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Abstract

This thesis concerns how the dynamics of 2D fluid systems may become complex due
to various physical parameters such as the forcing intensity and scale, the dissipation
mechanism, and the system size. These complexity-determining factors are found
to act collectively to give rise to the dynamical complexities. The fluid models in
this study are shallow layers of viscous incompressible fluids on rectangular domains
governed by the familiar 2D Navier-Stokes equations with and without a hypoviscosity
term (linear Ekman drag is added to model large-scale dissipation).

Three main analyses are carried out. One is the asymptotic analysis of the 2D
Navier-Stokes equations driven by a monoscale forcing. The results obtained include
a dynamical constraint and possible scaling laws for the energy spectrum. These
are then generalized to systems with a general viscosity and extended to systems
with Ekman drag. The second analysis concerns the estimation of the attractor
dimension of the systems under consideration. We employ the technique developed
by Constantin-Foias-Temam for the calculation of attractor dimension of dissipative
dynamical systems. The present investigation focuses on the optimal estimation of
the dimensionality and its extensivity. It is found, in general, that the estimates
do not depend on the physical parameters in a fixed functional form, but rather
take different expressions in different regions of parameter space. In particular, the
attractor dimension of the Navier-Stokes equations (with or without Ekman drag)
is shown to grow linearly with the domain area (for a sufficiently large domain) if
the kinematic viscosity and the forcing density and its scale are held fixed. We
also show that slightly super-extensive behaviour prevails for a wide range of the
parameters. The third investigation concerns the stability problem (both linear and
nonlinear) of simple laminar stationary flows. The analysis examines how the flows
may become unstable and explores the properties of some unstable eigenmodes. The
familiar Fourier expansion method is used for this study. It is found that (in)stabilities

depend on the forcing scale in a peculiar and nontrivial way.
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Chapter 1

Introduction

1.1 Characterization of chaotic systems

It is observed that the evolution of many nonlinear dissipative dynamical systems is
never-repeating regardless of whether or not the driving forces are time-dependent.
Non-repeating behaviour means that a system does not approach a stationary or
periodic state asymptotically in time. Instead, it tends towards a strange attractor
on which the motion is chaotic, i.e., not multiply periodic and unpredictable in time
by virtue of being sensitive to the initial data.

Typically, a strange attractor arises when the phase space flow shrinks in some
directions and stretches in others, while at the same time maintains a net contracting
rate, so that volume elements shrink in time. To sustain chaotic behaviour, there
must be at least one direction in which a volume element stretches. This condition is
commonly taken as a definition of chaos and is mathematically expressible in terms of
a positive Lyapunov exponent. In addition, the directions of shrinking and stretching
continuously change; therefore a volume element not only gets stretched but also
folded and twisted. In the long run, it becomes a multisheeted structure. A careful
study in a low-dimensional system reveals the existence of an attractor that is (locally)
a Cantor-like set in some directions [38]. Such a set is called a fractal set in the sense

of Mandelbrot [40].
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Since the attractor of a chaotic system is its permanent regime of evolution (more
precisely it is the global attractor, i.e., the object which attracts all bounded sets in the
phase space that describes all of the system’s possible dynamics), one may characterize
the system dynamics by its attractor characteristics. The following partially describe
some properties which shall be studied in this thesis in the context of 2D fluid systems:
(i) the spectral distribution of energy, (ii) the attractor dimension and its extensivity,
(iii) the stability of a stationary flow (a trivial attractor as it can be called, so that this
topic can be categorically put on an equal footing with the others). Among these, the
second theme is least known, so that it deserves more attention in this introductory
chapter. It is for that purpose that most of the remainder of this chapter is devoted.

Generally speaking, one may think of the dimension of an attractor as indicative
of its “capacity”. Or better still, one may think of the dimension as giving, in some
way, the amount of information necessary to specify the position of a point on an
attractor to within a given accuracy. In the world of chaos, however, one needs to
describe the “capacity” of an attractor by a generalized dimension because the usual
dimension is inadequate for fractal sets. There are several generalized dimensions
that can be used to characterize a chaotic attractor. In this thesis only the Hausdorff
dimension will be considered. A quick review of this subject can be found in many
papers, eg., Farmer et al. [14]. For an extensive treatment of dimension in many
contexts, see Mandelbrot [40, 41, 42]. Another characteristic of an attractor is its
temporal aspect. Since an attractor is a dynamical object one may wish to know how
a trajectory wanders within this fractal set, or how nearby trajectories diverge from
one another as they evolve in time. Certainly, a geometrical picture of an attractor,
regardless of its resolution, does not convey this information. One then resorts to
the so-called Lyapunov spectrum for an understanding of the temporal behaviour of
a system. This subject is behind the Constantin-Foias-Temam (CFT) theorem which
is reviewed in appendix D and employed in chapter 3, but it is well beyond the scope

of this thesis.
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1.2 Routes to complexity

Suppose that one is dealing with a continuum model, e.g. a model described by partial
differential equations, which has a priori an infinite number of degrees of freedom.
There seem to be two closely related types of complexities which give rise to what is
dubbed “spatio-temporal chaos”. They are, roughly speaking: spatial disorder and
temporally erratic behaviour. On the one hand, the degree of spatial complexity may
be thought of as being the minimum number of independent spatial modes needed
to describe each and every snapshot of the dynamics adequately, or equivalently
the attractor dimension. On the other hand, temporally erratic behaviour can be
associated with how the amplitudes of the modes change in time as the system evolves
(i.e., how energy transfers back and forth among the active modes). This thesis deals
with both types of complexities but the focus is more on the former and the word
complexity will be loosely used in that sense.

Dynamical complexities can be best envisaged from the bifurcation point of view.
Suppose that the dynamics of a system reduces to a single stable fixed point (which is
designated as the origin) for suitably chosen parameters. As the parameters are varied
the origin becomes unstable and bifurcations occur. The simplest bifurcation type
is the pitchfork bifurcation which gives birth to a one-dimensional unstable manifold
through the origin and two stable fixed points. The attractor then consists of the
fixed points and the two heteroclinic orbits connecting them. As the parameters
are further varied, the two newly born fixed points may become unstable and hence
more complexities entail. These two simple stages of bifurcation already give rise to
very complicated attractors in low-dimensional phase spaces (the Lorenz attractor in
3-dimensional phase space, for example).

Dynamical complexities are due to various inter-related factors. Some of these
factors are: (i) the forces that drive the system away from equilibria; (ii) the dissi-

pation mechanisms that act to balance the driving forces and to keep the dynamics
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bounded; (iii) the volume of the physical system which determines the number of free
modes which may be excited and then survive in the limit of large time. The main
concern in this thesis is how these factors may give rise to dynamical complexities
in 2D fluid systems. Traditionally, the Reynolds number — which can be viewed
as a (non-dimensional) combination of these factors if a given forcing can be some-
how related to a typical fluid speed and if molecular viscosity is the sole dissipation
mechanism — is a measure of dynamical complexity. A similar interpretation can be
attributed to the Grashof number, which arises from studies on the number of degrees
of freedom of turbulence.

It is almost always the case that forces in continuum physics, and fluid dynamics
in particular, are continuously distributed rather than localized in space. This makes
the forcing length scale an important factor. Intuitively, a system should respond
differently to driving forces of different scales. There are two fundamental types of
responses from a fluid to this factor. One is the response from viscosity to give rise
to total dissipation rates for the energy and enstrophy. Surprisingly curious effects
of this will be seen in the next chapter. The other is the response from the system’s
free modes through nonlinear interactions, as demonstrated in chapter 4.

Since a system’s free modes are determined by the system size, the previous para-
graph implies that there are collective effects among the forcing, viscosity, and system
size which give rise to dynamical complexities. The intimate connection between these
factors makes the notion of their independence ambiguous. Take, for example, the
notion of a fixed forcing in a system of varying size. If the forcing density is held fixed
while its scale is allowed to vary with the same proportion as the system size, then it
looks fixed from a certain perspective. From the dynamical point of view, however,
a reasonable definition of a fixed forcing is that of a fixed density and scale. In this
thesis a monoscale forcing is considered in the majority of cases, so that the notion
of a fixed forcing can be made unambiguous by specifying its amplitude and scale.

An example of a natural fluid system which would not have a forcing of fixed
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amplitude and scale if its size were to be increased is the earth’s atmosphere. There
are two main driving forces for this system: the heat contrasts between oceans and
continents, and the differential solar energy flux arriving at the top of the earth’s
atmosphere. If the earth radius, R., were to be increased (with the same increasing
proportion for the oceans and continents) then the length scale of both sources would

increase accordingly.

1.3 Extensive chaos

It is natural to ask how complexity, as measured by the fractal dimension or the
Hausdorff dimension of the attractor set of a given dynamical system, scales with the
physical parameters. Do the parameters act independently? Or are there collective
effects among them? The results in this thesis, as mentioned in the last section, sug-
gest a negative answer to the former or equivalently a positive answer to the latter
since there are optimal stability conditions and optimal attractor-dimension estimates
which take various functional forms for different regions of parameter space. Never-
theless, there have been attempts, pending definite answers to the questions above, to
understand chaos by looking at a particular physical parameter and somehow ignoring
the rest by assuming that there exists a control parameter (possibly a combination of
all other parameters in some functional form) which may be kept constant while the
said parameter is varied. Some investigations in that direction, where size was the
only variable, have been reported in [11, 12, 21] in which the idea of extensive chaos
was introduced and explored. It has been argued that the dimension of a certain
class of physical systems, namely large and homogeneous ones, scales linearly with
the volume of the systems. The dynamics of this class is dubbed “extensive chaos”.
The physical interpretation of this idea, according to its originators, is that large
homogeneous systems become complex with increasing size in a simple way by repli-

cating weakly-interacting and statistically similar subsystems of some characteristic
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size. This characteristic size is identified as the dimension correlation length [10, 21],
the concept of which will be briefly touched upon in chapter 3. In other words, an
extensively chaotic system is a system such that there are no interesting collective
effects with growing size, as might be expected if small dynamical units somehow
bind themselves into a larger effective unit with fewer total degrees of freedom.

Let us examine the idea of extensive chaos with the following classical argument.
In a dissipative system there exists a length scale, I[p, below which all modes are
damped and only modes above the dissipation scale are active. Intuitively, the at-
tractor dimension is approximately equal to the number of active degrees of freedom.
If other parameters can somehow be controlled so that [, remains fixed while the vol-
ume of the system of typical length L is increased, then the number of modes above
Ip grows as (L/lp)? where d is the dimension of the physical space. This conclusion
is best appreciated by the following geometrical demonstration. Let us consider a
two-dimensional domain €2, e.g. a square of side L, and a Hilbert space of doubly-
periodic functions on Q, H(Q), spanned by {cos 2 (kix1 + koxs), sin 2 (k1z1 + koxa) }
where k; and ko are integers. A basic mode of wavevector (&, k2)T above the length

scale [ satisfies
(K2 4+ kY2 < L/lp. (1.1)

Modes satisfying the above inequality can be geometrically identified as lattice sites,
denoted by filled circles, inside the circle of radius L/Ip in Figure 1.1. It is easy to see
that the number of dots inside the circle is approximately the area of the circle (for a
large enough radius). Hence the number of modes above the length [p is proportional
to (L/lp)? which is proportional to the domain area. Hence, extensive behaviour
might be expected to be common among dynamical systems. More accurately, those
systems whose [p’s are independent of the system size ought to be extensive. Thus,
the problem of proving that a system is extensively chaotic might be restricted to

showing that its dissipation length is size-independent. Although expected to be
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Figure 1.1: Lattice sites inside the circle of radius L/lp. The number of sites is
proportional to (L/lp)* for L > lp

common, extensive behaviour has only been partly validated for a few cases. On the
theoretical front, for example, extensive behaviour has been established for the 2D
Navier-Stokes equations (for a special class of the driving force, see chapter 3) and
the one-dimensional complex Ginzburg-Landau equation [1]. On the experimental
side, it has been shown numerically that the Kuramoto-Sivashinsky model [43] and
the Miller-Huse model [51] behave extensively.

The interpretation that an extensive system consists of weakly-interacting and
statistically similar subsystems of some characteristic size clearly implies that the
dynamics of scales larger than the subsystem scale is not sustainable. It must be so
or else the subsystems would not be weakly-interacting. In addition, the driving force
should have a length scale smaller than the subsystem scale so that the partition of
the mother system into statistically similar subsystems makes sense physically. The

idea of extensive chaos, so interpreted, is arguably plausible for the 3D Navier-Stokes
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equations because of the downscale energy cascade [64, 31] which could entail scale-
breaking in large systems. In contrast, in two-dimensional turbulence the inverse
energy cascade [3, 27, 30] should lead to large-scale correlations which would make
extensivity questionable. Indeed, meteorological two-point correlation functions such
as that of the geopotential do not fall off substantially over the entire earth [5]. Thus,

the possible extensivity of the 2D Navier-Stokes equations is an interesting question.

1.4 2D fluid systems and their number of degrees
of freedom

Most of our knowledge about attractor sets of dynamical systems comes from studies
of fluid turbulence. It is well established that the long-time behaviour of solutions to
the 2D Navier-Stokes system, in a bounded domain, has a finite number of degrees of
freedom. Several rigorous studies support this assertion, most notably the pioneering
work of Foias and Prodi [16]. It is found that any solution of this system, for large
time, is completely determined by the behaviour of its projection on the subspace
spanned by the first m eigenfunctions of the linear Stokes operator, for sufficiently
large m. More precisely, if the asymptotic behaviour of the first m modes of two
solutions agree, then the entire solutions agree as ¢t — oo. The minimum number of
modes, m, with this property has been called the number of determining modes. This
does not mean that each and every snapshot of this system, taken as transients have
faded away, can be exactly written as a linear combination of the first m eigenfunctions
of the Stokes operator. The best one can hope for is that the higher-order modes are
enslaved, in an asymptotic manner, by the lower modes. Thus, one may seek in that
case a global function that gives the high modes of every solution in terms of the lower
modes. Nevertheless, the number m has been thought of as the minimum number
of modes needed in order for the Galerkin approximation to describe 2D turbulence

adequately.
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In more recent developments, Foias and Titi [18] and Jones and Titi [26] proposed
another way to characterize the degrees of freedom of the Navier-Stokes equations.
These authors studied the behaviour of the averages of the velocity field on small
subdomains and introduced the idea of determining finite volume elements. It has
been shown, in a similar way as in the case of determining modes, that if the system
domain is partitioned into N equal subdomains and if the asymptotic behaviour of
the averages of any two solutions on those subdomains agree then the two solutions
are equal, provided that N is large enough (i.e., small enough subdomains).

These results are important from the practical point of view. The existence of a
finite number of determining modes or determining volume elements provides mod-
ellers guidance as to how many Fourier modes or grid points there should be in a
numerical model. Unfortunately, those numbers are so huge for even moderate values
of the Reynolds number that no modern computational device can even get close
to them. Another setback is that they do not agree with each other nor do any of
them agree with the Hausdorff dimension. In particular, the Hausdorff dimension is
of the order of Gr?/3, the number of determining modes is Gr, and the number of
determining finite volume elements is Gr?, where Gr is the Grashof number to be

recalled in chapter 3.

1.5 Characteristics of atmospheric models

The earth’s atmosphere is characteristically different from small fluid systems and its
dynamics may be far from turbulent (i.e., only weakly chaotic). Being large makes its
dynamics well approximated and most simply modelled with the 2D Navier-Stokes
equations. This has dramatically different characteristics from the three-dimensional
system because of the inverse energy cascade, making the concept of extensive chaos
questionable. Being large also makes the atmosphere virtually inviscid. This state-

ment will be made precise in chapter 2 where it will be shown that molecular viscosity
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alone provides a damping time on the order of billions of years!

Besides of its large-scale, two-dimensional and nearly inviscid nature, atmospheric
dynamics is characterized by weak forcing. The thermal forcing is weak because its
horizontal gradient is small, and the wind is driven by this gradient rather than by the
heat itself. Although the forcing is weak, since viscosity is ineffective by any standard,
energy loss due to other factors should be considered carefully. In this respect, surface
friction due to the rough planetary surface would be caught by every observant mind
(surface friction is molecular too, ultimately! But it is different in effect from interior
viscosity). Observational evidence indicates that this friction dominates molecular
viscosity. Thus, ignoring the loss of energy due to surface friction may be unrealistic
or even disastrous. In this thesis, linear Ekman drag which represents this friction is
studied in both chapter 2 and chapter 3.

Another small but important effect, not discussed in this thesis, is radiative cooling
which has been overlooked in many thermally driven fluid systems. While the vast
atmosphere can be hardly affected by molecular diffusion, outgoing radiation can
substantially reduce the heat gradient. Physically, the role of radiative cooling in
the thermal equation has certain similarities with the role of surface friction in the
momentum equation. Parameterization of the effect of the former may be guided
by what has been known as black-body radiation. Given the Stefan-Boltzmann law
and the average temperature of the earth’s atmosphere, radiative cooling is found to

overwhelmingly dominate thermal diffusion for large-scale dynamics.

