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Abstract

Shell models of the Gledzer–Ohkitani–Yamada (GOY) type can provide an

excellent testbed for new ideas and methods for two- and three-dimensional

turbulence. We review some results for Navier–Stokes turbulence and compare

with results for shell models. We introduce a multi-spectral decimation scheme

for high-Reynolds number turbulence simulations.

The nonlinear coupling coefficients on the coarse grid are calculated with

a modification of the method of spectral reduction [Bowman, Shadwick, and

Morrison, Phys. Rev. Lett. 83, 5491 (1999)]. This decimation scheme exploits

the continuity of moments of the underlying probability distribution function

to replace neighbouring shells by a reduced number of representative shells

with enhanced couplings. The projection and prolongation operators between

the grids are designed to conserve energy.

We demonstrate how this multi-spectral scheme might be used to derive a

reliable dynamic subgrid model for turbulence.
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Chapter 1

Introduction

In which we introduce our goal and the models under consideration.

The Navier–Stokes equation approximates the motion of many turbulent

systems that are of practical and scientific interest. This equation is simply

written, but exact solutions have eluded the scientific community for over a

century. In the face of such failure, the advent of powerful computer systems

has given hope that we may be able to predict the behaviour of turbulent

systems numerically. Unfortunately, highly turbulent systems, such as the

Earth’s atmosphere, have too many spatial and temporal scales to be solved

on current computer systems, and computers will not be powerful enough

to address this problem directly for the foreseeable future. The goal of this

work is to develop a multi-spectral method that affords a dramatic reduction

of the computational cost of numerical approximations of turbulence. We

demonstrate the method for a shell model that mimics many properties of the

Navier–Stokes equation.
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1.A Navier–Stokes Turbulence

Turbulence can be described by the Navier–Stokes equation (e.g. Frisch [1995]),

∂

∂t
u + u ·∇u = −1

ρ
∇P + ν∇2u + F . (1.1)

Here ∂/∂t is the (laboratory frame) Eulerian derivative, u = u(x, t) the Eule-

rian velocity field for the fluid, ρ the fluid density, P the pressure, ν the kine-

matic viscosity, and F an external stirring force. The left-hand side of (1.1)

is just the Lagrangian derivative of the velocity field:

d

dt
u(x(t), t) =

∂

∂t
u(x, t) + x′(t) ·∇u (x(t), t)

=
∂

∂t
u(x, t) + u (x(t), t) ·∇u (x(t), t) , (1.2)

which is the rate of change of the velocity in the frame moving with the fluid.

From this viewpoint, the right-hand side of (1.1) is the acceleration that a

parcel of fluid would experience due to the pressure field, viscous dissipation,

and external forces on the fluid.

We would like to deal with a closed system, wherein mass is conserved

everywhere. This is guaranteed by the continuity equation,

dρ

dt
+ ρ∇ · u = 0. (1.3)

When the fluid is also incompressible, i.e.

dρ

dt
=
∂ρ

∂t
+ u ·∇ρ = 0, (1.4)
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the velocity field has the property that ∇ · u = 0 everywhere. This condition

is implicit in the formulation of the Navier–Stokes equation in (1.1) and allows

one to calculate the pressure via the velocity. The incompressibility condition

is a very good approximation except under certain circumstances, e.g. during

shock formation. If the initial conditions are such that ∇ρ = 0, then the

incompressibility condition implies that ∂ρ/∂t = 0, and ∇ρ = 0 at all later

times. Thus, without loss of generality, we normalise ρ, so that ρ ≡ 1. This

convention is used through the remainder of this dissertation.

In the absence of the dissipative and forcing terms ν∇2u and F , the

Navier–Stokes equation exhibits various symmetries [Frisch 1995], and by Noe-

ther’s theorem (e.g. Bohr et al. [1998]), corresponding conserved quantities.

Exactly what these symmetries and conserved quantities are depends on the

dimension. Given periodic or zero boundary conditions, the energy E
.
=

1
2

∫
u2 dx (

.
= indicates a definition) is conserved in all dimensions:

dE

dt
=

1

2

d

dt

∫
u2 dx =

∫
u · ∂u

∂t
dx

=

∫
u · (−u ·∇u−∇P ) dx = −

∫
u ·∇

(
u2

2
+ P

)
dx

=

∫
(∇ · u)

(
u2

2
+ P

)
dx = 0 (1.5)

since ∇ · u = 0. In accord with Noether’s theorem, energy conservation is

related to the time-translation symmetry of (1.1). Similarly, the total momen-

tum
∫
u dx is conserved because (1.1) is invariant with respect to translation

in space.

Helicity, H =
∫
u · (∇ × u) dx is also conserved by (1.1) [Yahalom 1994].

Unlike energy, helicity is not positive definite, and the importance of its role
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in turbulence is not clear [Bowman et al. 2006].

The domain in which we choose to work, and in which some of the ma-

jor works in the subject have been set, is a square periodic box of length L.

This approximation is often justified a posteriori by demonstrating that the

numerically predicted turbulence correlation length is small compared with

the box size. While this is obviously not a completely realistic assumption,

calculations in such a domain are simpler and significant insight can nonethe-

less be gained into turbulence. Working in a periodic domain facilitates the

use of Fourier transforms, which can be implemented by efficient (so-called

fast) algorithms. The amplitude distribution of modes in Fourier space will

be shown to be important in Section 2. For the time being, what is necessary

is the form of the Navier–Stokes equation in Fourier space:

∂ûk

∂t
+ k (û ∗ û)k = −kP̂k − νk2ûk. (1.6)

Here û is the Fourier transform of u and û∗ û is the wavenumber convolution

of û with itself. We can solve for P̂k by inverting a Laplacian:

∇2P =∇ · [F − (u ·∇)u] . (1.7)

Numerically, the complications of calculating the convolution in (1.6) are im-

mense. It is advantageous to calculate this term in x space; this is known as the

pseudo-spectral method [Gottlieb & Orszag 1977]. With the use of fast Fourier

transforms, pseudo-spectral methods provide significant savings in computa-

tional cost.

In addition to computational ease, formulating the problem in Fourier space
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makes it easy to confine the energy injection to certain scales. Typically, we

are interested in a system where we have a known energy injection only on

large scales. If we choose a white-noise force that is δ correlated in time, we

can control the average rate of energy injection, which we label ε. The average

rate of energy injection due to forcing is equal to

ε =
1

2

∑
k

〈
∂ |uk|2
∂t

〉
= Re

∑
k

〈
u∗k
∂uk

∂t

〉
= Re

∑
k

〈u∗kFk〉 =
1

2

∑
k

|Fk|2

(1.8)

via Gaussian integration by parts, where ∗ denotes complex conjugation. We

refer interested readers to Novikov [1964] or Frisch [1995].

1.A.1 Reynolds number and scale independence

Osborn Reynolds introduced a parameter in 1883 based on the observations of

flow through a pipe. The Reynolds number is R
.
= UL/ν, where U is a typical

velocity amplitude and L a characteristic length. When R is small, the fluid

tends to move along clear, separated stream lines. Such flow is called laminar.

When R is increased above a certain value, typically on the order of hundreds,

the laminar flow is abruptly replaced first by boundary-layer phenomenon and,

as R increases further, by fully turbulent flow. The Navier–Stokes equation is

invariant under rescaling of time, space, velocity, and viscosity so long as R is

held constant. That is, if we choose λ and γ to be non-zero real numbers and

apply the mapping

(t, r,u, ν)→
(
γt, λr,

λ

γ
u,
λ2

γ
ν

)
, (1.9)
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then (1.1) is mapped to

∂ λ
γ
u

∂γt
+
λu

γ
· ∇
λ

λu

γ
= −∇

λ

λ2P

γ2
+
λ2ν

γ

∇2

λ2
λu

γ
, (1.10)

which is just (1.1) multiplied by λ/γ2. Note that the Reynolds number R =

UL/ν under this transformation is constant. This is a very interesting feature

of the Navier–Stokes equation: scale-independence. The same equation can be

used to model everything from microscopic flow to galactic dynamics. We are

also cheered by the hope that arguments that we present may be applied at a

variety of scales. Unfortunately, it is extraordinarily computationally difficult

to simulate high-Reynolds number turbulence. In a three-dimensional system,

the number of modes needed to capture the dynamics of the flow grows like

R9/4. Since there are physical systems (like the Earth’s atmosphere) with

R ≈ 1015, researchers have been forced to apply various ad hoc methods to

render the simulation tractable, typically by increasing the effect of viscosity

in one way or another.

1.A.2 Turbulence in lower dimensions

While three-dimensional turbulence is of more interest and importance than

turbulence in lower dimensions, two-dimensional turbulence is still highly non-

trivial. Two-dimensional turbulence can be approximately realised in highly

stratified fluids, e.g. atmospheric layers, or when the fluid is confined to a

surface, e.g. the surface of a soap bubble. Like three-dimensional turbulence,

turbulence in two dimensions conserves energy. However, the helicity is triv-

ially conserved in two dimensions: H =
∫
u·ω dx = 0 because the vorticity

w
.
= ∇×u is perpendicular to the plane of fluid motion. The vorticity plays

6



a more important role. If we take the curl of (1.1), we get

∂ω

∂t
+ u ·∇ω = ω ·∇u + ν∇2ω +∇× F . (1.11)

In two dimensions ω ·∇u = 0 since the gradient of the velocity must lie in

the plane of the velocity, and ω is perpendicular to that plane. Thus, in two

dimensions, we may write

∂ω

∂t
+ u ·∇ω = ν∇2ω +∇× F . (1.12)

If F = 0 and ν = 0, then the enstrophy Z = 1
2

∫
ω2 dx is conserved with zero

or periodic boundary conditions:

dZ

dt
=

∫
ω·∂ω

∂t
dx =

∫
ω · (−u ·∇)ω dx (1.13)

=

∫
(∇ · u)

ω2

2
dx = 0

since ∇ · u = 0. Unlike helicity, enstrophy is positive-semidefinite and plays

an important role in two-dimensional turbulence. In fact, the spatial inte-

gral of any continuously differentiable function of the vorticity is conserved by

the two-dimensional Navier–Stokes equation. Such conserved quantities are

known as Casimir invariants (e.g. see [Morrison 1998]). However, only en-

ergy and enstrophy are conserved by systems with a finite number of Fourier

modes. The additional invariants are not respected by numerical simulations

that necessarily truncate the spectrum.

Our hopes buoyed by reformulating the problem in two dimensions, we are

tempted to move to one-dimensional turbulence. Certainly, one-dimensional
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turbulence is much more amenable to numerical simulation and more suscep-

tible to attack by analytic means. This is, in fact, more true than we had

hoped; incompressible one-dimensional turbulence is too simple. In this case

mass conservation and incompressibility give ∂u(x, t)/∂x = 0, which implies

that the velocity is uniform, providing little insight into higher-dimensional

turbulence. Thus, if we wish to study some type of one-dimensional turbu-

lence, we cannot consider the incompressible Navier–Stokes equation directly

but must instead consider some analogous system.

1.B Shell models of turbulence

While one-dimensional Navier–Stokes turbulence turns out not to be turbulent,

there are a plethora of other systems that we can consider. In addition to being

useful caricatures of Navier–Stokes turbulence, these models are interesting in

their own right, much as the case of two-dimensional Navier–Stokes turbulence.

