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Chapter 1

Integrability and the n-Body

Problem

1.1 Introduction

Much of nature’s behaviour and patterns can be described by differential equations.
We can write down the differential equations that describe many physical problems,
but we also need to be able to integrate them. This means finding expressions for the
functions which satisfy the differential equations and agree with the initial conditions
imposed at a particular initial time (Goroff 1993). However, the notion of integra-
bility is very difficult to define precisely. In his essay entitled “Science and Method”
(Poincaré 1903), Henri Poincaré attempted to make a clear statement about integra-
bility:

“If we knew exactly the laws of nature and the situation of the universe
at the initial moment, we could predict exactly the situation of that same
universe at a succeeding moment, but even if it were the case that the
natural laws had no longer any secret for us, we could still only know the
initial situation approximately. If that enabled us to predict the succeeding
situation with the same approximations, that is all we require, and we
should say that the phenomenon had been predicted, that it is governed
by laws. But it is not always so; it may happen that small differences
in the initial conditions produce very great ones in the final phenomena.
A small error in the former will produce an enormous error in the latter.
Prediction becomes impossible, and we have the fortuitous phenomena.”

The latter cases that Poincaré refers to have some initial conditions where the
motion is chaotic. Mathematical research in chaos started in the late 1800s, when
Poincaré studied the stability of the solar system. In the special case of iterations
of transformations, there are three common characteristics of chaos (Peitgen et al.

1992): sensitive dependence on initial conditions (as described above by Poincaré),
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mixing (for any two open sets I and J of non-zero measure, one can find initial values
in I that, when integrated, will eventually lead to points in J), and dense periodic
orbits.

To solve such differential equations, one needs to discretize the equations and
solve them numerically. However, discretization typically leads to a loss of accuracy;
invariants are not necessarily preserved and the phase portrait may be inaccurate.
One way of dealing with this problem is to take small time steps. As a result,
a computer would require a long time to integrate such a system accurately. An
algorithm used to integrate such systems should be as efficient as possible. Is there a
way to keep the time step large and still preserve accuracy?

One such integrator, the conservative predictor–corrector, was recently developed
(Shadwick et al. 1999). This integrator is made efficient by building in the analytical
structure of the equations, in particular, by keeping the constants of motion conserved.
In this paper, I will be discussing its efficiency and comparing it to the standard
predictor–corrector method. The conservative predictor–corrector is believed to be
more efficient than the standard predictor–corrector, and I will demonstrate this by
applying both integrators to the n-body problem of classical mechanics, where the
“bodies” are the stars/moons/planets of the universe.

1.2 Background

Theories of the orbits of the sun and planets have been in place as early as the
days before Christ. During this era, the most accepted theories were the geocentric

scheme of the universe, in which the heavenly bodies rotate around the Earth. The
Almagest, devised by Claudius Ptolemæus (Ptolemy), described a geocentric system
which lasted for more than 1300 years. He concluded that not all celestial bodies
were circling the Earth in perfectly Earth-centered orbits (Williams 1996).

However, in the 15th and 16th centuries, the heliocentric system (in which the
Earth and other planets revolve around the Sun) was gaining acceptance. Nicholas
Copernicus was a major rejuvinator of this system, which had not been popular in
earlier times. He suggested a system in which all the known planets had circular
orbits around the Sun. Johannes Kepler discarded the assumption of circular orbits
in favour of elliptical paths around the sun, with the Sun at one of the foci. His other
two laws of planetary motion include: a directed line from the Sun to a planet sweeps
out equal areas in equal times, and the square of the period of orbit of each planet is
proportional to the cube of its semimajor axis.

In 1687, Isaac Newton published the Principia, presenting revolutionary ideas
about celestial mechanics, laws of motion, and other ideas. In this book he stated
the second law of motion:

F = ma, (1.1)
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where a is the acceleration and F is the force, and the law of universal gravitation:

F = −
km1m2

r2
r̂, (1.2)

which says that there is a universal attraction between all bodies in space. Here, F
is the attractive gravitational force, k is a universal gravitational constant, and r is
the distance between the two bodies of mass m1 and m2.

Since then, much work was done to understand the n-body problem. Johann
Bernoulli proved that the motion of one particle with respect to another is described
by a conic section and later won a French Academy Prize for his analytical treatment
of the two-body problem (Barrow-Green 1997).

Analyzing the general n-body problem (n ≥ 3) proved to be a much more difficult
task. A vast effort to identify integrals in the three-body problem was launched. In
the end, Poincaré was the first to show that there is chaos in the orbital motion of three
bodies which mutually exert gravitational forces on each other (Goroff 1993, Peitgen
et al. 1992). In the 18th and 19th centuries, both Joseph-Louis Lagrange and Karl
Gustav Jacobi were able to minimize the number of free variables by various means,
as I will discuss in Chapters 4 and 5 (Barrow-Green 1997, Szebehely 1967, Pollard
1966).