1.6 Objectives and organization of the thesis

This thesis examines the asymptotic behaviour of the 2D Navier-Stokes equations
(with and without a large-scale dissipation mechanism), explores its dependence on
various parameters including system size, and investigates the stability problem of

simple stationary flows. These topics are organized in the remainder of the thesis as
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follows. In chapter 2, an asymptotic analysis of the 2D Navier-Stokes equations driven
by a monoscale forcing is presented. The results feature some intrinsic properties of
2D turbulence and serve as a general motivation of the need for large-scale dissipation
in large 2D fluid systems. In chapter 3, the question of dynamical complexities and
the extensivity issue of the 2D Navier-Stokes equations on a square and rectangular
domain and those of the modified system (by the addition of a linear Ekman drag) are
addressed. Chapter 4 presents a stability analysis of some stationary laminar flows
by the method of Liu [35, 36, 37], Iudovich [25], and Meshalkin and Sinai [47]. The
stability problem is somewhat detached from the main flow of the thesis. Nevertheless,
it is interesting and worth investigating in its own right. Moreover, the results in this
chapter help clarify and consolidate the concept of the dissipation scale in the previous
chapters as well. The main body of the thesis ends with some concluding remarks
in the final chapter. Finally, the mathematical techniques on which the analyses in

chapters 3 and 4 heavily rely are summarized in various appendices.



Chapter 2

The 2D Navier-Stokes system and
2D turbulence

This chapter deals with a viscous incompressible 2D fluid system driven by a monoscale
forcing, and its organisation is as follows. Section 1 contains the governing equations
(the 2D Navier-Stokes equations) and their mathematical setting. Section 2 reviews
some classical ideas and arguments in two-dimensional turbulence. After those pre-
liminaries, results from an asymptotic analysis are reported in section 3. Section 4
extends the results of section 3 in an attempt to explore a possible scaling law for the
energy spectrum. In section 5 a dissipation mechanism which is responsible for ab-
sorbing the energy of the large scales (the linear Ekman drag is considered) is added
to the 2D Navier-Stokes equations, and in section 6 the asymptotic behaviour of the

modified system is analysed and compared with that of the original.

2.1 The Navier-Stokes system and its functional
setting

As is well-known the motion of a viscous incompressible fluid is governed by the

Navier-Stokes equations:

ou+ (u-Viu = —-Vp+vAu—+f (2.1)

V-u = 0, in Qx(0,00).

12
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In (2.1), u = u(z,t) is the velocity vector, p = p(z,t) is the pressure, v > 0 is the
kinematic viscosity, and f(z,t) is a body force. For most parts of the thesis f is
assumed to be monoscale and time-independent but in some instances in the present
chapter the second requirement is not crucial. The differential operators are standard.
In 2D problems € is a subset of R? with some regularity requirements. It should be
clear from the outset that a 2D fluid is a highly idealized system. In such a fluid the
third dimension is assumed to be either infinite or bounded by two frictionless parallel
boundaries. Furthermore, the velocity field is supposed to have no component nor
any variation in the ignored vertical dimension. To define an initial boundary value
problem, (2.1) must be supplemented with initial and boundary conditions on the
state variables. Most often studied are the rigid nonslip boundary and the doubly-
periodic domain. Restriction to the latter case where Q2 = L x L/« (a € (0,1]) is to
be observed throughout this thesis. The present chapter requires no restriction on «a,
while in subsequent chapters the value of o needs to be specified in several instances.

In all cases, the solution is assumed to satisfy

u(0,29,t) = wu(L,z9,t), 0<z9<L/a,

u(z1,0,t) = wu(zy,L/a,t), 0<mz < L. (2.2)

The same periodicity is assumed for p and f as well. In addition, the space averages
of all state variables and that of the forcing are assumed to vanish at all time, so that
the Laplace operator can be properly inverted.

Existence and uniqueness of the solution for the 2D Navier-Stokes equations is well
known. Also, there exists a global attractor (for time-independent f) which attracts
all bounded sets in the phase space. The more mathematically inclined reader is
referred to [60, 61, 62| for the proofs as well as details of the solution space. For the
purposes of this thesis it is sufficient to give a brief description of the system phase

space, so that some necessary notation can be introduced. Let

W = {u/R? — R?, vector-valued trigonometric polynomials with periods L, L/a,
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V-u=0, and/udsz}
Q
with

= the closure of W in (Ly(9))?,
V = the closure of W in (H*(Q))?,

where Lo(f2) is the space of square-integrable functions on Q and H!(Q) denotes the
usual Lo-Sobolev spaces. H and V' are Hilbert spaces with scalar products and norms

given respectively by

(u,v) = /u-vdm,
Q
Tull = (u,u)'’?

ou; 6?1)Z
((u,v)) = /Vu Voudx = E /8:6 (93:
jOTj

Tull = ((w,u)'?

where Vu is the 4-vector (0, U1, Oz,U1, Op, Uz, Oz, us)” . The squares of the H-norm and
the V-norm are usually referred to as the total energy and enstrophy, respectively, in
the literature. The enstrophy takes a simple form due to the non-divergent property

of the velocity field:
fulll = (uAu) = [[Vxul?

where A denotes the Stokes operator Au = —PAu (= —Awu in this case), and P
denotes the orthogonal projection in (Ly(f2))? onto H. The domain of A will be
denoted by D(A). Since A is symmetric the spectral theory can be utilized to define
the powers A" for n € R. The space D(A") is endowed with the scalar product

(uaU)D(A'?) = (AW’U,,A"’U),
and the norm

| wllpany = llulley = [ A%,
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which makes it a Hilbert space. The spaces most encountered in this thesis are special
cases. When 7 = 1 one recovers D(A), while for n = 1/2 and n = 0 one recovers V'

and H respectively. Finally, let B denote the bilinear operator
B(u,v) = P((u-V)v).

With all the notation in place, the abstract form of the initial boundary-value problem
(2.1)-(2.2) is given, in H, by

Ccll_z + B(u,u) + vAu = f, (2.3)

u(t=0) = up,

where f (= Pf) is now assumed to be a vector in H. The pressure gradient has been
removed by the projection P. Physically, Vp does not affect conservation properties
and can be removed by considering the vorticity equation. From this point on this
system will be referred to as the NS system (or equations).

A geometric constraint and a couple of well-known identities of the velocity field
are of fundamental importance for this chapter. The constraint which is of a geo-
metrical nature is the relation between the energy and enstrophy. It can be derived
if one writes the velocity vector u in terms of the eigenfunctions of A which form an

orthonormal basis of H,

= > (uker + upey). (2.4)
k

The normalized eigenfunctions in (2.4) have the form

V2o 2w

€ = Wkl COS fkfl?
Va,, . 27
€;c = Wkl sSin fkl‘,

where k = (ky, aks)”, ki and ky are integers satisfying either k; > 0 or k; = 0 and

ky > 0, and k' = (ako, —k1)T. For convenience this set of wavevectors will be denoted
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by K. Now by definition, the norm in D(A"/?) is
lully = Yo N(ug +ui),
k

where )\, = 47%|k[?/|Q)| is the eigenvalue of A corresponding to e and e}. It is easy

to see that
fully > Mlul? Vn>0, (2.5)

where \; = 4n2a?/L? is the first eigenvalue of A in H (the eigenvalues of A are
assumed to be listed in a nondecreasing order according to the nondecreasing sequence
of |kl; the first and smallest eigenvalue corresponds to |k| = a). When n = 1, (2.5)

reduces to what is known as the Poincaré inequality
Tullf > M flul?. (2.6)

Inegs. (2.5) and (2.6), especially the latter, will be used repeatedly in this chapter
and the next. They will both be referred to as the Poincaré inequality.

A couple of well-known identities which will be used repeatedly in the sequel are
now quoted. They arise by virtue of the non-divergent and periodic properties of the

velocity field:

(Au, B(v,v)) + (Av, B(v,u)) + (Av, B(u,v)) = 0. (2.7)
(u, B(v,w)) = —(w, B(v, u)). (2.8)
In particular,
(u, B(u,u)) = 0, (2.9)
(v, B(u,v)) = 0, (2.10)
(Au, B(u,u)) = 0, (2.11)

Note that (2.9) is a special case of (2.10) and (2.10) is in turn a special case of (2.8).
Also (2.11) is a special case of (2.7). These identities will be collectively referred to

as the orthogonality properties of the nonlinear term.
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2.2 Spectral distribution of energy and the inverse
cascade

This section examines how an initial spectral peak of energy, like the case of a
monoscale energy injection, redistributes itself to different scales. It is instructive

to review the argument for an unforced-inviscid fluid. Such a fluid is governed by

d
d—? + B(u,u) = 0. (2.12)

This equation conserves energy and enstrophy due to (2.9) and (2.11). There is a
consensus that an initial energy distribution cascades towards larger scales with the
downscale cascade almost forbidden. The “proof” of the upscale cascade was due
to Fjortoft [15]. In his argument, Fjgrtoft considered the change of energy for three
different scales. Because of conservation of enstrophy, energy must flow from the
intermediate scale to the smaller and larger scales, and vice versa. It was shown that,
at the expense of the energy of the intermediate scale, the larger scale acquires most
of the energy. In the present setting the argument goes as follows. Let |I| < |k| < |m|
be the three wavenumbers (corresponding to three scales |m|™' < |k|~! < |I|7!) that
are involved in the energy transfer. Furthermore, let AE(-) denote the change of

energy in each scale. It is easy to see from the two conservation laws that
AE(|l)) + AE([k]) + AE(Im]) = 0,
MNAE([l]) + MAE(k]|) + AnAE(Im|) = 0.

Hence,
A — A
AB(I) = - SEAB(),
A — A
AB(m)) = =L AB(K).

It is argued in [15] that if one takes |m| = 2|k| = 4[|, for example, then (\,, = 4\, =

16)

AB(I) _,
AE(ml) ="
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Therefore, changes in the kinetic energy on a certain scale are distributed in the
ratio 4:1 on the components with the double and half scale, respectively, if no other
components are involved in the energy transformation.

It is interesting to note that the nature of the nonlinear interaction does not enter
Fjgrtoft’s argument in an essential manner, just the two conservation laws. This is
perhaps the reason why a subtle point in the nonlinear interaction was overlooked by
[15]. It turns out that the three scales involved in the energy transformation must
satisfy the triad requirement (see Appendix B). In fact, the wavevectors [, k, m have
to obey m + [ = k in addition to |I| < |k| < |m|. This imposes restrictions on the
three interacting scales and may lead to interpretations other than that in [15]. In

fact, there are two possibilities:

U] ~ [k[ ~ |ml,

U] < [k[ ~ |m].

The first possibility contains two cases since it is quite satisfactory for |k| to be either

closer to |l] or closer to |m|. In the first case

AB()

AE(|m|) , (2.13)

so the conclusion in [15] is correct except for the fact that the scales of double and
a half of the intermediate scale in the example is too liberal of a choice as they can
not satisfy the triad requirement!. In the second case the energy cascade actually
reverses direction as the above inequality reverses direction (this error of [15] was first

pointed out by Merilees and Warn [46]). The second possibility is an extreme limit of

! Although the geometry considered in [15] is a sphere, interactions in the form of triads are to be
observed [57]. For an interacting triad of similar scales where one wishes to have the smallest and
largest scales as far away from the intermediate scale as possible, the scale ratio of 1:2:3 is a better
approximation than 1:2:4. Consequently, the ratio of the upscale cascade energy to the downscale
cascade energy is approximately 5:3.
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the second case. It depicts the interaction between two small scales via a large scale.

For this type of triad the energy transfer obeys
AE(jm|)
AE(|k])
AE(|l])
AE(|m|)

Hence, it implies that the change of the energy for mode [ is only a small fraction of

—1

< 1. (2.14)

those for modes £ and m. As a result, most of the energy involved in the transfor-
mation is engaged in the exchange between the two small-scale modes, and the role
of the large-scale mode is only to mediate this exchange.

There remains the question of which type of interacting triad is most likely to be
activated for a given spectral distribution of energy. This highly nontrivial problem
was explored in part by [46] in which the statistics of triads which transfer energy
upscale and downscale was examined. However, the question remains unanswered to

date.

2.3 Asymptotic behaviour: Dynamical constraint

In this section a satisfactory answer to the above question will be sought and the
problem of energy distribution and energy transfer will be considered in the context
of the NS system. It will be shown that energy tends to flow back and forth across
the injection scale with certain rules. Careful examination of these rules reveals that
although most of the system energy may reside in the larger scales, the realization of
an upscale or a downscale cascade depends on the current state of the system.

By multiplying (2.3) by v and Au and integrating the resulting equations over
the domain, one obtains the evolution equations for the kinetic energy and enstrophy

respectively as follows

—lulP+vlull = (fu),
1d

S lulE v llullf = (7, Aw),
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where the two identities (2.9) and (2.11) have been used. Now assume that f is a
monoscale forcing, i.e., f belongs to an eigenspace of A of eigenvalue )\, say. To
avoid repeated specification, such a forcing will be denoted by f(|s|). Multiplying the
former equation by A, and subtracting it from the latter yields [note that the forcing
terms cancel since (f, Au) = (Af,u) = Xs(f, u)]

e (N Y 2 (Y R Y B A C S
As will be seen the energy at the injection scale spreads out with a definite rule,
but the dynamics of the NS system renders no clear notion of energy or enstrophy
cascades. Alternatively, an energetic downscale flow (upscale flow) phase can be
defined according to (2.15). The system is said to be in a downscale flow (upscale flow)
phase if the first term in (2.15), i.e. the time derivative term, is positive (negative).
More discussion on this topic will follow shortly. Meanwhile, the main concern is how

energy is distributed on the two sides of the injection scale.

One has, for ¢ € D(A)

IA=X)el* = lolz=2X\ el +A1Tel* = 0,

SO

[l =Xl ol = Aol =AM o)+ (A=A)g . (2.16)

It then follows from (2.15) that

1d
PR = (A A (2.17)
where £ = || u ||? =A; || w ||*. This equation indicates that any positive value of £

will be dissipated away in a finite time, except for a special case which will be dealt
with in a moment; while a non-positive value will evolve but remain non-positive for

all time. To see this, consider the solution of (2.17), for all ¢ > ¢4, given below:

€)= exp{—2wAt) (foexp{Qu)\sto}—Zl/ /tzexp{ZV)\st'} (A= Au(t) ||2dt’>,
(2.18)
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where & = £(t = ). It is easy to see that if £ < 0 then £(t) < 0 for all time. On
the other hand, if £, > 0 then £(¢) becomes non-positive for all ¢ > T where T is the

solution of
t
Eoexp{2vhite} = 2 / exp{20A '} || (A = A )u(t) |2 dt'. (2.19)
to

The above equation always has a finite solution unless || (A — As)u(t') || de-
creases exponentially in time more rapidly than exp{—2vA,t}. This may occur when
u asymptotically approaches, in the D(A)-norm, the eigenspace of A with eigenvalue
As. For convenience this eigenspace will be denoted by H(\;). Since H(\;) is part of
the stable manifold of % = (v),;)~'f (this can be seen from the fact, by appendix B,
that B(u,u) = 0 for all w € H()\;), so H()\) is invariant and every trajectory on it
exponentially converges to u at the rate of v)\;), any trajectories which asymptotically
approach H () also converge to 4. Therefore, the case in which a finite solution T’
is questionable turns out to be restricted to trajectories on the stable manifold of @

and the proof of this goes as follows. Let
u = U+4w,

where U is the projection of u onto H()\;) and v is the component of u outside H ()

which satisfies
v]e — 0 as t— oo.

This requirement implies, by the Poincaré inequality, that the energy and enstrophy
norms of v behave in the same manner as well. Taking the scalar product of the NS
equation with a basis function of H()\;), say ey, yields
d
pri +vup = —(ex, BU+v,U+v))+ fr

= —(ex, B(U,U)+ B(v,U) + B(U,v) + B(v,v)) + f

= —(ex, B(v,U) + B(U,v) + B(v,v)) + fx, (2.20)
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where f; denotes the ex-component of f and one of the trilinear forms drops because
B(U,U) identically vanishes. The solution of this equation can be written formally
for all ¢t > ¢, as

Tk
As
(v

u(t) = ug(to) exp{—vAs(t —to)} + (1 —exp{—vAs(t —to)}) (2.21)

v
¢
— [ exp{—vAs(t —t')}(ex, B

to

,U) + B(U,v) + B(v,v))dt".

The first term on the right-hand side of the above equation vanishes in the limit
t — oo, while the second term approaches fy/vAs; which is just the ex-component
of u. The integral term also goes to zero. This fact is due to a couple of estimates

below. One has
|(ex, B(v,U) + B(U,v) + B(v,v))| <sup lex[([[ v [[[[ U [lx + 11U [l v lls + 1l v [l v [l1)

and by assumption || v ||, ||v |1 — 0ast— oco. So for all € > 0 there exists a

sufficiently large ¢y such that

/tt exp{—1As(t — )} ew, B(v, U) + B(U, v) + B(v, v))dt!

€

v,

t
< e / exp{—vA(t — )}t < (2.22)
to

Therefore, it can be concluded that the integral term vanishes in the limit ¢ — oo.