Also, some models can be tailored to mimic turbulence in either two or three

dimensions. Generally, these models have just one active (complex) mode,

say un, which represents either an average value or a total value for all Fourier

amplitudes in a wavenumber shell n of minor radius kn. In all the models

that are discussed in this section, kn = k0λ
n, which allows one to cover a

very wide range in Fourier space with very few modes. These systems are still

very stiff; typical time scales of the slowest and fastest modes in simulations

found in the literature are separated by a factor 106 or 109 [L’vov et al. 1998],

[Bowman et al. 2006]. The shell models in this section are governed by an
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equation of the form

∂un
∂t

+ νk2nun = ikn
∑
`,m

A`,mu
∗
`u
∗
m + Fn, (1.14)

where ν is the coefficient of linear viscosity, i2 = −1, A`,m is a (possibly

complex) coupling coefficient, and Fn is the external force on mode n. We will

consider three shell models in this thesis; the DN model, the GOY model, and

the Sabra model.

1.B.1 DN model

While intermodal interactions in Navier–Stokes turbulence are non-local in

Fourier space, the cumulative energy transfer is often seen as a cascade

[Biferale 2003], where energy moves between adjacent shells. From this point

of view, the most important interactions are between modes in adjacent shells.

It is then natural to create a shell model that includes only nearest-neighbour

interactions. In fact, if one requires that the nonlinearity be quadratic in the

complex conjugate of the velocity (as in (1.14)) and that energy be conserved

in the absence of forcing and dissipation, one arrives at the model proposed

by Desnyansky and Novikov [Desnyansky & Novikov 1974]. We will refer to

this model as the DN model.

Let un, n = 0, ..., N − 1 be the complex-valued Fourier modes. For con-

venience, we set un = 0 for all modes with n < 0 or n ≥ N . The equation

governing the shell velocities is

∂un
∂t

=
(
Anu

2
n+1 +Bnunun+1 + Cnun−1un+1 +Dnun−1un + Enu

2
n−1
)∗

−νk2nun + Fn, (1.15)
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where ∗ represents complex conjugation, and the parameters An, Bn, Cn, Dn,

and En are coupling coefficients. Such a system has energy E
.
= 1

2

∑
n|un|2.

The rate of change of energy due to the nonlinear terms is

dE

dt
= Re

N−1∑
n=0

un
∂u∗n
∂t

= Re
N−1∑
n=0

(
Anunu

2
n+1 +Bnu

2
nun+1 + Cnun−1unun+1 +Dnun−1u

2
n

+Enu
2
n−1un

)
= Re

{
C0��

�*0
u−1 u0u1 +D0��

�*0
u−1 u20 + E0�

��>
0

u2−1 u0

+
N−2∑
n=1

[
(An +Dn+1)unu

2
n+1 + (Bn + En+1)u

2
nun+1 + Cnun−1unun+1

]
+AN−1uN−1�

��
0

u2N +BN−1u
2
N−1��*

0
uN + CN−1uN−2uN−1��*

0
uN

}
.

(1.16)

In order for the above sum to telescope to zero for all un, it is necessary for

n = 1, . . . , N − 2 that Cn = 0, An = −Dn+1, and Bn = −En+1. That is,

∂un
∂t

+ νk2nun =
(
Anu

2
n+1 +Bnun+1un − An−1unun−1 −Bn−1u

2
n−1
)∗

+ Fn.

(1.17)

To mimic the appearance of the Navier–Stokes equation, which has a deriva-

tive as part of its nonlinearity, we extract an overall factor of ikn from the
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coefficients An and Bn; this allows us to write the DN model in the form

∂un
∂t

+ νk2nun = ikn
(
anu

2
n−1 − λan+1unun+1 + bnun−1un − λbn+1u

2
n+1

)∗
+ Fn.

(1.18)

Let us specialise to the case where an = a ∈ R and bn = b ∈ R for

n = 0, . . . , N − 1. The energy spectrum (or energy density) E(k) is defined

according to

E(kn)
.
=

1

2

|un|2
kn+1 − kn

.

For uniform un, E(k) ∼ k−1 since the wavenumbers kn are spaced geometri-

cally.

The nonlinearity of the DN model has a fixed point at un ∼ k
−1/3
n :

∂un
∂t

= ikn

(
aλ

2
3u2n − λaλ−

1
3u2n + bλ

1
3u2n − λbλ−

2
3u2n

)∗
= 0 (1.19)

since kn+1/kn = λ. Bell & Nelkin [1977] concluded for the case where a and b

are of opposite signs that this fixed point is linearly stable. It is associated

with an energy spectrum E(k) ∼ k−5/3 that is reminiscent of the Kolmogorov

spectrum for three-dimensional turbulence [Kolmogorov 1941a], as detailed in

Chapter 2. Also, the DN model can be made to conserve helicity (or enstrophy)

only under the trivial conditions a = b = 0 or λ = 1. For this and similar

reasons, it is generally thought that the DN model is too simple to model

three-dimensional turbulence effectively. It has been largely superseded by

the GOY model.

11



1.B.2 GOY model

The GOY model is named after Gledzer, Ohkitana, and Yamada. A real

version was proposed by Gledzer [1973], and the complex version was pro-

posed by Yamada & Ohkitani [1987]. The GOY model was designed as a

model of three-dimensional turbulence that, while it acts as an analog of the

Navier–Stokes equation, is not intended as a result that one can derive from

the Navier–Stokes equation, and Yamada and Ohkitani state that “no spe-

cial attention will be paid to the justification of our model equation.” Unlike

the DN model, the GOY model is not a necessary result of a set of require-

ments, and there is at least one competing model. GOY turbulence resembles

three- (or two-) dimensional Navier–Stokes turbulence in at least four respects

[Kadanoff et al. 1995]:

1. In the absence of dissipation and forcing, energy and helicity (or enstro-

phy) are conserved.

2. The nonlinear source term preserves phase volume (cf. Chapter 3).

3. The system can reach a statistically steady state in which it behaves

chaotically.

4. The multi-fractal behaviour bears striking resemblance to experimen-

tal observations of three-dimensional turbulence. In addition to these

points, the main benefit of studying the GOY model is that results

(such as Kolmogorov’s four-fifth’s law [Frisch 1995]) for the Navier–

Stokes equation should apply equally well to shell models, which are

more amenable to further analysis.
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Like the DN model, the GOY model conserves energy, and has a source

term that is quadratic in the complex conjugate of the velocity field. While

the DN model has nearest-neighbour interactions, the GOY model has next-

nearest neighbour interactions. The governing equation of the GOY model

is

∂un
∂t

= ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
− νk2nun + Fn,

(1.20)

where α, β, and γ are real coupling coefficients. As in the DN model, the

wavenumbers kn = k0λ
n scale geometrically, and the complex velocities un are

said to be “associated with” [Yamada & Ohkitani 1987] the wavenumber kn.

Like the DN model, the GOY model has a fixed point at un ∼ k
−1/3
n , but this

fixed point is not stable [Biferale et al. 1995]. For this reason, it is thought that

the GOY model may imitate the intermittent behaviour of full Navier–Stokes

turbulence better than the DN model [Benzi et al. 2004].

The GOY model exhibits different behaviours depending on the choice of

the parameters α, β, γ, and λ. Normally, one chooses such coefficients based on

the physics governing the problem in question. Since the GOY model is a toy

model of turbulence, we look to the Navier–Stokes equation to provide some

insight. Firstly, we require that the energy be conserved. As in the DN model,

a telescoping sum can be used to establish that α+β+γ = 0⇒ dE/dt = 0. It

is conventional to rescale time so that α = 1, which leaves two free parameters,

say β and λ. With different combinations of β and λ, different quantities are

13



conserved. The second conserved quantity is

1

2

∑
n

kpn|un|2, (1.21)

where p
.
= − logλ (−β − 1). Typically, we choose λ, the spacing between

wavenumbers, to be 2. In this standard case, the choice β = −1/2 gives

the second conserved quantity the form of helicity in the three-dimensional

Navier–Stokes equation:

H =
1

2

∑
n

(−1)nkn|un|2. (1.22)

If β = −5/4, then the GOY model instead conserves vorticity, as does the

two-dimensional Navier–Stokes equation:

Z =
1

2

∑
n

k2n|un|2. (1.23)

Clearly, the Fourier-space structure of the GOY model and Navier–Stokes

turbulence are very different. This may lead to some anomalies in the energy

spectrum for the GOY model that are inconsistent with the behaviour of the

Navier–Stokes equation. In particular, modes are uncorrelated in Navier–

Stokes turbulence:

〈
uku

∗
p

〉
= |uk|2 δk,p. (1.24)
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This is not the case in the GOY model, which has a period-three oscillation

in un [Biferale et al. 1995], as evident from the fact that

un = k
− 1

3
n


A0 for n = 0 (mod 3),

A1 for n = 1 (mod 3),

A2 for n = 2 (mod 3)

(1.25)

is a fixed point of the nonlinearity for arbitrary complex amplitudes A0, A1,

and A2. This means that some modes are correlated:

〈
unu

∗
n+3p

〉
6= 0 for p ∈ Z. (1.26)

However, both
〈
unu

∗
n+3p+1

〉
and

〈
unu

∗
n+3p+2

〉
lack correlation, in agreement

with Navier–Stokes behaviour. These period-three oscillations insert noise

into the spectrum E(k). Since one of the main reasons to study shell models

is to eliminate uncertainty in the power-law relation between E(k) and k,

this is a drawback to the GOY model. Kadanoff, Lohse, Wang, and Benzi

[Kadanoff et al. 1995] proposed that the second-order scaling exponent may

be better calculated using the flux, which they defined as

Σn =

〈∣∣∣∣Im(unun+1un+2 +
1 + β

λ
un−1unun+1

)∣∣∣∣2/3
〉
. (1.27)

As may be seen in the logarithmic spectral slopes plotted in Fig. 1.1, this

does indeed produce a smoother spectrum. Since scaling exponents are calcu-

lated when the flow has reached a statistical steady state, the flux is useful in

isolating statistical error from the period-three oscillation.
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Figure 1.1: Comparison of the logarithmic slopes of the energy and flux spectra
for the GOY model.

1.B.3 Sabra model

L’vov et al. [1998] introduced the Sabra shell model in an attempt to solve

the problem of anomalous correlation in the GOY model. The Sabra model

is based on the GOY model, but does not take the complex conjugate of all

the modes in the nonlinear source term. The governing equation for the Sabra

model is

∂un
∂t

= ikn

(
αun+2u

∗
n+1 + +

β

λ
un+1u

∗
n−1 −

γ

λ2
un−1un−2

)
− νk2nun + Fn.

(1.28)

Most of the properties of the GOY and Sabra models are identical, except

that
〈
unu

∗
n+3p

〉
= 0 for the Sabra model. Because of this, the period-three

oscillations in E(k) are absent for the Sabra model, which eliminates the need

to base scaling exponents on the flux introduced by Kadanoff et al. The Sabra

model has a fixed point at un = u0k
−1/3
n . However, u0 must be either entirely
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real or entirely imaginary to be a fixed point of the Sabra model, whereas

the GOY model places no restriction on the phase of the fixed point. Unlike

the Navier–Stokes equation, the nonlinearity in the Sabra model depends on

both the velocity and the complex conjugate of the velocity itself, whereas the

Navier–Stokes equation, the GOY model, and the DN model are quadratic

only in the complex conjugate of the velocity.
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Chapter 2

Kolmogorov Theory

In which we reproduce some classic results and extend them to shell models.

The viscous term in the Navier–Stokes equation is predominantly active at

the small scales, where it acts to remove energy, while energy injection (via

forcing) is typically restricted to large scales. In statistically steady three-

dimensional turbulence, the energy is transfered by the nonlinear (advective)

term from the large scales to the small scales. The region of Fourier space in

which this energy transfer takes place, in the absence of forcing and dissipation,

is called the inertial range.

