e
′

l. (A-4)

The first equation of the lemma is thus proven.

It is now easy to see that

B(v, v) =
∑

k,l∈K

√
α k′ · l(|k|2 − |l|2)

2
√

2 π|k||l|

(

e′k+l

|k + l| +
e′k−l

|k − l|

)

vkvl

−
∑

k,l∈K

√
α k′ · l(|k|2 − |l|2)

2
√

2 π|k||l|

(

e′k+l

|k + l| −
e′k−l

|k − l|

)

v
′

kv
′

l

−
∑

k,l∈K

√
α k′ · l(|k|2 − |l|2)

2
√

2 π|k||l|

(

ek+l

|k + l| −
ek−l

|k − l|

)

vkv
′

l. (A-5)
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