Finally, since e, € H();) can be chosen at will the result implies that v — @. Thus,
u — u if |[(A=X)u]| — 0, (2.23)

as t — oo.

The argument in the last paragraph indicates that there can be no trajectories
which asymptotically approach H(),) except for those on the stable manifold of u.
This means that for a general trajectory not on the stable manifold of @, £ acquires a
non-positive value in a finite time. But before drawing a conclusion for £ on the global

attractor it is necessary to secure the non-positiveness of £ on homoclinic trajectories
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of u which, if they exist, are part of the global attractor. Recall that a homoclinic
trajectory (also known as a homoclinic orbit) of a stationary solution is the one
which emanates from the stationary solution and terminates on that same stationary
solution. It is a special limit cycle® with infinite period. It can be seen from (2.18)
that & does not acquire any positive value on any homoclinic orbit of @ during its
infinitely long journey if such an orbit exists. It would rather start from u with & = 0,
evolve with some negative value for &, and then £ would increase to terminate at u
with & = 0 again. Therefore, it can be concluded that in the permanent regime (on

the global attractor) of the NS system, the energy and enstrophy satisfy
Asllull > flulf (2.24)

It is noted, for the sake of completeness, that the argument leading to (2.24) also
implies that # is the only point on the global attractor where the equality occurs.

Ineq. (2.24), together with the Poincaré inequality, gives
Mllull? > fullf > M llul?. (2.25)

It is interesting to note that the dynamical constraint (2.24) is a generic property
for the following class of linear dissipation mechanisms which may be collectively
called the general viscosity. Consider the class of operators 0 A7 with n > 0 and o a
positive constant of appropriate dimension. 1 may be called the degree of viscosity.
Note that one has hyperviscosity for n > 1, normal viscosity for n = 1, and hypovis-
cosity for n < 1. Also note that in the last case the hypoviscosity reduces to linear
Ekman drag for n = 0. With vA replaced by 0 A" (or by any linear combination of

the elements of this class), (2.24) remains valid. This claim is substantiated by the

2Note that a regular limit cycle which would intersect H()\,) does not exist because H()\,) is
part of the stable manifold of @. More quantitatively, the existence of such a cycle would imply that
fOTO exp{2vst'} || (A — X)u(t') ||? dt' = 0, where Ty would be the period of the cycle. But this
would require the cycle to be entirely in H(A;) which would further reduce the cycle to a.
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fact that for all ¢ € D(A+M/2) 5 >0,

. =X = A)ER) + D (M= AN = A)E(k) = e(n,As),

k[ <[s] Ik[>]s!
where E(|k|) is the energy of ¢ associated with H(Ax) and €(n, As) is positive unless
¢ € H(\;) or n =0 in which cases €(n, A;) = 0. The steps below are straightforward:

ZMM— E(|k)) ZVM— VE(IE]) + €(n, As),
so that

Il =Xl @1l = A ST =X [l & 11%) + el As). (2.26)

It is easy to see, for positive 7, that the replacement of vA by 0 A" in the NS system
only leads to replacing (2.16) by (2.26) in the argument leading to (2.24).

The case of Ekman drag is special since it leads to

d
Al =Ml w P} +o{llulf =Alul?} = o, (227)

N | =

which renders the equality sign instead of the inequality sign in (2.24). There is no
fluctuation in the value of & for this case. Instead, every value of & decreases or
increases monotonically and asymptotically approaches zero. As it is an equality, the
constraint in this case is stiffest. It also indicates that more energy is allowed to be
distributed on the small scales than in the truly viscous cases (for all > 0). This
possibility is explored in the last section of the present chapter where Ekman drag is
added to the traditional Navier-Stokes equations to model large-scale dissipation.

It should be admitted that the above result for hypoviscosity, including Ekman
drag, is not rigorous from a mathematical point of view. There has been no attempt to
demonstrate the existence of a solution for each case, let alone the existence of a global
attractor. Nonetheless, the universal effect of the general viscosity in constraining the

large-time behaviour of the solution is interesting and merits attention, especially for
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modellers in meteorology where an effective dissipation mechanism (or a combination
of different mechanisms) has constantly been sought.

A couple of constraints on stationary solutions other than @ of the NS system
which, together with (2.24), serve as an indication of how little energy may reach
the small scales, are stated below. For notational convenience the stationary solution
@ = (vA)"'f will be called the primary stationary solution. A stationary solution
other than @ (if it exists) will be identified as a secondary stationary solution (the
existence of such a solution for suitable conditions is demonstrated in [25]). Such a

secondary solution @' satisfies

(R W (R (2.28)

Ala it =1ra' | > o (2.29)

The equality is obvious from (2.15). Meanwhile the strict inequality can be deduced
from the fact that @ is the only stationary solution which belongs to the eigenspace of
A with eigenvalue )\;. That means that || (A— ;)@ ||? is strictly positive. Expanding

this expression and comparing with the equality yields
A=X)a |2 = =X [la [T+ ] |7 > o.

Combining this with (2.28) yields (2.29) (note that this inequality is an equality for

Ineq. (2.24) spells out an upper bound on the energy which the small scales (whose
wavenumbers are greater than |s|) can acquire. But given an initial state satisfying
(2.24), an alternation between the upscale flow and the downscale flow phases should

be characteristic of the system evolution. To see that one may rewrite (2.15) as

1d

s lulP=lalt} = v{ilull=x ). (2.30)

During the course of its evolution, a trajectory may undergo an upscale flow or down-

scale flow phase depending on whether the right-hand side of (2.30) is positive or
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negative. In each phase, there may be local cascades of opposite directions so that
the right-hand side of (2.30) may stay positive (negative) longer, thus resulting in
a more lasting phase. Whereas, if there is no or little local energy cascade in the
direction opposite to the mainstream of the energy flow, the phase will be short-lived.
In any case, the right-hand side of (2.30) is expected to oscillate around zero for a
trajectory other than fixed points (i.e., stationary solutions of the NS equations). The
average amplitude and frequency of this oscillation may be taken as two measures
of dynamic complexity. Another possibility is that the system could asymptotically

reach a solution with

Asllul* = lulli = +const,

Fullz =X lully = o. (2.31)

That solution could be a stable secondary stationary flow, a limit cycle, or just a
turbulent solution. The first two cases are more likely to be realized for a weak
forcing, while the last and more interesting case might be expected for a strong forcing.
Inasmuch as it is a speculation, the idea of turbulence with the above constraints

remains to be tested. A numerical approach might be plausible for this problem.

2.4 Dissipation ranges

In the classical theory of 2D turbulence there is a dissipation range, say k? > )4, which
is separated from the forcing scale by an inertial range (or inertial subranges) and
within which all dissipation is supposed to take place. The idea of inertial subranges
was suggested by Kraichnan [27], Leith [30], and Batchelor [3] and was later advanced
by Kraichnan [28] and widely accepted by researchers in fluid dynamics. This idea
is found to be inapplicable to the present system, if not in serious jeopardy. In fact,
the results from the last section indicate that both energy dissipation and enstrophy

dissipation are confined to scales around the injection scale (assumed to be large).
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This means that the energy spectrum adjusts so that molecular viscosity acts on the
large scales. Thus, Ay > A, leads to a contradiction. This section will be devoted
to making this statement more quantitative. A second aim is to explore the possible
scaling forms of the energy spectrum.

To facilitate the analysis the following definition can be introduced for a trajectory

on the global attractor. Let Agp be defined by
Agp [[u|? = [lul?, (2.32)

It can be seen that Agp defines the average wavenumber (length scale) about which
molecular viscosity operates on the dissipation of energy and vAgp is the (instanta-

neous) energy dissipation rate. A comparison between (2.24) and (2.32) gives
App < Ay (2.33)

Hence, the energy dissipation rate is bounded above by vA;. A similar definition can
be stated for the dissipation of enstrophy. It is, however, more convenience to give a

definition with an average sense. Let Azp be defined by

1 rt 9 1 rt 9
Azoy [ Nultdr = 5 [ llulfdr, (2:34)
tJo t Jo

where t > T for some large T'. The initial point of the above definition is immaterial
in this analysis as long as it is not on the stable manifold of #. It may be assumed to
belong to a chaotic trajectory on the global attractor, so that the averages of || u ||?
and || u || may be taken as those of the attractor for sufficiently large T (because
a chaotic trajectory is believed to sample all regions of the attractor in the phase
space). This subtle point is behind but does not enter the arguments to follow in any

manner. One then has by taking the time average of (2.30) for large time
t

1
lim = [ (JJull2 =X ||u|?dr = o. (2.35)

t—oo t Jo

It follows that

AZD ~ )‘s- (236)



CHAPTER 2. THE 2D NAVIER-STOKES SYSTEM AND 2D TURBULENCE 28

Therefore,
AED S AZD ~ )\3. (237)

An attempt to predict the scaling law of the energy spectrum shall be made based
on the observation that both the dissipation of energy and the dissipation of enstrophy
are confined to the large scales, as indicated by (2.37). Let €(k) be defined so that

the total energy is given by

E = /Oooe(k)dk,

Note that the discrete wavenumber has been changed to a continuous one and |k| is
replaced by k for convenience. Now suppose that e(k) oc k=" over a range [k, k1]
where |s| < ko < k1, then the dissipation of energy and enstrophy over that range is

given respectively by

k1 1
ED « [ Kk = ﬁ(ki’*"—lcz?””),
ko —
k1 1
4— _ 5—n _ 1.5—m
ZD o [ KTk = —5_n(k1 k). (2.38)

It is required that both ED and ZD be dominated by the large scales. As a result,
the satisfactory values of n are confined to n > 5.

It is interesting to note that a scaling law of the energy spectrum £~7 with n > 5
is much steeper than the classical k3 inertial subrange power law (see Kraichnan
[27, 28]). Hence, the result of this section suggests that the latter scaling law is
unrealizable in 2D turbulence.

Besides Kraichnan’s theory which gives the predicted values for n = 3, as men-
tioned above, there exist a number of predictions for the numerical value of n. Saffman
[565] proposes n = 4, while Moffatt [48] favours a slightly smaller value: n = 11/3.
Sulem and Frisch [59], instead, propose an upper bound: n < 11/3. Most recently,
Polyakov [52] considers an infinite number of possible spectra with » > 3. This

prediction of Polyakov is seen to be compatible with the present results and has a
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far-reaching physical significance. It is possible that 7 is sensitive to the physical
parameters. A reasonable speculation would be that the spectrum may not simply
scale linearly with the forcing amplitude when all else remains equal, for example.
Thus, the notion of a common value of n for quite different physical conditions is

perhaps conceivable but highly speculative.

2.5 Large-scale dissipation: Ekman drag

1/2 the results in

For 2D fluid systems driven by a monoscale forcing of the scale 27\
the previous section indicate that the dissipation rate is vA; (< v ;) for the enstrophy
(energy). Consider a fluid system the size and viscosity of which are Q2] = O(10%*m?)
and v = O(107°m?/s) respectively (typical of surface air on a synoptic scale) driven
by a forcing the scale of which is O(10°m). The dissipation rate for this system is
O(107'7/s) which translates to a dissipation time of billions of years. This rate is
ineffective by any standard. Thus, such a system is virtually inviscid for practical
purposes (a finite-dimensional and bounded attractor exists, though).

It is, incidentally, common practice for researchers and modellers in meteorology
to raise v up to many billion times. The value of v, then known as eddy viscosity
or turbulent viscosity, may range through several orders of magnitude depending on
the domain scales. In global models, for example, the vertical scale is about 10*m
and the corresponding (vertical) turbulent viscosity may be 10%v or 103y, whereas the
horizontal scale is about 107m and the corresponding (horizontal) turbulent viscosity
may be 10"%v or 10" v [20], where v = 1.4x107°m?/s is a standard value of the surface
air kinematic viscosity. It is noted that the latter turbulent viscosity is typical of very
viscous substances like glucose rather than air or water. In mesoscale models as used
in frontogenesis studies, the turbulent viscosities can be found to range from 10v to
10%» corresponding to the vertical and horizontal scales of 103m and 10°m respectively

(65, 66]. Thus, turbulent viscosity seems to be adjusted to grow as the square of the
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domain scale (as |2] in 2D problems).

The use of turbulent viscosity has been claimed to arise from the need to com-
pensate for the loss of energy due to the smallest scales which are absent altogether
in atmospheric numerical models. It represents the average dissipation by the small-
scale fluctuations which are no longer resolvable by the models. More discussion of
this subject can be found in [20, 45]. McComb [45] presents a derivation of turbulent
viscosity based on closure approximations. Except in unbounded isotropic turbu-
lence, turbulent viscosity depends on the length scales of the flow (the domain scale)
and the smallest scale retained in a model (the model resolution). In the limit of
small length scales the turbulent viscosity reduces to the molecular viscosity. Hence,
it is intrinsically inappropriate to try to use it in analytical studies where molecular
viscosity is in full force.

But according to the results of the previous sections, energy loss due to small-scale
fluctuations should be small for the NS system since the dissipation of both energy
and enstrophy is confined to the injection scales, which are presumably well resolved
by most models. Hence, the practice of employing a turbulent viscosity in modelling
two-dimensional Navier-Stokes flows does not seem to have a sound theoretical basis.
What is behind the practice? A possible answer may be found in the next section. It
will be demonstrated there that the practice might just be an attempt to incorporate
other dissipation mechanisms together with the existing molecular viscosity.

The remainder of this section describes in detail a frictional mechanism that is
proposed to model 2D fluid systems which are so large (driven by forces of large scale)
that friction due to the bottom boundary (and possibly the top boundary) dominates
or at least competes favourably with viscosity. This dissipation mechanism is not new
to meteorologists who struggle with the modelling of the effects of the rough planetary
surface on the wind field. While it is not clear how to model this dissipation channel
most realistically, the following heuristic argument will serve as a starting point.

For a thin layer of viscous incompressible fluid on a planetary scale to be treated as
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a 2D system, i.e., governed by the 2D Navier-Stokes equations, what might have been
overlooked in the dimension reduction? A clear omission would be friction caused by
the planetary surface boundary on the main (horizontal) flow. A less obvious omission
would be turbulent eddy activity in the thin (vertical) dimension as would be expected
when the main flow is strong. Those tiny eddies, being continually created, extract
energy from the main flow, return part of the energy as they move along and dissipate
the rest in the form of heat. To account for these effects, it is reasonable to retain
the full 3D Laplacian for the horizontal velocity in the 2D Navier-Stokes equations.
In other words, the third dimension is dynamically but not energetically ignored in

the problem. Hence, one obtains the following “hybrid” system by so doing

du+ (u-Viu = —Vp+vAu+vdiu+ f (2.39)

V-u = 0 in Qx(0,00).

All notation in (2.39) is the same as in the 2D Navier-Stokes system except for the
extra term 1/833u. This term can be approximated in the case of laminar flows using
the model of the frictional boundary layer obtained by Ekman [13]. In Ekman’s model

the horizontal stress S and the wind shear are related by
S = v0,u.

It follows that
V@isu = Og,S.

Now the stress is zero outside the boundary layer (or Ekman layer), so that 9,,S can

be approximated by

1
OgsS = _ESO’

where h is the thickness of the Ekman layer and Sy is the surface stress.



CHAPTER 2. THE 2D NAVIER-STOKES SYSTEM AND 2D TURBULENCE 32

The stress at the surface is regarded as a drag exerted by the surface which tends
to reduce the wind and therefore is a form of friction. To calculate its magnitude,
the stress must be related to the wind in some way. The usual formulation is given
in terms of a drag law in which the stress is related to the wind at some standard

height above the surface. The following form of the drag law is commonly adopted:
So = cqlua|uq,

where ¢4 is a dimensionless coefficient called the drag coefficient, and ug4 is the velocity
at the level mentioned above which may be taken as u. With this form of the surface

stress, (2.39) reads

ou+ (u-Vu = —Vp+vAu—ou+ f (2.40)

V-u = 0 in Qx(0,00),

where o is defined by

_Gd
h

o lul. (2.41)

Although the nonlinear form of o which arises from the nonlinear nature of the drag
law may be appropriate, it is not a desirable form. Instead, a linear operator is
easier to handle. One way to linearize this term is by substituting close estimates
of the parameters involved. Measurements in the atmospheric boundary layer give
cg = O(10™*) [20], while the average wind speed of several meters per second can
be taken for |u|, and the depth of the Ekman layer A of a couple of hundred meters
might be considered appropriate. These values produce a constant ¢ = O(105s71)
or a dissipation time of a couple of days.

The main goal of this section, which has already been achieved, is to “derive”
the constant o (this dissipation mechanism will be referred to as the Ekman drag).
However, a constant ¢ is not the only product of the linearization process. Another

possible form of ¢ is one of the whole class of hypoviscous operators. The reason why
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this form of o is appealing is that the cubic term which represents the total dissipation
due to o cannot be properly estimated by the energy-norm alone. That means that
the replacement of o by a constant suffers from the same shortcoming. A standard

estimation would involve the enstrophy-norm as by Ladyzhenskaya’s inequality (3.2):

1/2 1/2
flubde < ([ pultaz) ([ ) < R u Pl
Q Q Q

Now a linearization of ¢ entails a “quadratization” of the above cubic term. It is
quite reasonable that an intermediate norm || u ||, with 0 < 1 < 1 can be used as a
compromise for that purpose. Thus, a hypoviscous operator to model the large-scale

dissipation instead of Ekman drag may not be a bad idea.