Given the energy injection rate ε, the scale ` at which it is injected and

the coefficient of viscosity, ν, we would like to predict the scaling of the energy

spectrum

E(k) =
1

2

1

(2π)3

∫ 2π

0

∫ π

0

|uk|2 k2 sin θ dθ dφ (2.1)

with wavenumber k in the inertial range. Note that E(k) is normalised so
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that the one-dimensional integral
∫
E(k) dk evaluates to the total energy E.

As a first step, it is useful to look at this problem with dimensional analysis.

Kolmogorov argued that only the typical velocity magnitude u, the energy

injection rate ε, and the Fourier wavenumber k are relevant. Dimensional

consistency gives ε ∼ u3k, so u ∼ (ε/k)1/3 and u2 ∼ (ε/k)2/3. But u2 =

2
∫
E(k) dk has the same dimensions as kE(k), so

E(k) = Ck−1
( ε
k

) 2
3

= Cε
2
3k−

5
3 (2.2)

for some dimensionless quantity C. This result was established by

Kolmogorov [1941a], who conjectured that C is a universal constant for all

fully developed turbulent flows. While this is the simplest argument for Kol-

mogorov’s five-thirds law, the result can be attained in a more systematic

fashion from a few hypotheses.

Kolmogorov’s 1941 papers analysed the various statistical moments of

Navier–Stokes turbulence. He used three universality assumptions, which we

label K1, K2, and K3 [Kolmogorov 1941a], [Kolmogorov 1941b], [Frisch 1995].

K1: The statistical moments 〈f(u)〉, where 〈 〉 denotes an ensemble average,

are determined by the energy injection rate ε and viscosity ν.

K2: If r and ` are smaller than the integral scale, the velocity increments

δu(r, `)
.
= u(r + `)− u(r) (2.3)

scale like

δu(r, λ`) = λhδu(r, `) ∀λ > 0. (2.4)
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K3: On scales much larger than those where friction removes energy from the

system, the statistical moments are determined by the energy injection

rate ε alone.

Kolmogorov took the case of infinite Reynolds number limit by letting

time t→∞, then ν → 0, and finally `→ 0, thus dealing with fully developed

turbulence, in the limit of zero viscosity, and at the small scales. He considered

the moments

Sp(`)
.
=
〈∣∣δu‖(`)∣∣p〉 (2.5)

of the parallel velocity increment

δu‖(r, `)
.
= (u(r + `)− u(r)) · `

`
. (2.6)

Note that for homogeneous and isotropic fluids the moments Sp do not depend

on r or the direction of `. For the special case p = 3, Kolmogorov derived an

exact relation, known as the four-fifths law:

S3(`) = −4

5
ε`, (2.7)

for ` in the inertial range. He conjectured that a similar dimensionally consis-

tent result holds for all p:

Sp(`) = Cpε
p
3 `

p
3 , (2.8)
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where Cp is a constant. With regards to the perpendicular velocity increment,

δu⊥(r, `)
.
= (u(r + `)− u(r)) · n̂, (2.9)

where n̂ is a unit vector perpendicular to ` (the direction does not matter

otherwise due to isotropy), Kolmogorov [1941a] showed that

〈
|δu⊥(r, `)|2

〉
= 2S2(`), (2.10)

which, given (2.8) together with the Wiener-Khinchin formula

E(k) =
1

π

∫ ∞
0

k` 〈u(r)·u(r + `)〉 sin k` d`, (2.11)

implies that

E(k) ∼ k−
5
3 , (2.12)

which has been shown experimentally to be at least approximately true. Cor-

rections to this law, however, are a subject of much ongoing research

[Nelkin 2001], [Boffetta & Romano 2002].

Landau objected to Kolmogorov’s arguments, saying that the constant Cp

in (2.8) need not be universal. Kolmogorov answered Landau’s objections

in his third paper of 1941. Since then, Kolmogorov’s arguments have been

reformulated based on more convincing assumptions. We shall provide below

a brief summary of the derivation of (2.7) given by Frisch [1995].

Starting with a description of the inertial range, Frisch defines the energy

transfer due to the nonlinearity, i.e. due to advection and pressure, which he
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denotes

ε(`)
.
= −1

2
∂t 〈u(r) · u(r + `)〉 |NL. (2.13)

Since the nonlinear terms conserve energy, we see that ε(0) = 0. One then

makes use of the Kármán–Howarth–Monin relation [de Kármán & Howarth 1937],

[Monin & Yaglom 1965]:

ε(`) = −1

4
∇` ·

〈
|δu(`)|2δu(`)

〉
(2.14)

= −∂t
1

2
〈u(r) · u(r + `)〉+

〈
u(r) · f(r + `) + f(r + `)

2

〉
+ ν∇2

` 〈u(r) · u(r + `)〉 .

By taking ` → 0 (but holding ν constant) and assuming that the velocity

field is smooth, one concludes from the fact that ε(0) = 0 that the term

∇` · 〈|δu(`)|2δu(`)〉 goes to zero. That is, at very small scales, we have

1

2
∂t
〈
u2
〉

= 〈f(r) · u(r)〉+ ν
〈
u(r) ·∇2u(r)

〉
. (2.15)

We now calculate the energy flux. Define ΠK to be the flux of from all modes

with |k|≤ K to all modes with |k|> K. Then we can relate Πk to ε(`) by

ΠK = − 1

8π2

∫
sin(K`)

`
∇` ·

(
`

`2
∇` ·

〈
|δu(`)|2δu(`)

〉)
d`

=
1

2π2

∫
sin(K`)

`
∇` ·

(
ε(`)

`

`2

)
d`. (2.16)

Finally, for isotropic homogeneous turbulence, the energy flux can be written
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as

ΠK = − 1

6π

∫ ∞
0

sin(K`)

`
(1 + `∂`)(3 + `∂`)(5 + `∂`)

S3(`)

`
d`, (2.17)

which implies that

ε(`) = − 1

12
(3 + `∂`)(5 + `∂`)

S3(`)

`
. (2.18)

While this formulation of the four-fifths law has fewer, more plausible assump-

tions than those originally made by Kolmogorov, it is not assumption-free. The

assumptions that we must make are:

H1: The driving force f(r, t) acts at the large scales. That is, we assume

it to be equal to its low-pass filter if we pass all frequencies below the

frequency corresponding to the integral scale.

H2: We assume that all solutions to the Navier-Stokes equation eventually

reaches a statistically steady state with a finite mean energy.

H3: In the limit of ν → ∞, we assume that the energy dissipation rate per

unit mass attains a non-zero limit. That is,

ε(`)→ ε
.
= lim

K→∞
ΠK > 0 as ν → 0. (2.19)

Hypothesis H3 implies that the energy transfer rate must also be constant

as ν → 0. In fact, the energy transfer must be uniform in the inertial range.

Combining this fact with (2.17) yields

ε = − 1

6π
lim
K→∞

∫ ∞
0

sin(K`)

`
(1 + `∂`)(3 + `∂`)(5 + `∂`)

S3(`)

`
d` (2.20)
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For large K, the integrand only contributes for small `. If we take the limit as

`→ 0 and assume some smoothness of the moment S3, one obtains the desired

result [Frisch 1995]:

S3(`) = −4

5
ε`. (2.21)

The four-fifths law explicitly establishes C3 = −4/5, so there is no doubt

as to its universality. For all other moments, we do not have such a result. In

particular, Cp may depend on the integral scale and `, which we cannot rule

out on dimensional grounds alone.

2.A Application to two-dimensional turbulence

The study of two-dimensional turbulence can provide insights into structure-

function scaling exponents at Reynolds numbers that we would be unable

to attain for three-dimensional turbulence. Unfortunately, the comparison

is not exact, as forced-dissipative two-dimensional turbulence has a different

behaviour than its three-dimensional cousin.

The two-dimensional energy cascade is complicated by enstrophy conserva-

tion. Unlike helicity, enstrophy is positive-semidefinite, and thus plays a much

more important role in two-dimensional turbulence than helicity does in three

dimensions. Because of this, we must not only consider the energy injection

rate ε, but also the enstrophy injection rate η. A white-noise Gaussian force

has a Novikov theorem [Novikov 1964] for enstrophy injection as well, which

allows one to control the enstrophy injection rate in the same fashion as one

controls the energy injection rate.
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The first results on the two-dimensional turbulent cascade were made by

Kraichnan, Leith, and Batchelor, who considered truncated two-dimensional

Navier–Stokes systems [[Kraichnan 1967], [Batchelor 1969], [Kraichnan 1971],

[Kraichnan 1975]]. In particular, they considered interactions that are local

in Fourier space, so that modes would only interact with other modes if they

were in adjacent narrow bins in wavenumber-space. The picture of the energy

and enstrophy cascades, first proposed by Fjørtoft [1953], is shown in Fig. 2.1.

Energy and enstrophy are injected into the middle bin. Due to the inter-

k1 k2 k3
E1

Z1

E3

Z3

E2 Z2

Energy and Enstrophy Injection

Figure 2.1: Fjortoft diagram.

actions between bins (which are assumed to be between neighbouring bins)

energy and enstrophy move from the injection point to neighbouring bins. An

amount of energy E1 moves from the middle bin to lower wavenumbers. As

energy moves, so does enstrophy, which we label Z1. Since the movement is to

lower wavenumbers, and vorticity varies as k2, enstrophy conservation can only

occur if some energy, which we label E2, is transferred to higher wavenumbers.

With enstrophy transfer comes energy transfer. If k1, k2, and k3 are typical

wavenumber for the boxes, then the equations describing the balance of energy
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and enstrophy transfers are

E2 = E1 + E3, (2.22)

Z2 = Z1 + Z3, (2.23)

that is,

E2 = E1 + E3, (2.24)

k22E2 = k21E1 + k23E3. (2.25)

This implies that

E1 = E2
k23 − k22
k23 − k21

. (2.26)

If we choose k1 = k, k2 = 2k, and k3 = 4k, then we should expect

E1 =
4

5
E2, (2.27)

E3 =
1

5
E2.

Thus, we expect to see a bi-directional cascade with energy moving primarily

to lower wavenumbers and enstrophy moving to higher wavenumbers. In an

unbounded domain, the modes around k = 0 act as an infinite reservoir that

the energy cascade cannot saturate. In this case, one expects a k−5/3 inverse

cascade (as illustrated in Fig. 2.2) and a k−3 direct cascade.

However, Tran & Shepherd [2002] and Tran & Bowman [2003] showed that,

for fluids in a bounded domain, the cascade proposed by Kraichnan is not re-

alisable. In particular, the absence of an infinite reservoir near k = 0 means
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that the spectrum will eventually saturate this region. They considered an

idealised dual cascade of the form

E(k) =


ak−α for k ≤ s,

bk−β for k > s,

(2.28)

where α, β, a, and b are constants and s is the forcing wavenumber. The two

cascades are intricately linked via the balance equation

∑
k<s

(
s2 − k2

)
νk2E(k) =

∑
k>s

(
k2 − s2

)
νk2E(k). (2.29)

Tran and Bowman used this balance equation to show, given plausible assump-

tions, that

α + β ≤ 8, (2.30)

where the inequality approaches an equality at high Reynolds number as

the wavenumber domain approaches [0,∞). In this picture, the large-scale

spectrum behaves like E(k) ∼ k−3, which implies that the small-scale spec-

trum behaves like E(k) ∼ k−5. An example of this is illustrated in Fig. 2.3

[Tran & Bowman 2003].