2.6 Energy spectrum and dissipation ranges revis-
ited

By the same formulation as in the case of the traditional 2D Navier-Stokes system,
Egs. (2.40) supplemented by the periodic boundary condition can be written in

abstract form in H as follows

Ccii_?z + B(u,u) + (vA+o)u = f, (2.42)

u(0) = up,

where, from now on, o denotes a constant. For convenience the initial boundary value
problem (2.42) will from here on be referred to as the modified Navier-Stokes (MNS)
system so as to distinguish it from the traditional form which has been designated as
the NS system.

Although most of the results derived for the NS equations in section 3 are valid for
the MNS system, in particular the asymptotic dynamical constraint (2.24), there is,
however, a possible discrepancy in the energy spectrum of the chaotic attractors of the

two systems. Physically, Ekman drag may suppress the upscale flow of energy since it
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is scale-independent. As a result, the spectrum of the MNS system may be less steep
than that of the NS system. This section will assess how Ekman drag may bring about
that difference by examining the spectrum of a secondary stationary solution if such
a solution exists (the primary stationary solution in this case is 4 = (VA + o)™ f),
and the average spectrum of a chaotic trajectory.

Let @' be a secondary stationary solution of the MNS system; then @’ satisfies

vila i +olla|* = @.f)

via |l +olld |} = M@, f)
It follows that

v{lla |3 -x @ 13} = o{a @ |?=1a |3}

Since 7' is necessarily on the global attractor, ineq. (2.24) holds. Moreover, the strict

inequality of (2.24) applies to @' because the equality would imply
1@ =A@l = xlalP-al; =o,

which would lead to || (A — A\,)@' ||* = 0. This in turn would imply @' = @. Thus

u' satisfies
a3 > A2 |- (2.43)

Note that this strict inequality would be an equality for the NS system. This difference
indicates that the spectrum of a secondary stationary solution for the MNS system
is less steep than that for the NS system, in the sense that it has more enstrophy for
a given energy.

A similar result can be derived for a chaotic trajectory in the time-average sense.
Following the same steps which lead to eq. (2.15), one obtains

1d

sl P =1lw iz} = v{llall = lluli?} = o {2l = ).

(2.44)
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It follows that

tim - [ ({3 -Aw B}~ D lul? ~ [ wlf})dr = 0. (245)

t—oo t Jo

Hence, the following balance is reached for large time:

LA By~ SOl -l B (246)

It is recalled that the NS version of this expression has a zero on the right-hand side.
Now because A, || u ||> — ||  ||? is non-negative on the global attractor, the right-
hand side is expected to be positive for a typical chaotic trajectory on the attractor.
Hence, the above balance expression indicates that the distribution of energy is shifted
toward the small scales as compared with the NS spectrum, for the same energy. To
make this statement more explicit let £, Z, and P denote the large-time averages
of || wl|?, || »]? and || u ||? respectively. Expression (2.46) can be recast in the

following form

A]:Z ~ 1+ V(;s (’\ZE - 1) . (2.47)
The ratio P/A\,Z is likely to be greater than unity because \,FE/Z is likely to be
greater than unity. The question is whether it can be much greater than unity for a
system with o > v, where the large-scale dissipation is dominated by Ekman drag.
This is the same thing as asking whether the second term on the right-hand side of the
above equation can be much greater than unity when o > v\;. There is no evidence
in this thesis that would support a definite answer to that question. It is not known
how the ratio A ;£/Z would be adjusted with respect to the ratio o/v);. Nonetheless,
it is clear that a slight increase in the ratio \;£/Z would entail an enormous increase
in P/A\sZ when o > v),. Hence, an upscale energy cascade would entail a downscale
enstrophy cascade. Thus, a dual cascade appears to be possible for the MNS system.

The following remark is made in passing for the sake of completeness. For a

trajectory emanating from the primary stationary solution and evolving along the
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unstable manifold the integrated value of the derivative on the left-hand side of (2.44)

is always non-negative, so that a stronger statement can be made:

t t
v [{lul Al Bar = o [ Oullul =1} ar,

for all £ > 0.
Finally, an exploration of the scaling law of the energy spectrum of the MNS

system shall conclude this chapter. With the same notation as for the NS equations

employed in section 2 one finds

v

—-n

(B — k™) + ﬁ

ED « kk (ok ™+ vk ") dk = ﬁ (M= k™) + 5
g

3—mn

(" — k),

("= k).

(2.48)

k
ZD l(ak2’"+uk4’") dk =
ko

The requirement that £ D be dominated by the large scales implies that n > 3. But
this requirement is not necessary for ZD. In fact, in the spirit of (2.47) the dissipation
term due to viscosity in the equation of ZD should be dominated by the small scales.

Hence a value of 7 in the range 3 < n < 5 would be satisfactory.



Chapter 3

Attractor dimension: Extensivity

The need for estimating the number of degrees of freedom of the Navier-Stokes equa-
tions arises from the ambitious quest of modelling turbulence by a finite number of
ordinary differential equations. It was somewhat disappointing when the first works
on this problem were reported. The results from those works revealed an astronomical
number for the attractor dimension of typical fluid systems. Since then the original
goal has shifted toward more theoretical aspects. One of the aspects is: How does the
number of degrees of freedom grow with the Reynolds number, the Grashof number,
or other physical parameters? The answers to this question constitute a rich litera-
ture. This chapter seeks answers to the same question where the emphasis is on the
domain size.

This chapter consists of three parallel sections. Section 1 presents both a novel
and a previously known estimate of the attractor dimension of the NS system on a
square domain. The estimates are then examined from the perspective of extensive
chaos. In section 2, an estimate of the attractor dimension of the NS system on a
rectangular domain is presented. The derivation follows that of Ziane [67] with some
variations in accordance with the theme of the thesis. Section 3 repeats the same

calculations and analysis as in section 1 for the MNS system.

37
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3.1 Attractor dimension of the NS system (a =1)

In this section the extensivity of the NS system driven by a forcing of a fixed scale
and a fixed amplitude (i.e., || f ||* grows linearly with  while \; remains constant)
will be demonstrated. This condition implies that the quantity || f ||, /|| and
the density of the enstrophy forcing, || f ||? /|€2|, are fixed. The dependence of Dy
on other parameters such as the dissipation length and the forcing length will also
be discussed. In addition, a new length scale which dictates the regime of extensive

chaos for sufficiently large systems will be introduced.

3.1.1 Basic inequalities

Several inequalities are needed for the dimension calculation. Most of these inequali-
ties were derived from much more general assumptions and therefore have had wider
application. In this thesis, however, the main concern lies with the spaces H, V, D(A)
so that a general formulation would entail unnecessary complication. The inequalities
will, therefore, be restated in a “narrow sense” and the interested reader is directed
to relevant references for more information.

The most important inequality used in this thesis is one of the celebrated Lieb-
Thirring inequalities. This class of sophisticated inequalities is an improvement of
the classical Sobolev-Gagliardo-Nirenberg inequalities and was first proven by Lieb
and Thirring [33] (see also [23]), hence the name. It gives improved estimates for the
trace of linear Schrodinger-type operators, and provides in theoretical physics a proof
of the stability of matter. Apart from the initial quantum-mechanical applications, it
is essential in the derivation of sharp estimates of the dimension of attractors of the
semigroups generated by dissipative partial differential equations.

The idea of using Lieb-Thirring inequalities in the study of attractors of the
Navier-Stokes equations was first suggested by D. Ruelle [54], and some of the con-

jectures by [54] were later proven by E. Lieb [34]. But it was R. Temam who first
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realized Ruelle’s suggestion by applying the natural role of the Lieb-Thirring inequal-
ities in the estimate of the trace of a linear differential operator which appears in the
dimension calculation process [60]. The version employed by Temam can be stated

as follows: Let {¢;}7, be a family of functions in V' that are orthonormal in H, then

ISl I? < e lolk (3)

where ¢, is a dimensionless constant independent of {¢;}/", and of the domain size
|©2|. Note that ¢; and other constants to follow in this section may depend on «. This
dependence is important for < 1 and will be taken care of in the next chapter.
However, all constants involved are absolute constants for a square domain.

An immediate corollary of (3.1) can be obtained by replacing the set {¢;} by
a single function u/ || w || in V. But because it precedes (3.1) and is of special
importance in the literature, it deserves to be quoted as an inequality of its own (see
[29] for the original derivation, also see [16] for a sharp value of the constant). Let u

be in V, then
lu? [ < eallullllwlh, (3-2)

where ¢, is a dimensionless constant independent of u and of the domain size ||

Note that the best value for the constant in (3.2) is at most equal to ¢}/

; hence, it is
denoted differently.
The following fact is well-known of the eigenvalues \; of A (see Temam [60] for

example):
Aj~cjA as J— oo,

where c is a constant. Hence one can further deduce that

m

> N ¢ ||72; Z > (coAr)"m! " (3.3)
i=1

where 7 is a non-negative number, {¢;}™, is a family of functions in D(A"2) that

are orthonormal in H, and ¢, is a dimensionless constant independent of {¢;}™, and
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of the domain size |2|. The proof of the first ineq. can be found in [60], while the
second ineq. is quite elementary.

Finally, the following ineq. is proven by P. Constantin in [6] (see also [32]). Let
{¢:}™, be a family of functions in D(A) (i.e., with || A¢; ||?< oo) that are orthonormal
in V, then

Sl < a(1+nor S n0p) 5.9
i=1 i=1
where c3 is yet another dimensionless constant independent of {¢;}7*; and of the

domain size |Q|.

3.1.2 Preliminary estimates

A couple of estimates on the energy and enstrophy dissipation are needed for the
calculations of the attractor dimension. As recalled from the last chapter, the energy

evolution is governed by

1d
s el = —viwli+f).

1

This equation is majorized by Schwarz’s and Young’s inequalities * respectively as

follows
1d
s el < —vilwli+Twlll fill-
v I £ 1%
< —= 2 :
< Ll
Hence in the limit of large time,
: 1t =
1 —/ 2dr < L
msup— | [ uflidr < =3

For a forcing of single scale (f(|s|)) the above bound reads

[Fals

1 t
lim su —/ u|?dr < . 3.5
t—>oopt 0 KAl = 2), (3-5)
1 @ 1 ! 1 1 _
abS;a”-{-mbp, Va,b,a>0,1<p<007;+y_1

Herea=v, p=p' =2.
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Similarly, the enstrophy equation gives

1d
5 lulf < —viwll3+]1wllfl
v I £
< —= 2 :
< -5 | wllz + 5
Therefore,
. 1 gt | f11?
1 —/ 2dr < . 3.6
lﬂilfpto”“”?T— 2 (3.6)

3.1.3 Attractor dimension

Some well-known results on the attractor dimension of the NS equations are now
reviewed. As shown in [2, 60] the upper bound on the Hausdorff dimension, Dy, of
the global attractor of (2.3), where the domain 2 has a smooth rigid and nonslip
boundary, is proportional to the generalized Grashof number, Gr, which is defined

by

or = Ll (3.7)

1/2)\1 ’

where )\; is the smallest eigenvalue of A. An improved estimate and sharpest to date

for the doubly-periodic case is obtained in [7] in which
Dy < ¢ Gr*3(1+1nGr)'3, (3.8)

where ¢ is a constant independent of GG,. A similar result was also reported for the
Navier-Stokes equations on a rotating sphere [23]. These results, besides serving to
prove the finite dimensionality of the attractor, show that Dy depends on Gr in a
fixed functional form regardless of the relative magnitudes of the parameters. A close
examination of (3.8) reveals that Dy scales almost linearly with |Q2|. To see this one

may write

”f” = frms|Q|1/2
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where f,,s is the root mean square of f. Substituting (3.7) into (3.8) and noting
A1 = 472 /|9, one has

™ms Q
Dy < c|9) ( Jrms ) (1 +in #) | (3.9)

42 p? 4m2y?

Thus, Dy scales linearly with 2| except for a In [Q| correction term. This result has
been claimed to be relevant to the classical theory of turbulence [7]. However, it is
not in complete accordance with the idea of extensive chaos. Moreover, the result
does not indicate how the structure of the forcing (its variation in space) affects Dy.
It is not known whether long and short-wavelength forces of the same amplitude (i.e.,
the same || f ||) would give rise to the same Dy, or what dependence Dy might have
on this factor. This, along with the extensivity issue, will be addressed in the present
chapter.

The attractor dimension for the NS system is estimated by the method of the
CFT theorem which is briefly reviewed in appendix D. The first variation equation
for (2.3) is given by

d
d_[15]+B(u U)+ B(U,u) + vAU =0, (3.10)

where U is a variation from u about which the linearization is taken. Let {¢;,i =
1,...,m} be an orthonormal basis of an m-dimensional subspace of H, and P,, be an
m-dimensional projection in H; then the trace of the operator in the theorem is given

by

T (u(r)) o Pu(r) = 26 —B(diu) ~vAG)
((«zsz, ~B(gw) —v | i II?)
Lol IIZ¢ || —VZH o II7

Il (e Z I i [I7)"/? — VZ i 117
=1 =1

I Ms 1 Ms

IN

IN
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alullf v 2
< -1 7= .

i=1
allulf o

2
5 5 vAym®. (3.11)

In the first line of (3.11) one of the trilinear forms drops out by virtue of (2.10). The
third step involves simple manipulations of the remaining trilinear form (¢;, B(¢;, u)).
The fourth step is from the Lieb-Thirring inequality where the constant ¢; is bounded
by ¢; < 2.89 [23]. The fifth step is by Young’s inequality. Finally the last step is
by (3.3). The number ¢, i.e., the time average of (3.11), can be readily evaluated
thanks to (3.5). It is found that

allf1?

12
203 )\ (3.12)

C:
dm S _gy)\lm2+

A lower bound on m above which ¢, is negative can be obtained from the above ineq.
Such a lower bound on m is an upper bound for Dy by the CFT theorem, and the
result is

Dy < (E)WM (3.13)

Co ,/2)&/2/\}/2'

This result differs from that of [2, 60] by having the factor AY2A/* (instead of A;) in
the denominator of the bound on the attractor dimension. This difference might seem
marginal from the mathematical point of view. However, its physical implication is
quite significant as can be seen from the following argument. For a« = 1, || f || grows
as L for a fixed forcing amplitude |f| and A2 = 27 /L. Now if v and ) are assumed
fixed, i.e., the kinematic viscosity and the forcing scale are held constant, then (3.13)
apparently grows linearly with |Q2|. Thus, (3.13) suggests the extensivity of the NS
system. Moreover, it explicitly gives the dependence of Dy on the forcing scale. More
discussion on this matter will be seen in the next section.

It is worthwhile to note that the restriction of the forcing to a monoscale force

is not crucial for the extensivity of the NS system. Rather, it may be required that
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L7 f ||-1 stay constant in a variable domain size for a more general driving force.
This condition is much less restrictive and can be satisfied by a variety of body
forces. Take, for example, a multiscale force, each and every Fourier component of
which has a fixed amplitude and a fixed scale. In this case the condition is trivially
satisfied. Another example is for a force, especially a force confined to a narrow range

of wavenumbers, where the average forcing amplitude defined by

R WA
also remains fixed. In this case a fixed average forcing scale can be defined by
o _ alf
Il

These are a few examples of the driving forces that give rise to the extensivity of the
NS system.

Another estimate which turns out to be optimal for a strong forcing and a small
domain can be obtained by carrying out the above calculation in V, i.e., using the
enstrophy norm instead of the energy norm. This procedure is possible thanks to a
proposition of [3,21]. Let {¢;,i = 1,...,m} be an orthonormal basis (with respect to
the V-norm) of an m-dimensional subspace of V. Let P, (7) be an m-dimensional
projection in V. Then the trace TrF'(u(r)) o P,,(7) can be estimated, following [7],

as follows
TrF'(u(7)) 0 Pp(7)

m

= Y (A¢i, —B(¢i,u) — B(u, ¢;) — vAe;)

- ﬁ;(mm —B(iu) — Blu, ) — v | & )

= ZAUB¢17¢Z —VZII ¢ 13 (3.14)
< Wl sup( )23 6 1B = v 3 1 6. 1

< % e (L4 O30 I9) (3 160 2 v 3 16
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In (3.14) use has been made of (2.7) in the third step. In the fourth step, Holder’s
ineq. for series was employed. The last step is possible by (3.4). To further majorize

the quantity above, let us recall Holder inequality in its simplest form
o IP< Q72 1 ¢ ||
Since {¢;} is an orthonormal set in V, this ineq. and (3.1) yield
S e (920 3161 1972 = 5o 3 6 19

Upon substitution of this ineq., the trace of (3.14) can be bounded by

1/4 1/2

L (u(r) o Pa(r) < TSl (14O S e B) O3 el
=1 =1

vy el (3.15)
=1

The time-average of (3.42) for large time is estimated through a couple of steps.

First, let x,,, and y,, denote the following

m
zm = AT Ml
i=1

1t
Ym = 2/0 .deT,
then
1 rt
o [ TP (u(r) o Pu(r)dr
0
1/4 1/2 12 12 t
1/t 1 rt 1
< Gotm G ) (G fasmanafir) o [ondr
1/4 1/2 1/2
¢ c 1 rt
< (;ﬂ)fp (;/0 (R d7'> (1+lnym)1/2y,1,{4—1//\1ym, (3.16)

where the last step is possible by applying Jensen’s inequality ? to the concave function

(1+1Inz)z'/? with 2 > m. Second, it is true that for y > 1 and &, € > 0 the following

2Let f and g be finite, measurable functions a.e. on E C R"™. Suppose that fg and g are
integrable on E, g > 0, and [}, g > 0. If ¢ is concave in an interval containing the range of f, then

e <o(H)

Here B = [0,1], ¢(z) = 1 +In(), f(z) = 21/2, and g(z) = 1.
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ineq. holds (see appendix A)

4/3
1/4 /2 _ € £ § 2/3
Ey*(1+1ny) 2ey < —gy+eqp(1+In )7

where ¢ < 3/4. In the limit of large time (3.6) can be utilized, and with the help of
this ineq. the number g, is found to be bounded by
2/3
cavh o, I [
< = aJ 0 nJu
Gm < ek +c 1/5/3)\}/3 1+1In 3N , (3.17)
where ¢’ is an absolute constant of the same order as ¢, ¢1, ¢ (i.e., unity). Again,

the lower bound on m above which ¢,, is negative is an upper bound for Dy. Hence,

it follows that

2/3 1/3
Dy < (M) (1 +In m) : (3.18)

1/2)\1 1/2)\1
"no__ c 1/2
where ¢’ =2 (5) )

3.1.4 Characteristic length scales

There are some length scales that characterize the dynamics of a spatially extended
system. Hohenberg and Shraiman [22] distinguish three lengths which are associated
with dissipation, excitation, and correlation and suggest that it is the ratios of these
lengths to one another and to the typical system length that will determine the
dynamics of the system. The dissipation length [p characterizes the length scale
below which all modes are damped in a finite time. For fluid flow where molecular

I'is the local rate

viscosity alone is responsible for dissipation, Ip ~ (v7)'/? where 7~
of shear [22]. This definition is applicable to both 2D and 3D flows. However, it is
not the only definition of /) in each case. In 2D flow, for example, Batchelor [3] and
Kraichnan [27] define this length as Ip = (v3/x)"/%, where x = v{Au)? ((-) denotes
ensemble average) is the enstrophy flux. It should be noted that these definitions

have their roots entirely in physical and dimensional considerations. The excitation

length is the scale on which energy is injected into the system by external forcing.
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It is noted that for the atmosphere, direct solar thermal forcing has a length scale
comparable to the size of the earth itself, while the heat contrast between oceans and
continents has a length scale comparable to that of the solar forcing reduced by a
factor of two or three. The concept of correlation length has a relatively long history
in fluid dynamics (dating back to early in the 1900s) in particular, and in dynamical
systems theory in general. There has been more than one definition of this length and
two of them that are most relevant to the present discussion will be briefly reviewed.
The first and simpler one is the two-point correlation length defined in terms of a

time correlation function

C(z,2') = ((ulz, 1) — (u)o) (ul@', 1) — (w)z)),

where the angles with subscript  denote the spatial average, the angles with subscript
t denote the time average, and u(z, t) is some local variable. In cases where C(z,z') ~
exp{—|z—2'|/£} as |x — 2’| — oo one can then define the two-point correlation length
€. This length scale has not been found for the earth weather system [5]. The second
correlation length is called the dimension correlation length, the definition of which
is due to Cross and Hohenberg [10]. According to extensive chaos, there exists a
dimension density § being the ratio of the fractal dimension (or equivalently Hausdorff

dimension) to the system volume

Since ¢ has the physical units of inverse volume, Cross and Hohenberg suggest defining

a dimension correlation length &s:
& =014, (3.19)

where d is the dimension of the system’s physical space. It is highly probable that
the dimension correlation length so defined might not be a new length scale. The

justification for this claim lies in the heuristic argument in favor of extensive chaos in
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chapter 1. It is argued there that the attractor dimension is of the order of (L/Ip)¢,
so that § = [5%. Substituting this into (3.19) one obtains & = lp. Thus, def. (3.19)
might just be the familiar dissipation length.

There are basically four physical parameters in the present problem. They are
the system linear length scale L = 27/AL/?, the forcing length scale L, = 2 /A2,
the forcing amplitude |f|, and the molecular viscosity v. The first two parameters
make obvious and natural length scales. Meanwhile, the last two parameters can
be grouped, on dimensional grounds, to form a third length scale. It is seen that
the quantity (v2/|f|)'/® has the physical units of length. Hence, it is tempting to
designate this length as a dissipation length. It turns out, however, that by grouping
v, |f|, and Ls one can form a more physically plausible length scale which will be
called the dissipation length Lp:

2\ M2

A closer look at this expression reveals that the ratio on the right-hand side is of the

order of the square root of the ratio of v? to the average enstrophy density (see (3.5)
for this average). It also agrees with the definition of I in [22] because |f|Ls/v is sort
of an average rate of shear. Besides that physical relevance, this definition is shown
to conform to the intended physical significance of L, as the terminology suggests.
This task is postponed until the next chapter. It will be shown there that Lp is the
scale at which energy may not be ready for exchange. In other words, it is truly the
scale below which viscous effects entirely determine the dynamics.

In terms of the above length scales the results of the last section can be written

as

L

Dy ~ <E)2’ (3.21)

13 \%3 13\ /3
D ~ _— 1+In—— 3.22
i (L%L) (*“L%L) ’ (3.22)
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where a constant of order unity has been dropped from each expression. A couple
of remarks are in order. First, not only does expression (3.21) agree with the idea
of extensive chaos but it also takes the form suggested by the heuristic argument in
the introductory chapter. Second, it is clear that the logarithmic correction term in
expression (3.22) surely diverges as L — oo; however, (3.22) may well be optimal for
small domain size. In that case the system is slightly “super-extensive”. When L
is large enough, the system may behave extensively as (3.21) becomes optimal. The
length scale which separates the two regimes is now called the extensivity length scale

L. A comparison of (3.21) and (3.22) gives
L\2 3 \*? 3\
Z) ~ e 1+1 = :
(LD) (L?DLS) ( * nL?DLS>

Le ~ exp{(Ls/Lp)?/3}(L%L,)Y3. (3.23)

It follows that

Finally, the dimension correlation length as defined above by [10] and advanced

by [11, 12] is just the newly defined dissipation length Lp.

3.2 Attractor dimension of the NS system (a < 1)

This investigation has, thus far, been focused on the dependence of Dy on the domain
size with the assumption that the domain is a square. In the square case, as is well-
known, all the constants involved in the estimates of the last section are absolute
constants. They are not dependent on the domain size, nor do they depend on the
set of functions under consideration. On the contrary, most of the constants depend
on the shape of the domain when one of the dimensions is elongated. This dependence
renders the estimates in the last section too generous although they remain valid. An
example of such estimates is ineq. (3.3). If (3.3) were to be applied to the present

case it would read

m

Sl > Y N> cla)am?
=1

=1
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> (@) —m—m’, (3.24)

where « is the domain shape ratio. It is obvious that unless c(a) x 1/, ineq. (3.24)
would not be sharp as & — 0. Hence there is a need to reexamine some of the basic
inequalities employed in the last section.

The generalization from a square domain to an elongated one has been considered
for the NS system in the context of its attractor dimension by Ziane [67], Temam and
Ziane [63], and Raugel and Sell [53]. A similar analysis, which shows that the NS
system on an elongated domain may also behave extensively for various forms of the

body force, will be carried out presently.

3.2.1 Basic inequalities

This section will sort out the dependence on « of the constants in (3.1) and (3.3). The
following result which is known as the anisotropic Lieb-Thirring inequality is proven
by Ziane [67]. Let {¢;}*, be a family of functions in V' (€,) which is orthonormal in

H(,), then there exists an absolute constant ¢y such that

3 09; 12 1 m 0¢; 1 1/2
1£a1 < oS ramiar) (S12resialr) .
< 2(Shan+t Eer) .25
=1

The dependence of ¢; in (3.3) on «a can be obtained by geometrical arguments.
However, (3.25) offers a more convenient way. First, for an orthonormal set {¢;},

in H(,) it is observed that

m=3" | i IP< Qa2 | 3247 |l
i=1 =1

and then by (3.25)

1o s o? —|— 1z
m® <Y |l ¢ 1T + Z o |- (3.26)
i=1
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This inequality gives an estimate of the sum of || ¢; ||? in terms of « instead of a2,
but this cannot be achieved without a cost (the second term on the right-hand side

of (3.26)).

3.2.2 Preliminary estimates

In this chapter two types of driving force are considered. The first one, which is an

across-channel forcing, is defined by

fT = fses + f;e{97

where s = (0, asy)” with s > 1. This type will be considered in the stability problem
in the next chapter as well (where f; is set to zero for simplicity). The second type
which has a non-vanishing along-channel component is defined by

fa =Y (frer + frer),

|k|=]s]
where s = (sl,asg)T with s; > 0. When sy = 0, F4 is called an along-channel
forcing; otherwise, it will be called a mixed-mode forcing. An upper bound on the
time-averaged enstrophy for each forcing which is needed in the dimension calculation

will be recalled:

1 rt
limsup~ [ [Jul?dr < (3.27)
tooo t JO

An appropriate substitution is all that is required for each individual case. When

f=fr, \s = 4m2a?s2/L?, while \; = 47%(s? + a?s3)/L? corresponds to f = fa.

3.2.3 Attractor dimension

The attractor dimension will be estimated by the same procedure as in the previous
section, but with a new set of inequalities. Due to technical difficulties, a refined

estimate of the attractor dimension in V' as in the square domain case is not available
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and will not be pursued in this thesis. The familiar trace, as recalled from the third

line of (3.11), is bounded by

TeF'(u(r)) o Pu(r) < [lullll o7 =2 ¢ 1 (3.28)
=1 =1

By the anisotropic Lieb-Thirring ineq. (3.25), the Young ineq., and (3.26), the above

expression is successively majorized as follows

TrF'(u(7)) 0 P(7)

< Gl (S e+ Zuaﬁzn?) N LA
=1
1 m m
< pltlsva-o (Shek+ S Shar) -vE el
] =1

1 1 &
< ol (S n 3 zu«w) N L1

collulli  2eva , a2+1

<
= w(l—e Lz TV

m. (3.29)

In the above, € € [0,1) has been introduced through the Young inequality. Since the
enstrophy of a trajectory on the global attractor is bounded according to (3.5), the
quantity ¢,, is majorized by

coll f1? 2ev ,  a?+1
m < - —m. 3.30
= -6 w2 TV ™ (3:30)

An upper bound on the Hausdorff dimension can be obtained by determining the
lower bound on m above which ¢, is negative. Such a lower bound is obtained by
varying € in the admissible range. It is found by the method of appendix A that

co ([ L fll o’ +1
Dy < 5( St , (3.31)
NLVZOY a

or

2 2
Dy < 02—°<L|f| +0‘+1>. (3.32)

a2 \y/? ¢
This expression as it stands applies to a general forcing of wavenumber |s|. The

expression clearly grows as o~ ! for small « if all else is fixed, and thus qualifies



CHAPTER 3. ATTRACTOR DIMENSION: EXTENSIVITY 93

the system as a candidate for extensive chaos. To further explore the extensivity
of the system, however, it is more illuminating to distinguish three forcing classes as
previously mentioned: (i) an across-channel forcing, (ii) an along-channel forcing, (iii)
a mixed-mode forcing. For (i), A\, = 4n2a?s3/L?, so that Dy grows as o~ for small
« if asy is held fixed, i.e., if the forcing scale is held fixed. For (ii), \; = 47w2s?/L?
is independent of «, so that Dy grows as a ! for small « (this result can be easily
generalized to a multiscale forcing which is any linear combination of pure z; modes,
see [67]). Finally for a mixed-mode forcing, A\, = 472(s? + a?s3)/L?* which is bounded
from below by 47%s?/L? (which is a constant when s; is held fixed) when o — 0; so
Dy grows as o~ ! for small o where a formal constraint on the forcing scale is not
necessary. In conclusion, the NS system on a long channel driven by the body forces
considered above is an extensive system.

Finally, the dimension estimate can be written in terms of the forcing length L,
the dissipation length Lp, the channel width L, and the domain shape ratio a as
follows (the second term is dropped and a factor of the order of unity is ignored)

12
al?’

Dy ~ (3.33)

3.3 Attractor dimension of the MNS system

It is seen that the presence of Ekman drag alters the energy spectrum of the NS system
to some extent. How does it affect the attractor dimension? In this section a couple
of upper bounds are derived for the attractor dimension of the MNS equations. It will
be demonstrated that one of the bounds exhibits extensive behaviour for sufficiently

large systems.

3.3.1 Preliminary estimates

Bounds on the time averages of the enstrophy and of || u |3 which are needed in the

dimension calculations will be derived. As there is an extra term due to the Ekman
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drag one has more options for the estimates than in the previous cases. The bounds
to be derived below seem to be sharp, especially for o > v ;.

For the enstrophy, an upper bound for the energy on the attractor can be derived
and then the dynamical constraint in the last chapter can be utilized to obtain an
estimate. The following procedure (which is more direct) yields as sharp a result.

Taking the scalar product of (2.42) with Au one finds after invoking (2.9)

Sl = vl =l A )
< —Ar+0) | I A = AE(S) + M Es]) 2 | £
< —(1= M+ 0) [} (o + )+ (A — M) AE(s)
AE(s) £
< (- gn+a) 4L

(e(vhi 4+ 0) +v(Xs — A1)’

where F(|s|) denotes the system’s energy at the forcing scale. The majorizations
above are due to the Poincaré, Schwarz, and Young inequalities. The introduction of
¢ (the admissible range of € is € € [0,1)) is to optimize the bound on the enstrophy

as will be seen in a moment. By the Gronwall lemma the enstrophy satisfies

Tullf < [lut=0) I exp{=2(1 — €)(vA: + o)t}
As |17 (1 = exp{=2(1 — e)(vA1 + 0)t})

T =M + o) (eloh +0) + 000 = M)

For large time || u ||? is bounded above by

As | f 1
41 =€) (v + o) (e(wA 1 + o) + v(A\s — A1)

lullf <

This bound can be minimized by varying e in the admissible range. Some simple

arithmetic steps give

o+ V(Z)\l - )\5)
2(0’ + 1/)\1)
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for the minimum value of the above bound. Substituting this value of € into the last
ineq. yields

As LI

2

< -
Pl < (Vs + 0)?

(3.34)
This is a bound in V' of the global attractor.
A bound on the time average of || u |3 can be derived from the enstrophy evolution
equation. The steps go as follows
Ld
2dt

lulli = —viluwls—olluli+(Auy, f),

—v(1 =€) [ ully =As(evAs + o) E(s]) + A || f || E(Is)'?

As ILF 1P
< —I/(l — 6) || u ||g +m

IN

As usual, € is in the range € € [0,1). Integrating this differential inequality one find

in the limit of large time:

As 1P
v(l—¢€)(evds+0)

1t
limsup—/ | u|?dr <
t»0  tJo 4

This bound can be minimized by varying e in the admissible range. It turns out that

unless o < v\, (which is not considered here), e = 0 is the appropriate choice. Hence,

2
_ Al

1 t
li —/ 2 4 3.35
imsup > | ulzdr < oo (3.35)

As the analysis in this chapter aims at systems where v\, < o, i.e., systems
the dynamics of which are dominated by Ekman drag, it is tempting to ignore the
molecular viscosity term for the sake of simplicity. However, viscosity is responsible
for rapid compression of volume elements in phase space and is therefore essential
in the next section when it comes to the dimension calculation. Moreover, it is not
known whether or not a finite-dimensional chaotic attractor exists for the case where
Ekman drag alone is responsible for dissipation. In passing, it is worthwhile to pause
a bit here for a little thought about boundedness versus finite dimensionality. It

is quite easy to give examples of infinite-dimensional bounded dynamics, and it is
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equally easy to construct finite-dimensional unbounded systems. Hence boundedness
and finite dimensionality do not usually go hand in hand and they are two distinct
mathematical properties. The physical world in which we live might just happen to

be both bounded and finite-dimensional.

3.3.2 Attractor dimension

In this section estimates of the attractor dimension for the MNS system in H and in
V will be presented. The extensivity issue of the system will also be discussed. Only
the square domain case will be considered, so that inegs. of section 1 in which all
constants are absolute apply.