While Kraichnan’s prediction may still hold for unbounded two-dimensional

turbulence, numerical simulations are subject to the limits of computer mem-

ory and speed, and unbounded domains will remain out of the reach of numer-

ical experiment. It has been suggested that systems be damped on the large

scales, with either an inverse viscous force νµk
2µ with µ < 0, or a constant

viscous force restricted to low wavenumbers. Such large-scale damping has
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Figure 2.2: The 2D Navier–Stokes energy spectrum at intermediate times.

been suggested in the study of some planetary flows.

2.B Application to shell models

An energy spectrum with E(k) ∼ k−5/3 is a fixed point of the DN, GOY,

and Sabra shell models. While the cascade spectra shown for Navier–Stokes

turbulence are not fixed points of the Navier–Stokes equation, they are fixed

points of the energy spectrum E(k) in a statistical sense. Shell models, ow-

ing to their relative computational ease, are of course excellent testbeds for

determining spectra. For example, the two-dimensional Navier–Stokes equa-

tion in a bounded domain appears asymptotically to approach a k−3 slope at

the large scales, but this requires extraordinarily long run times. We would

be able to approach such a spectrum more closely if we could recreate this

behaviour with shell models. Despite this, certain shell models reproduce

the intermittent corrections of three-dimensional turbulence surprisingly well
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Figure 2.3: The 2D Navier–Stokes energy spectrum at late times.

[Bowman et al. 2006]. In particular, for β = −1/2, the three-dimensional

GOY model is able to predict the scaling exponents ζp for the structure func-

tions Sp(kn) = 〈|un|p〉 ∼ k
−ζp
n despite the dissimilarity of the underlying

equations. A comparison of the predicted structure-function exponents with

those measured experimentally by [Herweijer & van de Water 1995] is shown

in Fig. 2.4.

Unfortunately, since a Kolmogorov k−5/3 energy spectrum is built into the

shell models, they are not able to reproduce other spectra effectively. In par-

ticular, the two-dimensional version of the GOY model is not able to reproduce

the dual cascade of two-dimensional forced-dissipative turbulence.

2.C Final comments on Kolmogorov’s results.

One very practical result of Kolmogorov’s work is his prediction of the dissipa-

tion scale kd. This is the point where the viscous damping comes to dominate
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Figure 2.4: A comparison of structure-function exponents ζp, p = 2, . . . , 6
(bottom to top) for the GOY model with experimental results.

the nonlinear transfer in the fluid. The energies of modes with wavenumbers

higher than kd drop precipitously, and do not as such contribute to the gen-

eral cascade. This can be used to estimate the number of modes needed for a

particular simulation. Kolmogorov’s prediction was

kd ∼
(
ν3

ε

)− 1
4

. (2.31)

Using the inertial-range scaling, we can write the Reynolds number as

R =
LU

ν
∼ L(εL)

1
3

ε
1
3k
− 4

3
d

= (kdL)
4
3 . (2.32)

If we seek to resolve a range from the large scale L to the dissipation scale 2π/kd,

we need roughly (kdL)3 = R9/4 modes for three-dimensional turbulence. The

characteristic time scale τ , which is the time needed for an eddy of size k−1d to

be advected its width by the most active modes, is restricted to τ ≤ R−3/2L/U ,

which is a further restriction beyond the R9/4 scaling for the number of modes

required [Orszag 1970].
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Figure 2.5: Comparison of DN, GOY, and Sabra turbulence.

While Kolmogorov’s four-fifths law has been confirmed to great precision

in both numerical and physical experiments [Melander & Fabijonas 2006], the

scaling of structure exponents Sp for p not equal to 3 are only approximately

correct. The discrepancy is attributed to intermittency: the tendency of high-

wavenumber excitations to be only partially space-filling. There are a number

of theories that attempt to explain this, chief among which is the multi-fractal

model [Frisch 1995].

Bowman et al. [2006] argued that the dissipation wavenumber should scale

as

kd ∼ ν1/(
4
3
−δ), (2.33)

where δ = ζ2− 2/3 is the second-order intermittency correction. For example,

they found kd ∼ ν−0.7855±0.0005 in a study of GOY-model turbulence. The pre-

dictions of the multi-fractal model also differ from classic Kolmogorov theory

with regards to the structure functions. In particular, Kolmogorov predicted
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Figure 2.6: Logarithmic slopes for DN, GOY, Sabra turbulence.

that ζp is proportional to p, whereas observations and the multi-fractal model

indicate that ζp is concave down.

One drawback of the DN model is that it lacks intermittency entirely

[Bell & Nelkin 1977], at least for (uniform) coefficients a and b of opposite

sign. The GOY model does exhibit intermittency for some values of the pa-

rameters α, β, γ, and λ. In particular, the standard choice λ = 2, α = 1,

β = −1/2, and γ = −1/2 preserves helicity and allows intermittent be-

haviour. Kadanoff et al. [1995] suggested that helicity preservation leads to

unique intermittency corrections, but recently this was shown not to be the

case [Bowman et al. 2006]. In addition to corrections owing to intermittency,

Kolmogorov’s scaling has been modified to account for wavenumber “boundary

conditions” at the forcing scale [Bowman 1996].

While the structure functions and energy spectra are important features

of turbulence theory, they are not exhaustive tests. As a thought experiment,

one could take the velocity field and randomise the phase at a point when

the turbulence has reached a statistical steady state. While the energy spec-
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trum would remain unchanged, any coherent structure would be eliminated

[Farge 2006]. Since coherent structures are thought to play important roles in

turbulence [McWilliams 1984], the correct prediction of the energy spectrum

is a necessary but not sufficient test for the validity of a theory of turbulence.
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Chapter 3

Equipartition

In which we consider inviscid turbulence in the context of statistical mechan-

ics.

A system governed by the Navier–Stokes equation may be completely char-

acterised by the vorticity field, {ωk,k ∈ D}, for some set D, called the phase

space, which depends on the physical domain of the turbulence. The evolution

of a system is a one-dimensional curve in this space. For physical systems,

the phase space is an infinite-dimensional vector space. In computer simula-

tions, we are only able to simulate finite-dimensional systems, which implies

that the domain D must be bounded. We reproduce results in this chapter

for the finite-dimensional case, most of which can be extended to the infinite-

dimensional case.

We start with the vorticity formulation of the inviscid and unforced two-

dimensional Navier–Stokes equation in Fourier space [Bowman et al. 1999],

ω̇k =
∑
p,q

εkpq
p2

ω∗pω
∗
q. (3.1)
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Here, εkpq
.
= (ẑ · p× q) δ(k+p+q) and k, p, and q are wavevectors that come

from a finite subset of Z2. We can write (3.1) as a noncanonical Hamiltonian

system:

ω̇k =
∑
q

Jkq
∂H

∂ωq

, (3.2)

in which H = 1
2

∑
k |ωk|2/k2 is the Hamiltonian and Jkq =

∑
p εkpqω

∗
p. Note

that Jkq = −Jqk owing to the antisymmetry of εkpq under interchange of any

two indices. We take the derivative of (3.2) with respect to ωk and obtain

∑
k

∂ω̇k

∂ωk

=
∑
k,q

∂Jkq
∂ωk

+ Jkq
∂2H

∂ωk∂ωq

(3.3)

=
∑
k,q

εk(−k)q +
∑
k,q

Jkq
∂2H

∂ωk∂ωq

= 0,

where the first sum vanishes because εk(−k)q = εqk(−k) = 0 and the second

term vanishes since it is the sum of the product of an antisymmetric and a

symmetric factor. Equation (3.3) is known as a Liouville theorem, and implies

that the system conserves volume in phase space.

The entropy of the system is

S(t)
.
= −

∑
i

Ni logNi (3.4)

where Ni is the number of modes in state i. This is constrained by the in-

variants of the system, energy and enstrophy. Let εi and ξi be the energy

and enstrophy of each mode in state i, respectively. If a system is ergodic,

the Gibbs H theorem states that the equilibrium state of the system is the

unique state that maximises the entropy of the system. Indeed, we expect the
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entropy of a system to increase, not necessarily monotonically, until it reaches

an equilibrium state where the entropy is constant and maximal. However,

this extremisation must be subject to the constraints of energy and enstrophy

conservation. In general, we may have many conserved quantities, which we

label Ej
.
= 1

2

∑
k σ

j
k|ωk|2, for certain functions σjk, where j = 1, . . . , nc. Each

of these provides a constraint Ej =
∑

i εi,jNi , where εi,j is the amount of

quantity Ej for each mode in state i. In addition, the total number of modes∑
iNi is constrained to be N . The equilibrium state will therefore minimise

∑
i

Ni logNi − α0

(
N −

∑
i

Ni

)
−
∑
j

αj

(
Ej −

∑
i

εi,jNi

)
, (3.5)

where the αj are Lagrange multipliers. On setting the derivative of (3.5) with

respect to N` to zero and solving for N`, one obtains the Gibbs distribution

Ni = exp

(
−1− α0 −

∑
j

αjεi,j

)
. (3.6)

If there are N independent complex amplitudes ωk, there will be 2N de-

grees of freedom, which we arbitrarily label by κ = 1, 2, . . . 2N . Let Ω =

(ω1, . . . , ω2N) be a point in phase space. On denoting the state of mode κ at Ω

by iκ, one can compute the probability that the system is in state Ω:

P (Ω) ∝
∏
κ

Niκ ∝ exp

(
−
∑
κ,j

αjεiκ,j

)
q = exp

(
−
∑
j

αjEj

)
, (3.7)

where αi is determined by the initial conditions of the system. The expected
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value for the energy in mode k is therefore

〈
ωr
k
2
〉

=
〈
ωi
k
2
〉

=

∫
ωr
k
2P (Ω) dω1 . . . dω2N∫
P (Ω) dω1 . . . dω2N

, (3.8)

where ωk = ωr
k + iωi

k In two dimensions, the conserved quantities are en-

ergy, enstrophy, and other (nonquadratic) Casimir invariants associated with

infinitesimal parcel rearrangement. Since we choose to work in a finite spec-

tral domain we lose conservation of the Casimir invariants. Only the two

quadratic invariants (energy and enstrophy) survive this spectral truncation,

so {σik : i = 1, . . . , nc} = {1/k2, 1}. Since
∫∞
−∞ e

−ax dx =
√
π/a, one finds, on

accounting for the Hermiticity condition ωk = ω∗−k, that

〈
|ωk|2

〉
=
〈
ωr
k
2
〉

+
〈
ωi
k
2
〉

=
1

α/k2 + β
(3.9)

for some constants α and β that are determined by the total energy and enstro-

phy present in the initial conditions. On noting that E(k)
.
= 2πk〈1

2
|ωk|2〉/k2,

we obtain the equipartition spectrum,

E(k) = π
k

α + βk2
. (3.10)

Three-dimensional turbulence follows a similar argument, except that helic-

ity is conserved, while enstrophy is not. Because helicity is not positive-

semidefinite, it is not thought to play a role in the equipartition spectrum.

Thus, {σik : i ∈ I} = {1}, and the three-dimensional equipartition spectrum is

E(k) = 4πk2
1

k2

〈
1

2
|ω2

k|
〉

=
2πk2

α
. (3.11)
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Since the equations governing the DN, GOY, and Sabra models of tur-

bulence do not explicitly depend on un but rather on the complex conjugate

of un, a Liouville’s theorem follows immediately. For parameters mimicking 3D

turbulence, the only positive-semidefinite invariant of these models is energy,

so we then expect an equipartition of the modal energies 〈|un|2〉. Thus

E(kn) =
1

2

〈|un|2〉
kn+1 − kn

∼ k−1n . (3.12)

When both energy and enstrophy are conserved, as can be the case for the

GOY and Sabra models under suitable coefficient choices,

E(kn) ∼ 1

αkn + βk3n
. (3.13)

This is different than the spectrum for inviscid unforced two-dimensional tur-

bulence by a factor of k2 due to geometric factors.

As a final note, we emphasise that these results were attained for a system

with a finite number of modes; they are not applicable to systems with infinite

degrees of freedom.
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Figure 3.1: Equipartition energy spectrum of two-dimensional Navier–Stokes
turbulence.
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Figure 3.2: Equipartition energy spectrum of “3D” GOY turbulence.
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Figure 3.3: Equipartition energy spectrum of DN turbulence.
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Chapter 4

Spectral Reduction

In which we discuss a method for simulating turbulence.

Full two- or three-dimensional turbulent simulations at high Reynolds num-

bers will remain out of our reach for the foreseeable future. While the situa-

tion at present may be grim, there is hope based “on the observation that the

problem is one of approximation” [Orszag 1970]. The majority of the modes

in turbulent simulations are concentrated at high wavenumbers around the

dissipation range, but these modes contain a minority of the energy in the

system. Furthermore, we are often not interested in the exact behaviour at

these small scales, for which we typically do not even have observational data

with which to initialise our simulations.

The method of spectral reduction [Bowman et al. 1999] takes into account

the disparity between the number of degrees of freedom and the physical im-

portance associated with each scale. In this method, the equations of tur-

bulence are solved on a coarse mesh in Fourier space, possibly of variable

resolution. Spectral reduction was originally formulated for two-dimensional

Navier–Stokes turbulence.
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4.A Spectral reduction of Navier–Stokes tur-

bulence

The application of spectral reduction to two-dimensional turbulence is made

convenient by the fact that the velocity field can be calculated using just one

scalar variable, the vorticity. If we take the vorticity formulation of (1.1) in

two dimensions (1.11), and take the Fourier transform, we get

∂

∂t
ωk + νkωk =

∫ ∫
εkpq
p2

ω∗pω
∗
q dp dq + Fk, (4.1)

where

εkpq
.
= (ẑ · p× q) δ(k + p + q) (4.2)

is antisymmetric under interchange of any two indices. In a square-periodic

domain, the integrals in (4.1) may be replaced by summation. In this case,

the modes k are restricted to Z2. The mode ω0 is affected only by F0, and as

such is not usually calculated as part of the simulation. Also, the Hermiticity

condition, ω−k = ω∗k, which guarantees that the velocity field be real-valued,

eliminates the need to explicitly calculate half of the modes. Let d be the set

of wavevectors associated with the active modes. We take d to be bounded,

as it must be if we wish to solve the system on a computer.

The goal of spectral reduction is to approximate (4.1) on a grid D that

has fewer points than d. To each cell of D, we assign a characteristic wavevec-

tor K ∈ R2. Each mesh point K is associated with a number of fine-mesh

wavevectors from d. We label this set VK ={kK1 , . . . ,kK`(K)
} ⊂ d. These
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modes are chosen so that the coarse-mesh wavevector K is representative of

the wavevectors VK , i.e. the wavevectors in VK are close to K.

To each wavevector K we associate the variable

ΩK
.
=

1

|VK |
∑
k∈VK

ωk, (4.3)

where |VK | is the size of the set VK . We can use this prescription to calculate

the evolution of ΩK , which is

∂ΩK

∂t
+ 〈νkωk〉K =

∑
P ,Q∈D

|VP ||VQ|
〈
εkpq
q2

ω∗pω
∗
q

〉
KPQ

+ 〈Fk〉K , (4.4)

where the notation 〈f〉K1,...,K`
denotes the mean value of f over the bins

K1, . . . ,K`. We close the equation by approximating ωk with ΩK :

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑
P ,Q∈D

|VP ||VQ|
〈
εkpq
q2

〉
KPQ

Ω∗pΩ∗q + 〈Fk〉K . (4.5)

While (4.4) is an exact prescription for ∂ΩK/∂t, the interaction coefficient

〈
εkpq
q2

〉
KPQ

(4.6)

in (4.5) is not antisymmetric under the transformation K ↔ P , which breaks

enstrophy conservation. In order to restore this symmetry, one uses the mod-

ified interaction coefficient

〈εkpq〉KPQ

Q2
. (4.7)

43



The resulting equation,

∂ΩK

∂t
+ 〈νk〉K Ωk =

∑
P ,Q∈D

|VP ||VQ|
〈εkpq〉KPQ

Q2
Ω∗P Ω∗Q + 〈Fk〉K , (4.8)

conserves both energy and enstrophy in the absence of viscosity and forcing.

One particularly advantageous coarse-mesh choice is the set of radially

spaced bins illustrated in Fig. 4.1, which reach high wavenumbers and have

high resolution near the origin while using very few modes. In one simulation,

Bowman et al. were able to mimic the energy spectrum of forced-dissipative

turbulence on a fine mesh of 683×683 dealiased modes using only a few dozen

radially spaced mesh points [Bowman et al. 1996].

K

P

Q

Figure 4.1: Polar wavenumber bin geometry.

However, this method of spectral reduction requires modification to repro-

duce equipartition spectra. If the bins are not uniformly spaced (as in radial
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spacing, for example), time needs to be rescaled in (4.8) by the bin area. That

is,

|Vmin|
|VK |

∂ΩK

∂t
+ 〈νk〉K Ωk =

∑
P ,Q

|VP ||VQ|
〈εkpq〉KPQ

Q2
Ω∗P Ω∗Q + 〈Fk〉K , (4.9)

where |Vmin| is the minimum bin size. Under this transformation, (4.9) is

able to reproduce the two-dimensional equipartition spectrum discussed in

Chapter 3. Unfortunately, the resulting system is very stiff if the modes are

radially spaced, where |VK |∼ K2, which forces the time step to be very small.

The efficient numerical approximation of this equation is an open problem

[Bowman et al. 2001]. Furthermore, energy is not conserved when time is

rescaled.

4.B Spectral reduction of shell model turbu-

lence

We return to shell models of turbulence for insight. Shell models are com-

puted on very simple meshes and have fewer inter-modal interactions than the

Navier–Stokes equation. Both these facts greatly simplify spectral reduction.

We begin with the spectral reduction of the GOY model.

The evolution equation for the GOY model is given in (1.20), where the

wavenumbers are kn for n ∈ N. We define the first-order spectrally reduced

(coarse-grid) mode to be

u(1)n =
u2n + σ

(0)∗
n u2n+1

1 +
∣∣∣σ(0)
n

∣∣∣2 , (4.10)
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where σ
(0)
n = u2n+1/u2n is the ratio between adjacent modes. This is a modi-

fication of the procedure in [Bowman et al. 2001], where σ
(0)
n was taken to be

unity. If we knew σ
(0)
n exactly, we would of course have exact formulae for

u2n and u2n+1 in terms of u
(1)
n , namely u2n = u

(1)
n , and u2n+1 = σ

(0)
n u

(1)
n . If

we approximate σ
(0)
n by the constants

(
〈|u(1)n+1|2〉/〈|u(1)n |2〉

)1/4
, the evolution

equation for u
(1)
n becomes

du
(1)
n

dt
= −νk22n

1 + σ
(0)∗
n λ2

1 + |σ(0)
n |2

u(1)n +
Fn + σ

(0)∗
n Fn+1

1 + |σ(0)
n |2

(4.11)

+
1

1 + |σ(0)
n |2

ik2n

[
σ
(0)
n−1

γ

λ2
u
(1)2
n−1 + σ(0)

n (α + β)u(1)n u
(1)
n+1

+σ
(0)
n−1σ

(0)
n

(
β

λ
+
γ

λ

)
u
(1)
n−1u

(1)
n + λασ(0)

n σ
(0)
n+1u

(1)2
n+1

]∗
.

The coarse-grained energy E = 1
2

∑
n|u

(1)
n |2(1 + |σ(0)

n |2) is conserved in the

absence of forcing and viscosity if the original model conserved energy and σ
(0)
n

is constant with respect to time. Other quadratic invariants (i.e. helicity or

enstrophy) are lost.

If α + β + γ = 0, i.e. the underlying GOY model conserves energy, (4.11)

is the DN model (1.18) with parameters given by [Eckhardt 2004]

u(1)n =
u2n + σ

(0)∗
n u2n+1

1 + |σ(0)
n |2

, a(1)n =
γ

λ2

(
σ
(0)
n−1

1 + |σ(0)
n |2

)
, b(1)n =

−α
λ

(
σ
(0)
n−1σ

(0)
n

1 + |σ(0)
n |2

)
,

λ(1) = λ2, ν(1)n = ν
1 + |σ(0)

n |2λ2

1 + |σ(0)
n |2

, and F (1)
n =

Fn + σ
(0)∗
n Fn+1

1 + |σ(0)
n |2

. (4.12)

It is easy to see that spectral reduction of the GOY model should produce the

DN model if we consider Fig. 4.2. Since interactions in the GOY model are

next-nearest-neighbour, a radix-two scheme, such as spectral reduction, pro-

duces binned modes with interactions that are nearest-neighbour between bins.
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The resulting system is energy-conserving, has a nonlinearity that is quadratic

in the complex-conjugate of the velocity field, and has nearest-neighbour in-

teractions. In other words, it is the DN model.

Figure 4.2: Spectral reduction of the GOY model showing emergence of
nearest-neighbour interactions.

If we apply the method of spectral reduction again, setting

u(2)n =
u
(1)
2n + σ

(1)∗
n u

(1)
2n+1

1 + |σ(1)
n |2

, σ(1)
n =

(
〈|u(2)n+1|2〉/〈|u(2)n |2〉

)1/4
, (4.13)

the governing equation becomes

du
(2)
n

dt
=

1

1 + |σ(1)
n |2

(
du

(1)
2n

dt
+ σ(1)∗

n

du
(1)
2n+1

dt

)
(4.14)

= ik2n

(
a(2)n u

(2) 2
n−1 − λ(2)a(2)n+1u

(2)
n u

(2)
n+1

)∗
×
(
b(2)n u

(2)
n−1u

(2)
n − λ(2)b(2)n+1u

(2) 2
n+1

)∗
− ν(2)n k22nu

(2)
n + F (2)

n ,

which is the DN model with coefficients given by (4.15) with ` = 1. Subsequent

applications of the method of spectral reduction leave the form of the equation
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similarly unchanged, remapping the coefficients as per (4.15) [Eckhardt 2004].

u(`)n → u(`+1)
n , a(`+1)

n =
σ
(`) 2
n

1 + |σ(`)
n |2

a(`)n , b(`+1)
n =

σ
(`)
n−1

1 + |σ(`)
n |2

b(`)n , (4.15)

ν(`+1)
n = ν(`)n

1 + λ(`)2|σ(`)
n |2

1 + |σ(`)
n |2

, λ(`+1) = λ(`)2, and F (`+1)
n =

F
(`)
n + σ

(`)∗
n F

(`)
n+1

1 + |σ(`)
n |2

.

The energy for this system, E =
∑

n u
(`+1)
n

∏i
j=0(1 + |σ(j)

n |2) is conserved by

the nonlinearity when the σs are constant. In practise, we close the equations

using the approximation

σ(`)
n =


〈∣∣∣u(`+1)

n+1

∣∣∣2〉〈∣∣∣u(`+1)
n

∣∣∣2〉


1/4

(4.16)

in numerical simulations. The interpolation is further smoothed by using a

cubic spline on the moments

〈∣∣∣u(`+1)
n

∣∣∣2〉. This approximation sets σ
(`)
n to be

real, but avoids the numerical instabilities and complex square roots encoun-

tered in the more straightforward approximation σ
(`)
n =

√
u
(`+1)
n+1 /u

(`+1)
n , which

is very sensitive to fluctuations in the velocity field.