As previously done for the NS system, upper bounds on the attractor dimension
for the MNS system can be estimated using either the H-norm or the V-norm. The
immediate calculation below uses the former. The first variation equation for (2.42)
is given by

‘;—(tj + B, U) + B(U,u) + (A + o) =0, (3.36)

where U is a variation from v about which the linearization is taken. With the familiar
notation adopted for the present case, the trace of the operator in the CF'T theorem
is given by

TrF'(u(r)) o Ppu(r) = i(dh, —B(¢s,u) — vAd; — 0¢;),

=1
m

= Y (i, —B(gs,u) —v | ¢ [} —o || 6: |17, (3.37)

=1

m m m
2 2 2
< Nulhlf Xodi 1 =vX e lli —o > 1 ¢ %,
i=1 i=1 i=1
- 2\1/2 N 2 = 2
< lulls (X I D2 =v3 Il eillf o 3 11 ¢ I -
i=1 i=1 i=1

In the first line of (3.37) one of the trilinear forms drops out by virtue of (2.10). The

third step involves simple manipulations of the remaining trilinear form (¢;, B(¢;, u)).
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The last step is from the Lieb and Thirring inequality where the constant ¢; is bounded
by ¢1 < 2.89 [23]. Thanks to Schwarz’s inequality, the time average of the above trace

is majorized by

1 gt ; ey [t ) 1/2 1 pt.m ) 1/2
s [ TR @) o Panar < (2 [ Il ar) ( [l ||1df)
0 t Jo tJo i
RS 2 AR 2
—2 e dr =2 [ 3" 1 6] dr- (3.39)
tJo i tJo i

In the limit of large time (3.34) can be utilized, and the number g, defined in the
CFT theorem is found to be bounded by

)\s 1/2 m 1/2 m m
g < LML (z I 6 ||%) U oS b7 (339)
=1 =1

vAs +0 =

A lower bound on m above which g, is negative can be obtained by a variety of
arithmetic procedures. Such a lower bound on m is an upper bound for Dy as by the
CFT theorem. The following calculations seem to yield a sharp estimate. It is seen

that ¢, is non-positive when

m 1/2 1/2 ) . 12
S 60 | (W)U, (el /] 2
<i=1 4 ”1> T ( Mato N\ +o) ”‘7; | i |

Since 7, || ¢ 2= m and (57, || ¢ )" > (c2A1)Y2m by (3.3), the following

condition guarantees the non-positiveness of ¢,

m > : <(Cl)‘s)1/2 A <01As [ 41/0m> 1/2}\.

2u(ea))1/2 VAs+ 0 (Vs + 0)?

For the NS system the above steps would yield an explicit expression for m. The
present implicit expression for m is due to the Ekman drag. This ineq. can be solved
for m in a couple of elementary steps. The minimum value of m which satisfies the
solution is an upper bound of Dy. The result is

1/2
c1s I/ a
Dy < — . A4

7= ( 62)\1) I/(l//\s +O') CQV)\l (3 0)
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This estimate grows linearly with the domain area when all else is fixed. Hence,
Ekman drag may not destroy the extensivity of the NS system.

Similar to the derivation in section 1 leading to (3.18), another estimate on the
attractor dimension which is sharper than (3.40) for a small system can be obtained
by carrying out the above calculation in V. All notation in this part remains the same
except that the projection P, (7) is in V and {¢;,i = 1,...,m} is an orthonormal set
with respect to the V-norm. The trace of (D-3) is estimated through several steps as

follows

TrF'(u(7)) o Pp(7)
= (460 ~B(6u) - Blu, ) ~ vAd — 06)

> ((As, —B(¢i,u) — B(u, é:)) —v | i I3 —o || 1 )
=1
E_: (Au, B(¢i, ¢:)) — VZ I ¢ 1l JZ I ¢ |7 (3.41)

< flull sgp(z ¢?)1/2(Z i ID)* ~ ’/Z Ioills —o 31 i lI7
< & w2 (1+In(A 12 i IE)2C2 Il ¢ )2
i=1

—VZ Il i II2 —UZ Il i II3
i=1 i=1

In (3.41) use has been made of (2.7) in the third step. In the fourth step, Holder’s
ineq. for series was employed. The last step is possible by (3.4). Further majorization
of the quantity above is via the procedure employed earlier in this chapter for the NS
system. In the intermediate steps one has

1/4 1/2

() o Pa(r) < Sl (14O S0 B) O3 el
=1 =1

vy iz =0 1 i lI2 (3.42)
=1 i=1
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and

4 (vo)12(vy) v (vo)l/?

where ¢’ is an absolute constant of the same order as ¢;, c¢o, c3 (i.e., unity). The

A AL/2 Y3 AL/2 i
o _pﬂ/lnﬁ_ﬂﬂn+c,< : Hflhﬂ) <1+¢n_i_Jgil> (3.43)

lower bound on m above which ¢, is negative is an upper bound for Dy as by the

CFT theorem. It is found that
1/2

/3 1/9 2/3
2 A I £ 1P M2 F
D < pfZ2is g I 14+ Ips 1J 1 2 _
o= CQV/\l (CZC < 2 * nl/)\l(VO')l/2 to g

(3.44)

Following the definition of the dissipation length for the NS system, the dissipation
length for the MNS system Lp will be defined in exactly the same manner. However,

as the average enstrophy takes a different form for the present system, Lp is given by

1/2 1/2

after making the assumption o > v,;. This allows the results in this section to be

recast in the following forms

1 D
2 T
\ D 2/3 13D12\?®  p2 1/2 D
Dy ~ L d 1+1 L —L - = . (347
" () (onGn) %) @) e

In the above, D, = o/v), is the ratio of the dissipation rate due to the Ekman drag
to that at wavenumber |s| due to viscosity. In light of the analysis in chapter 2 (recall
that the energy dissipation rate and the enstrophy dissipation rate due to viscosity
were shown to be less than and equal to v);, respectively), v\, is an upper bound on
the the rate of energy dissipation due to viscosity. Therefore, D, is actually a lower
bound on the relative strengths of the two dissipation channels.

A couple of remarks shall conclude this chapter. (i) Except for the term due to
Ekman drag, the bounds on the attractor dimension for the MNS system are essen-

tially the same as those for the NS system. The former reduce to the latter in the
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limit of ¢ — 0 as expected. (ii) Similar to the NS system there is a length scale
(called the extensivity scale L., which is not written out explicitly in this case) which
separates the regime of extensive and super-extensive chaos. (iii) A peculiar property
of the MNS system is that the enstrophy grows with the forcing wavenumber. There-
fore, a small-scale forcing is more capable of exciting the high-order harmonics and
maintaining a broader spectrum than a large-scale forcing. As a result, the attractor
dimension grows with the forcing wavenumber accordingly. This is in sharp contrast
to the NS system where the attractor dimension grows, instead, with the forcing scale.
(iv) In the super-extensive regime, the dependence of Dy on the dissipation ratio D,
must be interpreted with caution. Since L scales as D}/? (for large D,), Dy should

decrease when Ekman drag becomes stronger.



Chapter 4

NS on an elongated domain:
Stability analysis

In this chapter, the effect of the domain shape on the linear and nonlinear (global)
stability problem is analysed. Section 1 presents a linear analysis of laminar across-
channel flow and explores some properties of the unstable eigenmodes when the flow
becomes unstable. The linear stability of this type of flow is shown to have a peculiar
property due to the rectangular geometry of the domain. It will be demonstrated
that there exist laminar monoscale across-channel flows which are linearly stable for
arbitrary values of the physical parameters (arbitrarily large Reynolds number, for ex-
ample). But that constitutes only half of the present chapter. The other half, section
2, aims to exploit a property of the nonlinear interactions for an elongated channel
in the stability problem. It will be shown that any laminar monoscale across-channel
flow, once nonlinearly stable, remains nonlinearly stable as &« — 0. In addition, the
physical significance of the dissipation length Lp previously defined naturally turns

up in the nonlinear analysis as well.

4.1 Linear stability
The primary stationary laminar flow to be considered is
u = e, = (vA) " foel, (4.1)

61
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where f; > 0 and s = (0, asy)T. It will be shown that when as, < 1, @ remains
linearly stable for arbitrary values of .

The linearized eq. around @ of the NS system reads

dv _ _
== —B(u,v) — B(v, 1) — vAw. (4.2)

Let the linear operator in the above eq. be denoted by L(), viz.,

L(u)v = —B(a,v) — B(v,u) — vAv. (4.3)

As in a standard linear stability problem the focus is on the following eigenvalue

problem:
L(a)W = §W, (4.4)

where ¢ has a positive real part (Re(d) > 0).

Let an eigenvector be written in the form
W=w+w',
where w and w' are the even and odd parts of W, i.e.,

wo= ) we, (4.5)

keK
w o= ) wey. (4.6)

keK
Note that wy, and wj, are allowed to take complex values. Equivalently, W is assumed
to be in the complex space H* instead of H. Upon substitution of W = w + '
into (4.4), and with reference to lemma B (see Appendix B), it is seen that the odd
and even parts can be separated out. As a matter of fact, they satisfy two identical

eigenvalue problems:
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Hence, it is sufficient to consider either one, say the even part. Now substituting (4.5)

into (4.7), and using lemma B with [ = s one obtains the recurrence relation

V2ariusk' - s [ |k — s|? — |s]? k+ s|? —|s?
A, + 0)wyg — s T T . Wes| = U
Equivalently (since k' - s = —kjass, |s| = ass)
V2arisky [k — s|* —|s|? k+ 52— |s?
A + 0 s T T Wkts| = O
(VA + O)we + = s s

(4.9)

As s = (0,as2)” the above equation gives a three-term recurrence relation among
W(ky ka—ass)” > Wik ka)T > Wk kytasy)? f0r each fixed ky (recall that k; > 0). It is
easy to see that the case in which k; = 0 only yields the trivial solution to (4.9) for
Re(d) > 0. Therefore k; # 0 will be assumed for the rest of this section. Let

|k + ns|* — |s|?
bTL - ns» 410
k+ns|  EF (4.10)
L2k 4+ ns*(vAkins + 0)

V2amigk (Jk +ns|2 — |s|2)’

where n is an integer. Then (4.9) can be rewritten as

Cn

Cnbn + bn—l - bn+1 =0. (411)

Some properties of the unstable eigenmodes can be deduced from (4.11). In order

for w to be in H*, b,, has to satisfy
b, =0 if |n| — oco.

Since Re(c,) — oo when |n| — oo the above requirement, in connection with (4.11),

yields
|k +ns|"b, =+ 0, VyeR if |n| — oo. (4.12)

Without loss of generality k3 may be assumed to lie in the range 0 < ky < s, SO

that there are at most two ¢,’s, namely ¢y and c_;, that may have negative real parts
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for ky < asy. When k1 > asg, Re(c,) > 0 Vn. With this observation a couple of
important properties of b, can be drawn.

First of all, the Fourier series of an unstable eigenvector is not terminating, i.e.,
b, #0, Vn.

Indeed, suppose otherwise that there is an n’ > 1 such that b,, = 0. It is easy to see

that b, # 0 Vn > n'. Let

Pn= 5 Vn >n' +1,
n—1
then it follows from (4.11) that

Cn'+1 = DPn'+2;

1
Pny1 = Cp+ —, Vn>n'+1.

n

Hence,
Ll
= c
Prn+1 ) Ch1 + L
. 1
= c
n Cn1 + - 2+ 1
1
Cnl+2+cn,+1
Since Re(c,) > 0 for n > n' > 1, so
Re(pns1) > Re(c,) — oo, when n — oo, (4.13)

which is impossible since b, — 0 as n — oo and p,, = b, /b, 1. Thus, b, # 0 for all
n > 0. Now suppose there is an n’ < 0 such that b, = 0. A similar argument leads

to

Re(p;') = —oco, when n — —oo, (4.14)
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which is also not possible. Thus it has been shown, together with the above, that
b, # 0 Vn. It may also be concluded that when |k| = |s|, eq. (4.11) does not possess
a nontrivial solution because by = 0 (note that in this case ¢y is not well-defined,
however the foregoing arguments apply by redefining ¢y = 0).

Second, there exists no nontrivial solution to (4.11) for k; > as,. In that case

Re(cn,) > 0 Vn, so that according to (4.11)
Re(p,) <0, Vn,

otherwise, Re(p,) — oo as n — oo. But then,

1
o e et
implies the impossibility of (4.14).

In conclusion the following have been proven. (I) The stationary flow @ = @€, of
the NS system where s = (0, asg)T with assy < 1 is linearly stable for arbitrary values
of 4s. (II) Unstable eigenvectors of L(@) can only exist in the following forms

w(k) = WrinsChins, (4.15)

n

where n is an integer, k satisfies |k| < |s| and k; # 0. Moreover,
Wgans 70, Vn, (4.16)
and for all real ~y
|k + ns|"wgins = 0 if |n| — oo. (4.17)

It is worth mentioning that the above results still apply if the molecular viscosity
is replaced by any viscous operator of the general viscosity. In that case (I) requires
no modification for its proof. Likewise, the proof of (II) only needs a little clarification
for the case of Ekman drag. For this case ¢, remains finite instead of approaching

infinity as n — oco. But that fact poses no threats to the proof of (II).
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Some properties of unstable eigenmodes of 4 are pointed out by (II) but the
question of the existence of such modes is totally left open. At the moment, only “a

b

few” unstable modes are known to exist, as by the following lemma (see Liu [35] for
a proof).

Lemma : For any large enough ug, and for each k satisfying:
|s| > [k, |k —s|>|s], (4.18)

there exists a unique 6(k) > 0 corresponding to a unique (up to a constant factor)
eigenvector w(k) that satisfies (4.7).

A remark based on the results of chapter 2 and the present section will conclude
this section. It is seen that an infinite number of Fourier modes are excited along
unstable eigenmodes of u. The amplitudes of the high order Fourier modes, although
finite, are “exponentially” small (beyond all orders). This agrees with the dynamical
constraint derived earlier in chapter 2 and a spectral scaling law (|k|~7 with n > 5)
obtained afterward. In fact, one can show that A, || w ||* > || w || for an unstable
eigenmode w, making the constraint even stronger in the vicinity of @ (on the unstable

manifold emanating from ).

4.2 Nonlinear stability

It is seen from the last section that a laminar across-channel flow (pure zy-mode)
u = e, where s = (0, as)”, does not become unstable by distributing its energy to
any other pure zo-modes, but rather to mixed modes (and possibly to pure z;-modes).
It is also noted that any unstable eigenvector emanating from the laminar flow has to
contain at least one (and at most two) mode k the scale of which is larger than that
of the laminar flow itself. Thus, in order for a stationary flow of a pure x,-mode, s,
to be linearly unstable it is necessary that there be at least a mode k which is not a
pure zy-mode such that |k| < |s|. Otherwise, such a flow remains linearly stable for

any value of ug. There is, however, no guarantee that u remains nonlinearly stable for
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arbitrary values of @s. A couple of conditions for its global stability will be derived
in this section.

Unlike the nonlinear stability problem for finite-dimensional systems in which all
norms are equivalent, a nonlinear stability analysis for an infinite-dimensional system
requires a specified norm. A stationary solution of an infinite-dimensional system that
is shown to be nonlinearly stable with respect to a given norm may not necessarily be
stable with respect to another norm. The present problem is an exceptional case in
which the stability of # with respect to the energy norm implies the stability of @ with
respect to the enstrophy norm, and vice versa. This result is actually an immediate
corollary of (2.24) and the proof goes as follows. Let the solution of the NS equation

be written in the form
U=u-+nv.

The stability of @ with respect to the energy (enstrophy) norm is established if || v ||
(I v |]1) can be shown to go to zero as t — oco. Due to the Poincaré inequality,
|| v |i1— 0 implies || v ||— 0; hence, the stability of u with respect to the enstrophy
norm automatically implies that of u with respect to the energy norm. The reverse

direction is established by the fact that
Mllatv|=lla+oli = AllvlP=1lvlf-

Now the left-hand side of the above is, by (2.24), non-negative as ¢ — oco. That
renders \; || v ||> > || v ||? ast — oo. Thus, the following statements are
equivalent: (i) @ is nonlinearly stable with respect to the energy norm. (ii) @ is
nonlinearly stable with respect to the enstrophy norm.