The spectrally reduced shell models will only attain the correct equiparti-

tion spectrum if all the bins are of equal size. If, for example, we choose to

bin some modes and not others, the correct equipartition spectrum will only

be reached if we also rescale time by the relative bin sizes. Unfortunately,

rescaling time by the relative bin size breaks energy conservation.

The governing equation for the Sabra model contains a mixture of veloci-

ties and complex conjugates of velocities, which makes the application of the

method of spectral reduction to the Sabra model somewhat more arduous.
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Figure 4.3: Energy spectra computed with interpolated spectral reduction.

Using the substitution given in equation 4.10, the governing equation of the

spectrally reduced mode is

du
(1)
n

dt
=

ik2n

1 + |σ(0)
n |2

(
− γ

λ2
σ
(0)
n−1u

(1)2
n−1 −

γ

λ
σ(0)∗
n σ

(0)
n−1u

(1)
n−1u

(1)∗
n +

β

λ
σ
(0)∗
n−1σ

(0)
n u

(1)∗
n−1u

(1)
n

+(α + β)σ(0)∗
n u(1)∗n u

(1)
n+1 + αλσ(0)∗

n σ
(0)∗
n+1u

(1)
n+1u

(1)∗
n+1

)
, (4.17)

where the viscous and force terms change as in the spectral reduction of the

GOY model, given by (4.12). This new model is nearest-neighbour, and con-

serves energy whenever α+ β + γ = 0, as in the GOY and Sabra models. An-

other application of spectral reduction yields models with seven source terms.

Thankfully, the form of the governing equation is invariant upon further ap-

plications of spectral reduction. Unfortunately, the spectrally reduced Sabra

model behaves differently than the Sabra model, attaining, for example, an

E(k) ∼ k−2.25 equipartition spectrum instead of E(k) ∼ k−1.

In the following chapters, we shall restrict ourselves then to the GOY
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and DN models of turbulence because the spectrally reduced GOY model has

similar behaviour to the GOY model. While spectral reduction captures the

overall behaviour of the shell models, we would like to overcome the condition

that bin size be constant. Unfortunately, we experience the same problem

with variable bin size in shell models of turbulence as we did in Navier–Stokes

turbulence: the system does not reach the equilibrium that we predicted in

Chapter (3), but instead has a discontinuity in E(k) between bins of different

sizes. While this can be fixed by rescaling time by the bin size, this increases

the stiffness of the system greatly and breaks energy conservation. Both of

these problems are solved by using the multi-spectral method.

50



Chapter 5

The Multi-Spectral Method

In which we introduce and develop a new computational method for turbu-

lence.

In this chapter, we propose a multi-spectral method as a computational

technique for solving partial differential equations with variable resolution in

Fourier space. It is designed for hyperbolic problems, for which multi-grid

methods [[Briggs 1987], [Bramble 1993], [Hackbusch 1985]] are not generally

applicable [Ames 1977].

In particular, we can choose to have high resolution at the large scales

and low resolution at the small scales. In the models of turbulence we have

discussed, external forcing is active at large scales, the large scales contain a

majority of the energy, and we are often most interested physically in the large

scales; for instance, it is the large scales that tell us which path a hurricane will

take. However, we must also resolve very small scales in order to remove energy

from the system in the dissipation range. Because we are not as concerned with

the exact behaviour at the small scales, we can choose to use a low resolution

grid at high wavenumbers.
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5.A Other approximations

A common solution to the problem of separation of scales is to increase the

viscosity so that the dissipation scale is large enough that we may model

the system in a straightforward fashion. This may be accomplished by simply

increasing ν, which decreases the dissipation wavenumber kd. Since turbulence

can, to some extent, be characterised by the Reynolds number, arbitrarily

setting ν to match the computer instead of the physical system is not satisfying.

Another method of increasing the effect of viscosity is to increase the degree

of the Laplacian, which is called hyperviscosity. A linear term of the form

νh∇2huk for h ≥ 1 will decrease the dissipation wavenumber as h is increased

(adjusting νh to keep the total dissipation constant). However, hyperviscosity

can introduce bottlenecks in the small-scale energy spectrum and distort the

inertial range [Tran & Bowman 2003]. Another alternative is to introduce a

Heaviside function viscosity at the small scales, which allows one to remove

energy at the small scales. While this is useful in situations where one is

interested solely in the large-scale dynamics, it could also greatly contaminate

the inertial range. Despite these drawbacks, increasing viscosity remains a

mainstay of turbulent simulations, owing to its simplicity and heuristically

reasonable results at large scales in some cases.

There have been, of course, other attempts to simplify simulations of tur-

bulence, such as the Smagarinsky model, the K − ε model, and large-eddy

simulations [Frisch 1995], [Basu & Porté-Agel 2005], [Dubos 2003]. In these

models, the transfer of energy from the small scales to the large scales (the

back-scatter) is removed, providing energy transfer only from large scales to

small scales. While the energy does typically move from the large scales to the
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small scales, it is increasingly thought that back-scatter plays an important

role in turbulence [Piomelli et al. 1991] and should not be neglected.

If one is only interested in calculating the evolution of statistical mo-

ments, one option is to construct a statistical closure (e.g. see Orszag [1977],

Bowman [1992], Bowman et al. [1993]). Consider (3.1), the two-dimensional

Fourier-transformed vorticity formulation of the Navier–Stokes equation, for

which we take the real case and represent in schematic form as

∂ω

∂t
+ νω = Mωω. (5.1)

The evolution of the second order moment is governed by the equation

∂

∂t
〈ωω〉 = 2

〈
ω
∂ω

∂t

〉
(5.2)

= −2ν 〈ω〉+ 2M 〈ωωω〉 .

So, in order to determine the evolution of a second-order moment, we must

know a third-order moment, and so on. To break this endless chain of depen-

dence, one must introduce an approximation [Orszag 1970], [Orszag 1977]. For

example, the fourth-order moment could be approximated as a sum of prod-

ucts of second-order moments. Such an approximation is called quasinormal.

Unfortunately, the quasinormal approximation can lead to negative energies,

which is unphysical. Other closure approximations, such as the eddy-damped

quasinormal Markovian (EDQNM) closure [Orszag 1977] and the test field

model [Kraichnan 1972] can also predict negative energies [[Bowman 1992],

[Bowman et al. 1993], [Bowman & Krommes 1997]]. The realisable Markovian

closure [Bowman et al. 1993] and the realisable test field model
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[Bowman & Krommes 1997] solve the problem of negative energies. However,

closure approximations only predict moments; they do not provide information

about the underlying velocity field.

5.B The time-scale disparity

In both the Fourier-space representation of the Navier–Stokes equation and

the governing equations of shell models of turbulence, the nonlinear part of

the source term is proportional to the wavenumber. We should then expect

the small scales, which have high wavenumbers, to evolve more quickly than

the large scales. In fact, the slow evolution of the large scales is a common

complaint in turbulence research because simulations must be run for an ex-

traordinarily long time before the large scales reach equilibrium.

This time-scale disparity may be measured more easily for inviscid, un-

forced systems. In Chapter (3), we were able to predict the final spectrum for

such systems. These systems evolve to a statistically steady state for which

we are able to calculate E(k) based on the initial conditions. The time that

it takes a mode uk in GOY turbulence to approach equipartition (Fig. 5.1) is

approximately of the form A − B log k for modes with wavenumber less than

the median wavenumber, and is roughly constant for modes with wavenumber

greater than the median.

5.C The multi-spectral method

The separation of time scales in turbulence is reminiscent of the separation of

time scales that lies at the heart of the multi-grid method [Ames 1977]. Owing
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Figure 5.1: Relaxation time to equipartition for the GOY model.

to the presence of characteristics in the Euler equation, multi-grid methods

have not been successfully applied to the Navier–Stokes equation. The multi-

spectral method takes inspiration from multi-grid methods, but is set in Fourier

space, while multi-grid methods are set in x space. We begin with two grids

and a shell model.

The governing equation of a general shell model has the form

(
d

dt
+ νk2n

)
un = ikn

∑
`,m

A`,mu
∗
`u
∗
m + Fn, (5.3)

where ν is the coefficient of linear viscosity, Fn is an external force, and A`,m

are interaction coefficients. The complex-valued velocities un are associated

with the wavenumber kn = k0λ
n, for n = 0, . . . , N − 1. We would like to
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simulate this model on a set of two grids, one with high resolution at low

wavenumbers, and another with low resolution at high wavenumber.

Figure 5.2: Arrangement of grids for the multi-spectral method, showing in-
teractions for a general shell model.

The configuration we choose has overlapping grids, as shown in Fig. 5.2.

The two grids have N1 and N2 modes, which need not be equal. The grids are

arranged with low wavenumbers to the left and high wavenumbers to the right.

The first grid has higher resolution and is limited to small wavenumbers. The

second grid has lower resolution and thus covers a larger range of Fourier space

per mode. We call these the fine grid and coarse grid, respectively. In this

particular choice of grids, the coarse grid has twice the wavenumber spacing

of the fine grid, so we call this a radix-two scheme and denote the binning

factor ∆ = 2. The arrows represent interactions between modes. Clearly,

some regions of Fourier space interact through both the fine grid and coarse

grid. We call such interactions redundant, and they are shown drawn in blue.

While these interactions are indeed important, they should not be calculated

twice. In such situations, we choose to keep the interactions on the fine grid,

eliminating them on the coarse grid. This result is shown in Fig. 5.3.

We label the modes on the fine grid u
(1)
n , for n = 1, . . . , N1 and the modes

on the coarse grid u
(2)
n , for n = 1, . . . , N2. Let the first mode on the coarse

grid that is not part of the overlap be denoted u
(2)

N̂2
. The energy of the system
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Figure 5.3: Arrangement of grids for the multi-spectral method, showing non-
redundant interactions for a general shell model.

is

E =
1

2

N1∑
n=1

∣∣u(1)n ∣∣2 +
1

2

N2∑
m=N̂2

∣∣u(2)m ∣∣2 ∆. (5.4)

In other words, we take the energy to be the sum of the energies of all the

modes, multiplied by the size of the mode’s bin relative to a fine bin. In the

case where modes from different grids cover the same region of Fourier space,

we choose the mode from the fine grid. We call such modes the visible modes

of the system.

The DN model, introduced in Section 1.B.1, has the governing equation

∂un
∂t

+ νk2nun =

ikn
(
anu

2
n−1 − λan+1unun+1 + bnun−1un − λbn+1u

2
n+1

)∗
+ Fn. (5.5)

Since the interactions are nearest-neighbour, this is a particularly simple model

to work with. Only one mode in the overlapping section of the coarse grid needs

to be kept, as all others are redundant. The remaining interactions are shown

in Fig. 5.4. We remind the reader of the fact that the GOY model reduces

to the DN model upon the application of spectral reduction. Owing to the
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simplicity of the DN model under spectral reduction, we will use it throughout

this section.

Figure 5.4: The multi-spectrum grid for the DN model showing all non-
redundant interactions.

This system separates the interactions at large scales from the interactions

at small scales. However, the two grids do need to interact; while there is some

separation between scales, they are not totally unrelated. In particular, the

systems should not drift apart as they are advanced in time. To this purpose

we develop projection and prolongation operators between grids.