Let v be defined as above. The governing equation for v is

% + B(u,v) + B(v,u) + B(v,v) + vAv = 0. (4.19)

The energy evolves according to
1d

3% | v|* +(v, B(@,v)) + (v, B(v,a)) + (v, B(v,v)) +v | v]? = 0. (4.20)
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Two of the trilinear forms drops out due to the orthogonality property of B(-,-). So

the above equation reduces to
1d I

s lol? = @B~ v}

= (e, B(v,v)) —v v (4.21)

The global stability of @ is established if the right-hand side of (4.21) is negative.
Commonly, the trilinear form and the dissipation term can be estimated via the
inequalities reviewed earlier in the last chapter. But that practice would yield too
generous estimates, especially when « is small. The present calculation exploits the

fact that (e}, B(v,v)) does not involve any term with v(g gn)r OF V(g 7 in the Fourier

0,an)
series of v where n is a positive integer. It also takes advantage of the fact that
couplings among nearby modes are prohibited when |s| is large. The former property
enables one not to rely on the eigenvalues of the across-channel modes A onyr =
4m?an?/L? (which are small when « is small) in the majorization of (4.21), while
the latter prevents nonlinear couplings among the largest scale modes which have the

greatest ability to create instability. These are made possible by explicitly expressing

B(v,v) in (4.21) via lemma B of appendix B:

D) k'l k2—12 ! !
Blow) = 3 Y2k Uk H)(ekﬂ . ”)

viek L2[k|[1 k1 1k =
I (T
o L2[k][l] k+1 k=1
B Z 2ark’ -2l(|/€|2— Us) < €kl Ck-l )vkv{.
o L2[k|]l] k+1 k=1

Since there exist no triads in K satisfying k¥ + [/ = s and because of the orthogonality

of the basis functions the trilinear form (€., B(v, v)) reduces to

Sark' - 1(|k[2 — |I?)
(€5, B(v,v)) =
gz:: L2[k||l]s]

(vpv + vRY;).
To evaluate the coefficients of v;v; and vv; it is observed that

k‘l'l = klaSQ = l1a52
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k2= I> = [I+s]>=|l]> = a®s5+2a’syly
k[|llls| = asa(I? + (asy + aly) )2 (12 + o?12)Y2.
Therefore,
KUk =107 Liasy(asy + 2aly)
|k[|1]]s] (B (asy + aly)?)V2(1 + a213)1/2°

The trilinear form then reads upon substitution of the above identity

(el, B(v,v))

i i vV 20&71'[1@82(@82 + 20&[2)(1)17)[-1—5 + Ulvl—}—s) (4 22)

L2(I2 + (o0sz + ag)?) 2 (B + o2B)12

Note that each v, (v}), for | # (0,aly)”, appears exactly twice in the above sum.

Meanwhile, the dissipation term can be majorized as follows

Tollf = XM +0%) = X Aers) *([orvrs| + [vhvhys)). (4.23)
k k

Now by substituting (4.22) and (4.23) into the energy equation (4.21) yields (note

the change of the dummy indices /; and )

s 0P S 3 3 (g e (424
2dt D1 koo \L2 (KT + (as2 + akz)?) /2 (kT + ok3)
At 2
8+ (s b R0+ 0P ) (o + )

The nonlinear stability of @ requires that the right-hand side of (4.24) be non-positive.
That can be satisfied when

UsV 20k sy |asy + 2aks| )
drv(k? + (asg + ako)?)(k? + o?k3) —

(4.25)

for all positive integers k; and all integers ky. Since the left-hand side of (4.25) is

greatest when k; = 1 for each ko, the stability condition reduces to

UsV20uss|asg + 2aks|
dv(1 + (asy + aks)?) (1 + a2k3) —

I
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The problem of determining the nonlinear stability condition for # now reduces
to determining the greatest value of the left-hand side of (4.25) for all integers ko and

setting it < 1. For that purpose, let us determine the maximum of the function

lc+ 2z
1+22)(1+ (c+x)?)’

g9(z) = (

where c is a positive parameter and zx is a continuous real variable. It can be seen that
g(x) is symmetric about the line z = —¢/2; therefore, the translation z — x — ¢/2

helps reduce the problem to finding the maximum of

2x
o) = i —omar ey *7°

Differentiating h(z) with respect to z, setting the derivative to zero, and solving the

resultant equation for = in terms of ¢ one obtains the only real solution below

(CQ — 4+ 2(64 + 4 + 16)1/2>1/2
T = ,

12

which corresponds to a maximum value of h(x). Therefore, g(x) peaks at

¢ <02 — 4+ 2(c* + 4% + 16)1/2>1/2

r = —=
2 12

with the maximum value

((02 + %((04 +42 + 16)1/2 2 2))1/2
L+ (€ + 5((c* + 4 +16)1/2 — ¢ = 2)) + & ((c* + 4c> +16)1/> — ¢ — 2)*

9(c) =

With this result % is nonlinearly stable when

UsV20Sy _

This is a sufficient condition for nonlinear stability. Note that the result is not re-
stricted to cases with ass < 1 but applies, in general, to a laminar monoscale across-
channel flow.

There is a feature of g(ase) in (4.26) which leads to an interesting difference

between the conditions for stability when the forcing scale is about the width of the
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channel or larger and when the forcing scale is much smaller than the channel width.

When as, is small, g(ass) is of the order of unity, so that (4.26) reduces to

UgV 200089

1. 4.2
A7y ( 7)

However, for large aso, g(asz) becomes

aSo 1

glasz) ~ 1+ o?s2 ™ asy

As a result, the nonlinear stability of @ prevails when

UV 20

A7y

1. (4.28)

The above analysis concerns only the stability of & with repect to the energy norm.
A similar approach is now applied to derive a sufficient condition for the stability of
4 with respect to the enstrophy norm. Because of the equivalence of the two normed
stability conditions a comparison between them can be made and an optimal condition
for both normed stabilities can be deduced.

The governing equation for the enstrophy is obtain by taking the scalar product
of (4.19) with Av

1d
57 v Il +(Av, B(3,v)) + (Av, B(v, @) + (Av, B(v,v)) + v || v [l; = 0.

Due to the orthogonality property of B(-,+) the above equation reduces to

Ld

S 0B = (An B, 0) = v v B

= Ats(e, B(v,v)) —v [ v |5 (4.29)
The global stability of @ is established if the right-hand side of (4.29) is negative. The

trilinear form has already been estimated above. Meanwhile, the dissipation term can

be majorized as follows

Folli = D X@E+0%) > S (Mders) (vkvkrs| + [vvigal). (4.30)
k k
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Now by substituting (4.22) and (4.30) into the enstrophy equation (4.29) yields

1d d o [ Z Z AslisV 20k asg| sy + 20k | (4.31)
2 dt L= o koo \L2 (KD + (aisy + ko)) /2 (k7 + a2k3)'/2 '
1674

—v— (k1 + (o + ko)) (k7 + &2k§))> (Ioxvn1s] + logvRs]).

The nonlinear stability of % requires that the right-hand side of (4.31) be non-positive.
That can be satisfied when

024233115\/ 20k asg| sy —|—22ak2| . <1, (4.32)
Amv (kT + (asg + ak2)?)3/2(k + a?k3)3/2

for all positive integers k; and all integers ko. Since the left-hand side of (4.32) is

greatest when k; = 1 for each ks, the stability condition reduces to

200353 | sy + 2aks| 1
Av(1 + (asy + aks)?)3/2(1 + a2k3)3/2 —

Similar to the previous calculation for the energy norm, the present problem re-

duces to determining the maximum of the function

(2) lc+ 2z|
Tr) =
a (14 22)32(1 + (c+ x)2)3/?

or equivalently the maximum of

2x
I+ @ = c2P) P+ @+ /2]

hi(z) = z >0,

where c is a positive parameter and x is a continuous real variable. It turns out that

g1(z) peaks at

_ o, (20 -84 (9¢ —12¢ 4 1447 12
T 20 :

with the maximum value

10 (¢ — 4+ 1(9¢" — 12¢* + 144)/2)

gi(c) = 3/2°
(247> + (9¢* — 12¢> + 144)/2 + L (3¢> + 8 — (9c* — 12¢> + 144)1/7)?)
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With this result % is nonlinearly stable when

sV 20a3sd
iy G(as) <L (4.33)

It is not hard to see that g(asy) and g;(asy) are of the same order when aisy ~ 1. In
that case either (4.26) or (4.33) may be approximately taken as a sufficient condition
for the stability of 4. When aisy < 1, g1(ausy) is of the order of unity, so that (4.33)

reduces to

= f93.3
sV 20075, < 1. (4.34)
4y

For large ass, g(ass) becomes
glase) ~ —.
g( 2) a2s%

As a result, the nonlinear stability of % prevails when

UsV 2000S9

4y

1. (4.35)

A comparison between (4.27) and (4.34) indicates that the latter is optimal, while
a comparison between (4.28) and its counterpart (4.35) favours the former. These
two optimal conditions are more naturally expressible in terms of the characteristic
length scales defined in chapter 3. Since us; = fy/v);, a little algebra leads to the
restatement of both (4.34) and (4.28) as follows

I L,
m S 1, for f > ]., (436)
LL, L,
167{'3[,2 S 1, fOI' f < 1. (437)
D

These expressions are self-explanatory. It is sufficient to mention two properties.
(i) Given a fixed kinematic viscosity, forcing amplitude and scale, the conditions are
a-independent. This is true for any forcing scale, not just the two extreme cases

pointed out above. The upshot is that the stationary flow u, once nonlinearly stable,
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remains nonlinearly stable for arbitrarily small values of «. This result is seen to
be consistent with the physical set-up of the problem: The stability of an across-
channel flow of a fixed scale should not depend on the length of the channel. (ii) The
dependence of the stability condition on the forcing scale is due to two effects. On
the one hand, the amplitude of % is seen to grow as L2. This factor should and does
enter the stability condition directly. On the other hand, L, dictates the nature of
the nonlinear coupling which is responsible for instability. A mode & of large scale
and a mode [ are coupled only if the scale of the latter is approximately equal to
L, so that a small L, (large |s|) forbids coupling among the largest scales. Thus
scale-separation coupling diminishes the ability of the nonlinear term to overcome
the effects of molecular viscosity and cause instability. This effect, when factored in,
results in the functions g(ass) and g;(ass) which lead to the variable dependences
of the stability condition on the forcing scale. More precisely, a forcing of a certain
amplitude is most powerful in terms of its ability to create a nonlinearly unstable
laminar flow (and hence chaos) when its scale is comparable to the channel width.
The promise to demonstrate the physical significance of Ly can be fulfilled by
interpreting the conditions for nonlinear stability. Consider a domain of length scale
L of the same order of magnitude as Lp. The nonlinear stability conditions dictate
that no laminar flows the scales of which are below L may become unstable. It
means that at Lp viscosity completely outplays nonlinearity. A somewhat liberal
interpretation of this result is that Lp is the length scale such that the energies of

the harmonics below that scale are not so ready for exchanges among themselves.



Chapter 5

Concluding remarks

This thesis presents a theoretical study of the Navier-Stokes system (NS) and its
modified version (MNS) on the 2-torus, in which a linear dissipation mechanism called
Ekman drag is added. It aims to determine the asymptotic behaviour, stability, and
number of degrees of freedom of these systems.

An analysis of the dynamics of the NS system driven by a monoscale forcing is
reported in chapter 2. A constraint is derived for the dynamics of this system. It is
found that most of the energy of the system is concentrated on scales larger than the
forcing scale, while most of the enstrophy is distributed about the forcing scale. As a
result, there may not exist an enstrophy cascading inertial range [3, 30, 27, 28| in which
the energy spectrum would scale as |k|=3 (possibly with a logarithmic correction). In
fact, it is highly probable that a much steeper scaling law (|k|~7 with > 5) applies
to scales smaller than the forcing scale, as demonstrated in chapter 2.

Besides Kraichnan’s theory [27, 28], which gives the predicted values of n = 3
as mentioned above, there exist a number of predictions for the numerical value of
n. Saffman [55] proposes that n = 4, while Moffatt [48] favours a slightly smaller
value: 7 = 11/3. Sulem and Frisch [59], instead, propose an upper bound: n < 11/3.
Most recently, Polyakov [52] considers an infinite number of possible spectra with
n > 3. While most of the previous predictions are either conjectural or hypothetical

in nature the present prediction is rigorously substantiated by a proven fact.

75
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A dissipation mechanism consisting of the usual molecular viscosity and a hypo-
viscosity is proposed for large 2D fluid systems driven by large-scale forcing. While
the former channel of dissipation is familiar and standard in fluid dynamics, the latter
does not enjoy the same kind of popularity. It is intended, as proposed, to account for
the loss of kinetic energy due to boundary friction and friction-generated turbulent
eddy activity in the ignored vertical dimension. The physical effect of this term is to
provide a reasonable damping rate for large-scale motion observed in fluid systems
such as the atmosphere or water tank experiments [49].

A spectral analysis of the 2D Navier-Stokes equations with the addition of linear
Ekman drag, which is a special form of hypoviscosity, was carried out. The result is
compared and contrasted with that of the original system. It has been shown that
Ekman drag is capable of causing the energy spectrum to adjust toward the small
scales. As a result, a spectral distribution of |k|~" with 3 < n < 5 for scales smaller
than the forcing scale is possible for the modified system.

Both linear and nonlinear stability analyses of a laminar monoscale stationary flow
for the 2D Navier-Stokes equations are reported in chapter 4. A necessary condition
for the existence of unstable eigenmodes and their properties are derived. The results
indicate that in the vicinity of the unstable laminar flow a trajectory is in the phase of
an upscale energy cascade. Moreover, the energy possessed by a scale associated with
a wavenumber |k| goes as |[k|™" when |k| — oo for Vn > 0. Those results can be readily
generalized to systems with a general viscosity as well. Two interesting properties
which are peculiar to elongated domains have been pointed out in chapter 4. One
is the fact that there are laminar monoscale across-channel stationary flows which
remain linearly stable for arbitrary values of the physical parameters (arbitrarily
large Reynolds number, for instance). Note that these stationary flows are not the
flow of the largest scale considered by Meshalkin and Sinai [47], Iudovich [25], and
Marchioro [44] (see appendix C) and are not known to remain globally stable. The

other is the result from the nonlinear stability analysis. It has been shown that a
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laminar monoscale across-channel stationary flow, once nonlinearly stable, remains
nonlinearly stable for an arbitrary length of the channel.

Extensivity of the 2D Navier-Stokes system on both square and elongated domains
has been demonstrated in chapter 3. The attractor dimension in each case is found
to grow linearly with the domain area provided that the forcing scale and amplitude
and the kinematic viscosity are held fixed. Although the results are in the form of
upper bounds rather than equalities, the system’s extensivity can be concluded with
definiteness thanks to the results of [35] in which a lower bound on the attractor
dimension for a similar system is also shown to grow linearly with the system size.
However, extensive behaviour can only be found for systems larger than a certain
scale called the extensivity scale (defined in chapter 3). For a system smaller than
this scale, an optimal estimate of the attractor dimension grows slightly faster than
the system size, being indicative of super-extensive behaviour.

It is found that the addition of linear Ekman drag does not destroy the extensivity
of the NS system. Instead, this dissipation channel enlarges the dissipation length
and reduces the attractor dimension in such a way that the dimension may still grow
linearly with the domain area for large systems.

Most of the analysis in this work revolves about the forcing scale (injection scale)
which is unambiguously defined by the introduction of a monoscale forcing. The
role of this parameter in the dynamics and dynamical complexities of the NS sys-
tem (with/without large-scale dissipation) is explored. It is demonstrated that a
monoscale across-channel stationary flow (resulted from a monoscale across-channel
forcing) is most likely to be nonlinearly unstable when the scale is on the same order
as the channel width. Away from this range (either too small or too large as compared
to the channel width) a forcing may lose its strength and eventually become incapable
of creating instability, let alone exciting chaos. The forcing scale also plays a role in
the attractor dimension. This role is hidden in the dissipation length in the regime of

extensive chaos. For the 2D Navier-Stokes system the dissipation length is inversely
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proportional to the forcing scale, so that the attractor dimension grows linearly with
the forcing scale. The explanation of this property rests on the viscous effects. It is
totally due to viscosity that the bound on the enstrophy of the attractor grows as the
square of the forcing scale. Although this dependence is not guaranteed to be sharp
it is physically reasonable. A large-scale forcing can avoid viscous effects and pro-
mote intense dynamics of the large scales. These “strong” modes subsequently excite
the small-scale modes via nonlinearity. In contrast, a small-scale forcing of the same
magnitude suffers heavy damping and produces a much weaker dynamics of the large
scales. It is, therefore, less capable of exciting and maintaining as broad a spectrum
as its large-scale counterpart, despite the obvious advantage that the spectral peak
in this case is closer to the smallest scales. Thus a larger-scale forcing results in a
smaller dissipation length and an attractor of higher dimension. This picture com-
pletely reverses for the MNS system in which Ekman drag dominates the viscosity.
In this case, the bound on the enstrophy of the attractor is inversely proportional to
the square of the forcing scale, i.e., forcings of smaller scale bring about attractors of
greater enstrophies provided that their amplitudes are the same. This means that a
smaller-scale forcing is more capable of exciting and maintaining a broader spectrum
than a larger-scale one, and hence yields a higher dimensional attractor.

An apparent difference between the systems analyzed in this thesis and a more
realistic model of large-scale atmospheric motion is the lack of curvature and the
addition of artificial boundary conditions in the former. It turns out, however, that
spherical geometry is equivalent to the doubly-periodic flat space with respect to the
estimates involved [12,13]. It is therefore a rather straightforward reformulation of
the present problem in the spherical case, and one would have attractor dimensions
of the same order of magnitude for both geometries.