5.D Projection and prolongation

The projection operator transfers information from the fine grid to the coarse

grid. The prolongation operator transfers information in the opposite direc-

tion. Since the fine and coarse grids overlap, we require that they at least

approximately agree on the velocities of the model where they overlap. In

particular, the projection and prolongation operators should preserve the in-

variants of the system both globally and locally. Further, the projection and

prolongation operators should act locally in Fourier space to avoid introducing

an anomalous transport of energy between scales.

Generally (e.g. in the DN model), the only invariant that we need concern

ourselves with is the energy. This modal energy is 1
2
|u(1)n |2 for the coarse grid

and 1
2
∆|u(2)n |2 for the coarse grid. We require that overlapping sections of the
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grid have the same local energy content. In other words,

1

2
|u(1)2n |2+

1

2
|u(1)2n+1|2=

1

2
∆|u(2)n |2. (5.6)

Since only one coarse grid mode is active (i.e. has a non-zero source term) for

the multi-spectral DN model, we have just one such condition to satisfy, which

applies to the modes

u
(1)
N1−1, u

(1)
N1
, and u

(2)

N̂2−1
. (5.7)

The projection and prolongation operators depend on the order in which we

advance the grids. We have two choices: we can advance the grids at the same

time and then synchronise via projection and prolongation, or advance one at

a time and project (or prolong) after we have advanced each grid separately.

5.D.1 Symmetric advancement

Fine grid

Coarse grid

The Symmetric Multi–Spectral Method

t

t

t+ τ

t+ τ

t+ 2τ

t+ 2τ

Figure 5.5: Diagram of symmetric multi-spectral method.

In the symmetric case, the projection and prolongation operators are com-

bined into one operation. For simplicity, we consider just the triplet of inter-

acting modes for the DN model given in (5.7). We suppose, without loss of
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generality, that the triplet obeys (5.6) at the beginning of the time step. That

is,

1

2

∣∣∣u(t)
(1)
N1−1

∣∣∣2 +
1

2

∣∣∣u(t)
(1)
N1

∣∣∣2 =
1

2
∆
∣∣∣u(t)

(2)

N̂2

∣∣∣2 = E(t). (5.8)

We advance the modes on both grids in time, sending t→ t+ τ and

u(t)
(1)
N1−1→ ũ(t+ τ)

(1)
N1−1,

u(t)
(1)
N1
→ ũ(t+ τ)

(1)
N1
,

u(t)
(2)

N̂2
→ ũ(t+ τ)

(2)

N̂2
. (5.9)

The new triplet may no longer obey (5.6). Suppose

E1 =
1

2

∣∣∣ũ(t+ τ)
(1)
N1−1

∣∣∣2 +
1

2

∣∣∣ũ(t+ τ)
(1)
N1

∣∣∣2
6= E2 =

1

2
∆

∣∣∣∣12 ũ(t+ τ)
(2)

N̂2

∣∣∣∣2 . (5.10)

Then the change in energy of the triplet due to the coarse grid is E1 − E,

and the change in energy of the triplet due to the fine grid is E2 − E. Over

the time step t → t + τ , the energy content of the triplet changes from E to

E + (E1 − E) + (E2 − E) = E1 + E2 − E. We can use this to prescribe the

velocities, via a simultaneous projection/prolongation operator that is given
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by

u(t+ τ)
(1)
N1−1 =

√
E

E1

ũ(t+ τ)
(1)
N1−1,

u(t+ τ)
(1)
N1

=

√
E

E1

ũ(t+ τ)
(1)
N1
,

u(t+ τ)
(2)

N̂2
=

√
E

E2

ũ(t+ τ)
(2)

N̂2
. (5.11)

This guarantees that

1

2

∣∣∣u(t+ τ)
(1)
N1−1

∣∣∣2 +
1

2

∣∣∣u(t+ τ)
(1)
N1

∣∣∣2 =
1

2
∆
∣∣∣u(t+ τ)

(2)

N̂2

∣∣∣2 (5.12)

Furthermore, the ratio of energies 1
2

∣∣∣u(t+ τ)
(1)
N1−1

∣∣∣2 : 1
2

∣∣∣u(t+ τ)
(1)
N1

∣∣∣2 remains

constant.

The presence of a square root in the projection/prolongation operator is of

some concern, as we have no guarantee that its argument will be positive. In

practise, we have never encountered a problem. Further, if it becomes negative,

it may be the case that reducing the time step τ will decrease the energy change

of the system to the point that E(t + τ) = E1(t + τ) + E2(t + τ) − E(t) will

be positive. This difficulty may be avoided entirely by advancing the grids

sequentially.

5.D.2 Sequential advancement

Advancing the grids sequentially separates the projection and prolongation

operators and removes the possibility of encountering negative energy.

Again, we assume, without loss of generality, that the triplet obeys (5.6)

at the beginning of the time step, i.e. E1(t) = E2(t). We first advance, say,
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Figure 5.6: Diagram of sequential multi-spectral method.

the fine grid in time:

u(t)
(1)
N1−1→

√
E

E1

ũ(t+ τ)
(1)
N1−1,

u(t)
(1)
N1
→
√
E

E1

ũ(t+ τ)
(1)
N1
. (5.13)

The energy of the fine grid part of the triplet is now

Ẽ1(t+ τ) =
1

2

∣∣∣ũ(t+ τ)
(1)
N1−1

∣∣∣2 +
1

2

∣∣∣ũ(t+ τ)
(1)
N1

∣∣∣2 . (5.14)

Note that the coarse grid has not yet been advanced in time, and the grids

may now disagree. We project the changes for the triplet due to the fine grid

onto the coarse grid:

ũ(t)
(2)

N̂2
=

√
Ẽ1(t+ τ)

E2(t)
u(t)

(2)

N̂2
. (5.15)

Now, the two grids agree on the energy content of the triplet. Note that the

argument of the square root involves only energy and not energy differences,

so we are guaranteed that it be positive. We now advance the coarse grids in
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time:

ũ(t)
(2)

N̂2
→ u(t+ τ)

(2)

N̂2
. (5.16)

Again, we must restore energy balance in the triplet. We have already taken

the energy transfer from the fine-grid modes to the coarse-grid modes into

account via projection, so all that remains is to prolong the effect of the coarse-

grid mode onto the fine-grid modes. The coarse-grid energy is now E2(t+τ) =

1
2
∆
∣∣∣u(t+ τ)

(2)

N̂2

∣∣∣2. Noting that the energy of the coarse-grid mode immediately

before being advanced in time was Ẽ2(t) = Ẽ1(t+τ), the prolongation operator

is

u(t+ τ)
(1)
N1−1 =

√
E2(t+ τ)

E1(t+ τ)
ũ(t+ τ)

(1)
N1−1,

u(t+ τ)
(1)
N1

=

√
E2(t+ τ)

E1(t+ τ)
ũ(t+ τ)

(1)
N1
. (5.17)

At this point, the grids have both been advanced in time from t to t+ τ , and

agree on the energy content of the overlapping region.

5.D.3 Phase propagation

Recall that the modes u
(1)
n and u

(2)
n are complex-valued. While the projection

and prolongation operators guarantee that the energies of the modes in the

redundant triplet agree, the phases are not accounted for. For example, the

fine-grid modes may evolve to be entirely real, whereas the coarse-grid modes

may remain purely imaginary. Since we require the redundant triplet of modes

to at least approximately agree on the modal content of Fourier space on which
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they overlap, we must modify the projection and prolongation operators to

account for changes in phase. In other words we wish to set the velocity-

weighted phases of the modes of the redundant triplet equal to each other, i.e.

we require that

P1
.
=

u
(1)
N1−1 + u

(1)
N1

|u(1)N1−1 + u
(1)
N1
|

=
u
(2)

N̂2−1

u
(2)

N̂2−1

.
= P2 (5.18)

at the end of each time step.

Consider the case where we advance the grids symmetrically. Suppose

P1 = P2 at the beginning of the time step. We advance both grids in time

from t to t+ τ , which sends

P1(t)→ P1(t+ τ), (5.19)

P2(t)→ P2(t+ τ).

The change in phases over the time step are P1(t+τ)/P1(t) and P2(t+ τ)/P2(t).

There is some danger that a denominator will become zero, but, again, this has

never been observed to occur. If it does occur, one should replace the change

in phase by a random phase, which prevents the introduction of phase-bias

into the system.

We require all modes in the redundant triplet to change by

P
.
=
P1(t+ τ)

P1(t)
× P2(t+ τ)

P2(t)
. (5.20)

This can be incorporated into the projection/prolongation operator given by (5.11),

64



which becomes

u(t+ τ)
(1)
N1−1 = P

√
E

E1

ũ(t+ τ)
(1)
N1−1,

u(t+ τ)
(1)
N1

= P

√
E

E1

ũ(t+ τ)
(1)
N1
,

u(t+ τ)
(2)

N̂2
= P

√
E

E2

ũ(t+ τ)
(2)

N̂2
. (5.21)

In the case where we advance the grids sequentially, the projection operator

in (5.15) becomes

ũ(t)
(2)

N̂2
=
P1(t+ τ)

P1(t)

√
Ẽ1(t+ τ)/E2(t) u(t)

(2)

N̂2
, (5.22)

and the prolongation operator given by (5.17) becomes

u(t+ τ)
(1)
N1−1 =

P2(t+ τ)

P2(t)

√
E2(t+ τ)

E1(t+ τ)
ũ(t+ τ)

(1)
N1−1,

u(t+ τ)
(1)
N1

=
P2(t+ τ)

P2(t)

√
E2(t+ τ)

E1(t+ τ)
ũ(t+ τ)

(1)
N1
. (5.23)

We expect that the addition of phase-changes to the projection and prolon-

gation operators will be particularly important for Navier–Stokes turbulence

where coherent structures play an important role.

5.E Application of spectral reduction

While we have established how to simulate a system on a variable-resolution

grid in Fourier-space using two grids, we must now ensure that it is the same

system that we are approximating on both grids. In particular, we must
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determine the effect of binning modes on the governing equation. We use the

method of spectral reduction (Chapter 4) to predict how binning will effect

the governing equation.

The approximation

u(2)n =
1

∆

(
u
(2)
2n + u

(2)
2n+1

)
(5.24)

is equivalent to setting σ
(0)
n ≡ 1. Setting u

(2)
n = u

(2)
2n = u

(2)
2n+1 closes the

equations. With the use of the multi-spectral method, this is equivalent to the

assumption that the phases of the adjacent modes u
(2)
2n and u

(2)
2n+1 are correlated.

However, this is not the case for the DN model, where adjacent modes are

completely uncorrelated. In particular, if we take the sum of adjacent modes,

we expect that

〈
|u(2)2n + u

(2)
2n+1|2

〉
=
〈
|u(2)2n |2

〉
+ 2���

��
��:0〈

u
(2)
2nu

(2)∗
2n+1

〉
+
〈
|u(2)2n+1|

〉
(5.25)

=
〈
|u(2)2n |2

〉
+
〈
|u(2)2n+1|2

〉
.

Because of this, we use the approximation

u(2)n =
1√
∆

(
u
(2)
2n + u

(2)
2n+1

)
. (5.26)

Using (5.26), we can use spectral reduction to determine the coefficients for

grid `+ 1 in terms of the coefficients for grid `:

a(`+1) =
a(`)√

2
, b(`+1) =

b(`)√
2
, and ν(`+1) = ν(`)

1 + λ(`)2√
2

. (5.27)
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5.F Extension to many grids

We can extend the multi-spectral method to a hierarchy of grids to further

reduce the number of modes in the system. In the sequential case, it is simple

to extend the method, as shown in Fig. 5.7. With N grids, one simply advances

the finest grid in time, projects onto the next-finest grid, advances that grid

in time, projects onto the finest grid after that, and continues down until one

has reached the coarsest grid. One can then prolong from the coarsest grid

to the next coarsest grid, and so on, until one prolongs from the second-finest

grid onto the finest grid. At this point, all grids have been advanced in time

and synchronised by the projection and prolongation operators.