It should be admitted that the estimates are uncomfortably large even for simple
flows governed by the MNS equations. But given a large system full of small-scale

fluctuations such as the atmosphere, one could hardly think of a small number of
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modes that would describe each and every snapshot of its dynamics adequately. The
huge number of degrees of freedom is due to the presence of small-scale dynamics at
the dissipation length. In practice one may wish to ignore “twists and turns” the sizes
of which are many orders of magnitude larger than the dissipation size. Unfortunately,
the governing equations admit those as legitimate solutions. The question is how one
could go about revising the governing equations in such a way that “twists and turns”
up to predefined scales are filtered out while those of larger scales remain unaffected
or nearly so. The flow governed by the revised system would then need fewer modes
to simulate. This step may be compared to the step of going from molecular dynamics

to the Navier-Stokes system for fluids.
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APPENDIX A

Optimal problems

This appendix considers two algebraic problems: An optimal problem of a one param-
eter quadratic form and a supremum problem of a function that are used in chapter
3.

I. Consider,

f(z) = —eaz® + bz + T

where a, b, ¢ are fixed positive numbers, ¢ € [0,1), and = > 0. The problem is to
find the smallest possible xy by varying € in the allowed range such that f(z) < 0
for x > zy. This problem can be taken care of by elementary calculus. By setting

f(z) =0, z can be solved in terms of €

T = ( b2 + ;lace +b> /2ae

— €

Taking the derivative of = with respect to € and setting dz/de = 0, it is found after

some algebra

. vac+b
C 2/ac+b

xo is found from the above equations to be

_ 2y/ac+b

a

Zo
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I1. Consider,

fly) = &y (1 +1Iny)? — 2¢y,

81

for y > 1, &, € > 0. The problem is to find sup f(y). This problem is solved in [60],

and the steps go as follows. Let

9(y) = E(1 +1ny) — y*/2

The maximum of ¢(y) is found to be

1 2, 2¢2
max g(y) = &2 <§+ gln%>.

Hence,

2
(1 +Iny) < %2 + &2 (%-l—gln 28 >

And the following steps are straightforward

1 2. 92e2\'/?
6(1+lny)1/2§ey3/4+£<§+ 5) )

-+ -In—=

1 2. 2e2\'/?
&t (1+Iny)'? < 6y+§y1/4( §>

3 3 3e?
3 3¢3 (1 2 2e2\*?
PRAMPTOBIE <3 T3 3—>

It follows that

Ve 1+In>

4/3
Ey/t (1 +1Iny)Y? — 2ey < —%y+c€ ( i

where ¢ < 3/4.

)2/3
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APPENDIX B

Spectral form of the vorticity equations

This appendix presents a spectral analysis of the nonlinear interactions in the NS
(and MNS) equations, the results of which are used in the stability problems in chap-
ter 4. For that purpose the forcing and dissipation terms are ignored. The inviscid
and unforced system is essentially the familiar vorticity equation. This equation and
its Fourier transform were studied by Lorenz [39], in which nonlinear interactions in
the form of triads of three different scales were pointed out and a system of only
three ordinary differential equations was proposed for some qualitative studies of the
atmospheric general circulations. It is not intended of this appendix to further elab-
orate on the behaviour of the Lorenz three-component system. The main objective is
rather to demonstrate an alternative route leading to the spectral form of the vorticity
equation. The new route to be taken is via basis functions in vector form rather than
those in scalar form as in [39]. It is hoped that more insights into the nature of these
interactions can be gained from the discussion and that the new spectral equations
will offer advantages in numerical analysis.

The inviscid and unforced version of the NS (and MNS) system is written in H
as follows (initial condition is omitted)

62—1: + B(u,u) = 0. (B-1)

The spectral equations can be derived by expanding v as in (2.4). The nonlinear
term can then be handled by the following lemma which is taken from Liu [35, 36]
(an elongated domain with a shape ratio of « is considered in the present calculation
instead of a square domain in [35, 36]).

Lemma B: For every k and | in the definition of ex and e,

Dark 1k = IP) [ s b
+ . (B2
R[] Grd TR-g) (B2

Blex, e;) + B(ey, ex)
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!, 2 _ 712 ! !
Blehoc) + Blecy) = — Y2 =) (Lt

. (B3

Tkl F \k—u) (B-3)

_ 2C¥7Tkl'l(|k|2—|l|2) Cl+1 o Cr—1 (B-4)
Tkl Fel =)

Proof: It suffices to give a proof for one of the equations. The others are proven in

Blex, €;) + Blep, ex) =

exactly the same manner. It is found by direct calculation that

dra(k' - DI 2r . . 2«
(ex - V)e, = —W cos ka sin TZLL',
dra(l' - k)K" 2w, . 2w
(- Ve = AT oS Tl:v sin fka: (B-5)

Adding the equations of (B-5), noting that &’ -1 = —I’ - k one finds

(ek . V)el + (61 . V)ek

4 r. 2 2 2 2
= —M (l' cos Xk sin 2z — k' cos %lm sin %kx)

L3[k| |1 L L
_ 2ma(k'l) (,, .. 27 L or
= TN ((l —k)smf(k—i-l)x—(l +k)smf(k—l)x). (B-6)

It is noted that the right hand side of (B-6) is identically zero for [ = k. When [ # k
it can be projected onto H to yield

Blex, e;) + B(ey, ex)
omak' -1 (L' — k) - (K +1) , LI'+K)-(K¥-1),
‘waknu( V2alk+1 T T V2alk— || )
V2ark' - (k[ — 1) ( Chat | Ch )

L2[k]N K+ k1)

(B-7)

where the projection P of the vector sum involved onto H has been done term by

term via
s Lm-U
P(msin —lz) = ——e¢. B-8

The first equation of the lemma is thus proven. O
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With the help of Lemma B the Fourier transform of (B-1) reads, upon substitution
of (2.4) in (B-1)

d | 2arm’ - 1(|m|> = |1]?) ( ulu) |, ul v,
ai ke Fukek) = 50 L2[m]l 0 T —
1 5 V2arm! - l(|m|2 = |1]?) [ umw y Uty
2 L2|m||l] im0 ™ m =g ™
2arm’ - l(|m> = 11?) [ emu em—1
- B-9
Y m e ) Y

where a factor of one half has been inserted into the first two sums to compensate for
the repetition of terms by the summation. The governing equations for the Fourier
coefficients of u can be obtained by equating the coefficients of like Fourier modes. It

is found for each k that

d +V2amm’ - I(Jm|? —|1]?)
— Uy = Um Uy,
dt m§:k L2|ml[|[k| :
d ! j:\/aﬂ-m, ) l(|m|2 - |l|2) Pt
—u, = U, Uy F Uy Uy). B-10
& T2 T A et e (B10)

Naturally, the spectral equations inherit all properties of (B-1). For example, the
energy and enstrophy are conserved, i.e.,

2

% (ui + u;c ) = 0,

Z)‘k ul+ui’) = 0.

That means that the sum of all triple products in each of the energy equation and en-
strophy equation is identically zero. This property is inherited from the orthogonality
properties of the nonlinear term: (u, B(u,u)) = (Au, B(u,u)) = 0. Also, by virtue of
the orthogonality properties which clearly do not depend on the spectral composition
of u, it is possible to omit reference to all but a finite number of Fourier modes by
performing any finite truncation to the Fourier series of u without losing the orthog-

onality properties in the resulting finite system of spectral equations. However, it is



B. SPECTRAL FORM OF THE VORTICITY EQUATIONS 85

clear that a maximum simplification would have to retain at least three dependent
variables associated with a wave vector triad m=+1[ = k. Lorenz [39] called such a sys-
tem the minimum hydrodynamic equations. Obviously, the minimum hydrodynamic
equations must involve three different scales or else the three nonlinear equations
would reduce to two linear equations with the third variable becoming a parameter
(see B-10). Furthermore, for similar reasons the three modes must be either all odd
or two even and one odd.

It is interesting to note, for & = 1, that the three largest scales, i.e., the first twelve
modes associated with the six wavevectors (0,1)%, (1,0)%, (1,1)%, (1, -1)%, (0,2)%, (2,0)"
do not make nontrivial triads among themselves. As a result, the truncation of the
first twelve terms of the Fourier series of u only yields trivial dynamics for any forcing
term (see Smale [58]).

The important point to note at this stage is that the collective nature of the
nonlinearity is inescapable. In principle each Fourier mode of the velocity field is
coupled to every other mode and therefore the nonlinear term is very difficult to
handle. It is not known, for example, how two triads (with one or two common
scales) would interact, let alone a number of them. In this respect one is often at a
loss as to which set of triads corresponds to a realistic model of the flow. As a matter
of fact, numerical experiments [19] with the Lorenz convection model [38] (by adding
more modes to the three-component system) indicate that some augmented models
do not behave in a chaotic manner, and the flow simulations become periodic or even

steady.
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APPENDIX C

Examples of stationary and globally attracting solutions

This appendix features a fixed point analysis of the NS system. The stationary
solutions are solved for two examples of the body force, and a simple proof will be
presented that for one of the examples the NS equations admit trivial dynamics. The
fact that the attractors of the NS system reduce to a single stationary solution for
a particular choice of the body force (with arbitrary large Reynolds number) was
demonstrated by Iudovich [25] and Marchioro [44] and a simpler proof was provided
later by Constantin et al. [7]. The method of proof presented here is similar to that
of [7]. However, a more general forcing than that in [7] will be considered. Let us

recall the NS equations which are described in detail in chapter 2

%+B(u,u)+l/Au = f, (C-1)

u(0) = uy.

In this appendix the volume force f is assumed to take either of the following forms

fi = 0 (frer + freh), (C-2)
|k|=]s]

fo = Z (frer + frer) (C-3)
k=ns

where fi, f; are constants and ey, e}, are the eigenvectors of A (see chapter 2), and n

is a positive integer. Let %; and @y be defined by

i =WA) i = WA) YD (frer + frek), (C-4)
[kl=ls|
uy = WA fa = 3 (M) (frer + frer) (C-5)
k=ns

It is easy to see that @, and @y are stationary solutions of (C-1) with f = f, and
f = fo respectively. The proof of this claim is supported by the following Lemmas

which are essentially by-products from the process of proving Lemma B.
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Lemma C1: The bilinear operator B(u,v) satisfies, for all positive integer n

B((Pk, (pnk) = B(Qonka (Pk) = Oa (C—G)

where @y, is either ey or e,.
Proof: There are six individual identities in (C-6). It suffices to demonstrate any one

of them. Let us recall from (B-5)

[ 2
(er - Ve, = Amak ll' cos Q—Wka: sin %lx. (C-7)

Gz L

Since k' - | = a(kaly — kyly), the right hand side of (C-7) vanishes when k and [ are
collinear, i.e. when [ = nk. Thus, it is established that B(eg,enr) = B(enk,€ex) = 0.
Other identities in the lemma are proven similarly. O

Lemma C2: The bilinear operator B(u,v) satisfies
B(e,e;) + B(ei, ex) = Blex, €;) + Ble, ex) = Bley, €;) + B(e, ) =0,  (C-8)

whenever || = |k|.

Proof: Only the first identity will be demonstrated; others are proven in exactly the
same manner. Let us recall eqs. (B-6) and (B-7) from the last appendix. It is easy to
see that eq. (B-6) proves the lemma for | = &k while eq. (B-7) does the job for [ # k.
Thus, it has been shown that B(eg,e;) + B(e;, ex) = 0 for |k| = |I|. O

It is inferred from the two lemmas that B(@y, 1) = B(4s, i) = 0. Hence,

B(ﬂl, ’17,1) + I/A’U,l = fl, (C—g)
B(ﬂg, 77/2) + I/Aﬂg = f2. (C—lO)

Thus, 4; is a stationary solution of (C-1) corresponding to the force f; (i = 1,2) as
claimed.

The rest of this appendix shows that for f = fi(|s| = a) the corresponding sta-
tionary solution is unique and globally attracting. Note that fi(|s|) is a linear com-

bination of all degenerate eigenfunctions of A corresponding to the same eigenvalue
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As. In particular, fi(|s| = «) is a linear combination of two degenerate eigenfunctions
corresponding to the first eigenvalue \; (when oo = 1 the first eigenvalue of A has four
degenerate eigenfunctions). This fact is essential in the proof of trivial dynamics in
this case as shall be seen.

Proof of uniqueness of u1(]s| = ).

Suppose that v is another fixed point of (C-1) corresponding to f = fi(|s| = «),

that is v satisfies
B(v,v) +vAv = fi(|s| = ). (C-11)

Successively taking the scalar product in H of (C-11) with v and Av it can be shown
after invoking (2.9), (2.11) and using the fact that Afi(|s| = @) = A1 fi(|s| = @)

vifvlli = (v (sl =a)
vi[Av]® = M(v, fi(ls| = )) (C-12)

Multiplying the first equation of (C-12) by A\; and subtracting it from the other one
yields

v(l Avl* =M v ]}) = o (C-13)

The left hand side of (C-13) is non-negative due to the Poincaré inequality. It means
that (C-13) is true if and only if v belongs to the subspace spanned by the four
degenerate eigenfunctions of A corresponding to A;. It is then inferred from lemma
C2 that B(v,v) = 0 and that v = 4y (|s| = «). O

Proof of global attraction of ui(|s| = «).

Similar to (C-12), it is derived from (C-1)

1d

sz lulP+viliull = (ufills|=a) (C-14)
1d
s luli+v i Aull = A(u, fills| = a)). (C-15)
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And by the same token
ld 2 2 2 2
sgplull =2l l) + vl Au I =A [ wlz) = 0. (C-16)

Each of the two terms in the round brackets in (C-16) is non-negative by the Poincaré

inequality. Hence, it can be deduced that
u — H(A;) in the enstrophy norm as ¢t — oo. (C-17)

Expression (C-17) implies that the global attractor is confined to the two-dimensional
(four-dimensional for @ = 1) eigenspace corresponding to A;. To show that the
attractor only consists of the single stationary solution it is convenient to expand a
trajectory u on the attractor in a Fourier series
u o= Y (uge + upey). (C-18)
kl=a
Successively taking the scalar product in H of (C-1) with the eigenvectors correspond-

ing to A1, noting their orthogonality and using Lemma C2, one finds

d—tk —+ V/\luk = flca (0_19)
d !
lefk +vhup = [y, (C-20)

for |k| = . These differential equations can be readily solved and it is apparent that
u converges to u; in H as t — oo. Thus, the global attractor reduces to a single

stationary solution in this case. O
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APPENDIX D

The CFT theorem

This appendix contains a brief review of the Constantin-Foias-Temam (CFT) theorem
and its application in estimating the attractor dimension of dissipative dynamical
systems. A complete treatment of this theorem and related subjects can be found in
Temam [60].

Upper bounds on invariant sets or attractor dimensions for a dynamical system
can be determined by considering the time evolution of finite-dimensional volume
elements in the system phase space. If all m-dimensional volume elements with all
possible orientations in the (infinite-dimensional) phase space contract to zero volume
as t — oo, then the attractor contains no m-dimensional subsets and hence the
Hausdorff dimension cannot exceed m. The goal is to determine the smallest possible
m with this property. Such an m is an upper bound on the Hausdorff dimension of
the attractor.

Consider the evolution equations in a Hilbert space H

d
Su(t) = Plu), (D-1)

u(t=0) = wuy,

which possess a global attractor, or more generally, an invariant set X. To monitor
the evolution of volume elements in the phase space it is sufficient to consider the

linearized version of (D-1) along phase space trajectories:

d /
ZUt) = Fu@®)Uue). (D-2)

In the above, F' is the Fréchet differential of F' which is assumed to exist. For an
infinitesimal m-dimensional volume situated in an m-dimensional subspace H,, of H,

the volume V' (¢) evolves along a trajectory u(t) according to

V(t) = Vyexp {/Ot TrF'(u(7)) o Pm(T)dT} :
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In the above, P, is the orthogonal projection in H into H,,. It is seen that when the
integral in the above expression is negative V (¢) shrinks in time. It has been shown

that if

n = ]iiri)so})lp usolg( (% /Ot SllDlmp TrF'(u(r)) o Pm(T)dT> (D-3)
is non-positive for all m’ > m, then the Hausdorff dimension of X is less than or equal
to m. Note that the supremum taken over P,, ensures that all possible orientations of
the m-dimensional volume element are covered, while the supremum taken over the
initial point ug € X takes care of all points of X.

The trace in (D-3) is evaluated via a basis of P, H. If {¢;}", is a basis of P,,H
which are orthonormal in H then

m
TrF'(u(r)) o P = ;(F'(U(T))@, i), (D-4)
i=
where (-, -) denotes the inner product in H. The problem now reduces to the estima-
tion of the sum above.

Equipped with this theorem one can, in principle, estimate the Hausdorff dimen-
sion of invariant sets of a dynamical system. The goal is to obtain an optimal estimate
of the trace in (D-3) and then determine m. This process is highly technical and in-
volves several steps in each of which there may be more than one way to estimate
the terms in question. Because of that situation a knowledge of the magnitudes of
the terms involved is necessary in order to have a possibly sharp estimate in each
and every step. That makes one to decide, for example, which estimates to adopt for
a given set of the physical parameters. Consequently, there may be more than one
estimate of the Hausdorff dimension each of which is sharp in certain regions of the

parameter space, and two such estimates do not necessarily reduce to each other as

the parameters cross their optimal domains.
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