Finest grid

Coarser grid

Coarsest grid

The Sequential Multi–Spectral Method for Many grids

t t+ τ

t t+ τ

t t+ τ

project

project

prolong

prolong

Figure 5.7: Sequential time advancement with many grids.

5.G Properties of the multi-spectral method

The advantage of the multi-spectral method is that we can solve a system in

Fourier space using a grid with resolution that varies with wavenumber. Unlike
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the method of spectral reduction, we do not need to rescale time in order to

reach equipartition, so the low-resolution system is no stiffer than the original

system.

We can arbitrarily set the fraction of the system that is at high or low

resolution. This allows us to determine the effect of our approximation on the

behaviour of the system relative to the full-resolution system.

Since the projection and prolongation operators were created with energy

conservation in mind, the entire system conserves energy so long as the spec-

trally reduced model conserves energy on each grid independently.

We can use a radix-two multi-spectral method on a system whenever the

number of modes in the system, N , is divisible by two. We can extend this

to a hierarchy of n grids if 2n−1 divides N . If we assume that all the grids

have the same number of modes, then each grid has N/2n−1 modes, and there

are nN/2n−1 modes total. This is a significant savings in memory, as can be

seen in Fig. 5.8. For example, using 16 grids reduces the number of modes by

a factor of 2048. Using just two grids provides no savings whatsoever, unless

we extend the coarse grid to cover more than half the original system. If the

model has localised interactions (e.g. the DN model and the GOY model),

many of the modes on a grid are inactive on all but the finest grid, and can

therefore be eliminated.
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Chapter 6

Simulations and Results

In which we demonstrate various results of our technique.

All simulations were done using the DN model. It is an ideal test-bed

for the multi-spectral method because of its simplicity and the fact that

the form of the equation is invariant under spectral reduction. We used

the Triad C++ initial-value problem integrator [Bowman 2004], and we made

use of the exponential [Bowman et al. 2006], [Bowman 2006] and conservative

[Shadwick et al. 1999], [Bowman et al. 1997], [Kotovych & Bowman 2002], [Shadwick et al. 2001]

numerical integration schemes contained therein whenever we could.

6.A Inviscid turbulence

In Chapter 3 we established several results for inviscid, unforced turbulence.

We expect that the energy spectrum E(k) of the DN model should scale

like k−1 once the system has reached a steady state.

Before we show the results of the multi-spectral method, it will be insightful

to explore an alternative approach, in which one simply adds the source term
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Figure 6.1: E(k) vs. k for inviscid unforced turbulence with two grids and
source transfer.
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Figure 6.2: Energy vs. time for inviscid unforced turbulence with two grids
and source transfer.
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Figure 6.3: E(k) vs. k for inviscid unforced turbulence with two grids with
projection/prolongation.

for the coarse mode of the redundant triplet to the fine modes. In that the

resulting computational problem would be more straightforward, this method

is preferable to the multi-spectral method. However, transferring the source

term between grids is equivalent to spectral reduction with variable bin sizes,

which does not correctly reproduce the equipartition spectrum. As can be seen

in Fig. 6.1, transferring the source term between grids produces an anomalous

discontinuity in the spectrum. While this may be fixed by rescaling time by the

relative bin sizes, this breaks energy conservation, as demonstrated in Fig 6.2.

Using the multi-spectral method, we are able to reproduce the equipartition

spectrum faithfully without resorting to rescaling time (Fig. 6.3.). Such a

system conserves energy (up to machine precision) and is less stiff than a

system in which time has been rescaled by the relative bin sizes. In fact,
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the multi-spectral method is able to reproduce the equipartition spectrum for

inviscid unforced turbulence even if time has been rescaled on each grid by an

arbitrary factor.

6.B Forced-dissipative turbulence

In Chapter 2 we established results for forced-dissipative turbulence where

energy is injected at the large scales. We expect such systems to exhibit an

energy spectrum of E(k) ∼ k−5/3 at intermediate wavenumbers, and for energy

to fall off rapidly at wavenumbers greater than the dissipation wavenumber.

Under suitable conditions, the multi-spectral method is able to reproduce these

spectra. Forced-dissipative turbulence appears to be more sensitive to the

choice of projection and prolongation operators than near-equilibrium systems

(those approaching equipartition).

In the absence of phase communication, the transfer of energy is slightly

diminished at the interface between the grids, and the effect of this on the

energy spectrum is shown in Fig. 6.4. While the effect of phase-communication

is slight for shell models, it is important for two- or three-dimensional Navier–

Stokes turbulence where phase is instrumental to the preservation of coherent

structures.

The assumption of adjacent-mode correlation also has a significant effect

on the forced-dissipative spectrum. Fig. (6.5) shows the effect of assumptions
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Figure 6.4: E(k) vs. k for forced-dissipative DN turbulence showing the effect
of phase communication.

about how modes are correlated. The assumptions we use are:

u(`+1)
n ≈ u

(`)
2n + u

(`)
2n+1

2
, (6.1)

u(2)n ≈
u
(`)
2n + u

(`)
2n+1√

2
, (6.2)

u(2)n ≈ u(`)2n + u
(`)
2n+1. (6.3)

Here, (6.1) follows from the assumption that adjacent modes are correlated,

while (6.2) follows from the assumption that adjacent modes are uncorrelated,

and (6.3) is put in for the sake of comparison. These assumptions amount to

various rescalings of time between grids, which effects the forced-dissipative

spectrum but not the equipartition spectrum.

If we assume that adjacent modes are correlated (6.1) then the interaction

coefficients on the coarse grid are too small, i.e. the time scales are large. The

effect on the spectrum is to slow energy transfer between grids, which pro-

duces an anomalous energy bottleneck at the grid boundary, which increased
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Figure 6.5: E(k) vs. k for forced-dissipative DN turbulence showing the effect
of assumptions of adjacent-mode correlation given by (6.1), (6.2), and (6.3).

the energy of the boundary mode in the fine grid. Energy is depressed at high

wavenumbers because of the bottleneck at the grid boundary. If we do not

change the interaction coefficients at all, using (6.3), the coarse grid has larger

interaction coefficients, which increases the energy transfer between grids, cre-

ating an anomalous drop in energy at the grid boundary. Similarly, energy at

the small scales is anomalously elevated. Using the assumption that adjacent

modes are uncorrelated (6.2), normal inter-grid energy transfer is established,

resulting in a smooth spectrum at the grid boundaries and normal energy lev-

els at the small scales. This effect is very pronounced for simulations with

more than two grids, where the repeated application of the method of spectral

reduction can change time scales significantly.
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6.C Simulations with several grids

We can easily extend our method to a hierarchy of grids. This significantly

reduces the number of modes while still covering the same region of Fourier

space. We show comparisons of simulations using two, three, four, and five

grids. The multi-spectral method is able to reproduce both inviscid spectra

(Fig. (6.6)) and the spectra for forced-dissipative turbulence (Figs. 6.7, 6.8,

6.9, and 6.10). These simulations were made using sequential grid advance-

ment, phase communication, and the assumption that adjacent modes are

uncorrelated. To better compare simulations, we bin the modes for one-grid

simulations to match the distribution of modes in a many-grid simulation.

Even the simulation with five grids (Fig. 6.10), with only three active modes

on the coarse grids, still closely reproduces the spectra predicted by the full-

resolution simulation.
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Figure 6.6: Multi-spectral simulations of inviscid turbulence with one, two,
three, or four grids.
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Figure 6.7: Multi-spectral simulation of forced-dissipative turbulence with two
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10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

E
(k
)

100 101 102 103 104

k

One grid
One grid, binned
Three grids

Figure 6.8: Multi-spectral simulation of forced-dissipative turbulence with
three grids.
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Figure 6.9: Multi-spectral simulation of forced-dissipative turbulence with four
grids.
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Figure 6.10: Multi-spectral simulation of forced-dissipative turbulence with
five grids.
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Chapter 7

Conclusions

In which we describe possible applications of our technique and discuss fur-

ther research.

The multi-spectral method is able to reproduce the behaviour of high-

resolution systems, but uses dramatically fewer modes. We were able to re-

produce energy spectra of the DN model correctly using two to five grids,

limited only by the original resolution of the model.

7.A Future work

The multi-spectral method has been studied for shell models of turbulence

only. Shell models have very few intermodal interactions when compared with

the Navier–Stokes equation. The application of a multi-spectral method to

Navier–Stokes turbulence may be an easier problem than the application of a

multi-spectral method to a shell model of turbulence since the Navier–Stokes

turbulence has more inter-modal interactions that cross grid boundaries. This

may prevent a bottleneck of energy transfer at grid boundaries, meaning that
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the Navier–Stokes equation may be less sensitive to the assumptions in the

method of spectral reduction that determine how one should rescale interaction

coefficients from one grid to another. The multi-spectral method might yield

an even more significant decimation on Navier–Stokes turbulence due to the

fact that the binning factor will grow like 2D where D is the dimension of the

turbulence.

However, complications will most certainly arise. In particular, we expect

that the projection and prolongation operators will have to be modified to

accommodate geometric effects. In the case of two-dimensional turbulence,

they will also have to conserve enstrophy, which may place a severe constraint

on both the choice of projection and prolongation operators and the relative

geometry of the fine and coarse grids.

In addition to such theoretical concerns, we would like to apply the method

of spectral reduction to turbulence of physical interest. Our method was formu-

lated in Fourier space, with the assumption of periodic boundary conditions.

While this is unphysical, it may be a good approximation for the behaviour of

turbulence at the small scales. Ideally, we would like to be able to use spectral

reduction as a sub-grid model for turbulence, approximating the behaviour at

the small scales. In this fashion, we may be able to apply spectral reduction to

inhomogeneous turbulence, which is believed to become homogeneous at the

small scales.

One problem that spectral reduction does not address is the stiffness of the

resulting system, which inherits the wide range of time scales from the original

problem. There may be hope; perhaps using different integration methods on

different grids could address this problem. For example, a lower-order con-

servative Runge–Kutta [Bowman et al. 1997] scheme on the fine grid, where
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energy is injected but not dissipated, and a higher-order exponential Runge–

Kutta scheme [Bowman et al. 2006], [Bowman 2006] on the coarse grid, where

the linear term often imposes an upper bound on the time step.

7.B Applications

Immediately, the method of spectral reduction can be used to better under-

stand the behaviour of shell models of turbulence at high Reynolds numbers.

For instance, the dependence of the dissipation wavenumber on ν, the coeffi-

cient of linear viscosity, or studies of intermittent behaviour could be fruitful

avenues of research.

The multi-spectral method could potentially be useful for simulating weather

and climate changes. Further, we may be able to apply a multi-spectral reduc-

tion to magnetohydrodynamical systems, where the Navier–Stokes equation

is coupled to Maxwell’s equations. In particular, there is a need for high-

resolution simulations of plasma turbulence simulations to understand energy

transport in Tokamak fusion reactors. We hope that we will be able to apply

the multi-spectral method not only to the equations of turbulence, but to a

wide variety of physical systems represented by systems of partial differential

equations.
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[de Kármán & Howarth 1937] T. de Kármán & T. Howarth, 1937.
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