Some special cases of the three-body problem were found by Lagrange and Euler
(Diacu & Holmes 1996) and (Pollard 1966). In the 18th century, Euler proved that if
three particles of arbitrary finite mass are arranged initially on a line (with suitable
initial velocities assigned to the masses), then the particles will move periodically on
ellipses, maintaining at all times a collinear configuration. Lagrange showed that a
similar thing will happen when the masses are initially on the vertices of an equilateral
triangle (i.e., they will move in ellipses, preserving their equilateral configuration).

Another special case is the restricted three-body problem, in which one mass is
negligible relative to the other two, to be discussed in Chapter 3.

1.3 Motivation for Studying this Problem

A thorough knowledge of the orbits of planets, and a knowledge of how to integrate
their equations of motion can allow one to verify the stability of the solar system:
will the planets continue moving indefinitely in their present orbits? Or will there
eventually be a collision between at least two bodies? Will some bodies leave orbit?
Poincaré never found an answer to these questions (Peitgen et al. 1992), despite his
discovery of chaos in the general three-body problem.

Another interesting application of the n-body problem is the idea of historical
dating. The underlying idea here is the following: twelve zodiac constellations are
placed along the ecliptic (the intersection of the celestial sphere with the plane of
the Earth’s orbit). Each of the twelve zodiac constellations is located in a sector
approximately 30 degrees long. In everyday language, we think of the sky as a convex
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pie and we are dividing the pie into twelve equal pieces. At any given time, each
of the planets appears in one of the sectors (that is, appears to be “in” one of the
constellations; see Fomenko (1994)). From this a horoscope can be constructed. A
horoscope is a chart that shows the positions of the planets with respect to zodiac
constellations.

If we know the current position of planets, and we know of an ancient horoscope
(which, of course, tells us the position of the planets at that time), we can integrate
backwards (using the current positions as initial conditions) and see if, indeed, at
that ancient time, the planets were in the location specified by the horoscope. If
there is a discrepancy, we can conclude that either the ancient horoscope was dated
inaccurately, the constellations in the zodiac have themselves been distorted or shifted,
the horoscope was misinterpreted, or that perhaps there are certain years or even
centuries that never occured. The latter has actually been suggested by a group of
Russian mathematicians (Fomenko 1994, Taylor 2000).

These controversial but exciting topics inspired me to study the n-body problem.
For simplicity, I will be looking at the case where all of the planets lie in a plane.
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Chapter 2

Conservative Integration and the

Kepler Problem

2.1 Description of Conservative Integration

The equations describing the motion of the solar system form a conservative system:
the friction which heavenly bodies sustain is so little that no energy is lost. When
studying the theory behind the n-body problem, one learns that both the total energy
and total angular momentum are conserved. It can be argued that any invariants that
exist in theory should remain invariant when the system is discretized and integrated
on the computer.

One way to preserve these invariants is to transform to a new space where the
energy and other conserved quantities are linear functions of the transformed vari-
ables, and then transform back to get new values for each variable (Shadwick et al.

1999, Bowman et al. 1997). Often the transformation back involves radicals, and if
the argument of the radical is negative, it is still possible to use a finite number of
time-step reductions to integrate the system (Bowman et al. 1997). Another way to
deal with the negative arguments is to switch to a conventional integrator (predictor–
corrector) for that one time step (Kotovych & Bowman 2002).

Given a system of ordinary differential equations

dx

dt
= f(t, x),

where x = (x1, . . . , xn), the Euler method provides an approximate value x̃ for the
vector x at the time t + τ , given the value x0 at the time t, by way of the following
formula:

x̃ = x0 + τf(t, x0).

(For example, see Press et al. (1992).)
However, it is normally advantageous to use a scheme that is higher order than

Euler’s method. Consider the second-order predictor–corrector scheme (the first equa-
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tion being the predictor and the second being the corrector)

x̃ = x0 + τf(t, x0), (2.1a)

x(t + τ) = x0 +
τ

2
[f(t, x0) + f(t + τ, x̃)]. (2.1b)

The basic principle behind conservative predictor–corrector algorithms is the follow-
ing: let the vector x be transformed as ξ = T (x) such that the quantities to be
conserved are linear functions of the new variables ξi, i = 1, . . . , n. Then, keeping
Eq. (2.1a) as the predictor, apply in the transformed space the corrector:

ξ(t + τ) = ξ0 +
τ

2
[T ′(x)f(t, x0) + T ′(x̃)f(t + τ, x̃], (2.2)

where ξ̃(t) = T (x̃) and T ′ is the derivative of T . The inverse transformation is

x(t + τ) = T−1(ξ(t + τ)).

If the transformation involves a square root, then the sign of the root can be taken
to be the sign given by the conventional predictor. The examples that I consider in
my report will clarify this concept.

According to Iserles (1997), a major drawback of traditional non-conservative in-
tegrators is that numbers are often “thrown into the computer.” The mathematical
model is discretized according to an algorithm (for example, Runge–Kutta or multi-
grid) which has nothing to do with the original problem. Instead, we should be
developing computational algorithms that reflect known qualitative features of the
problem under consideration. The conservative predictor–corrector is an example of
such an integrator. In the examples given by Shadwick et al. (1999, 2001), the trans-
formed T is chosen to work for the system at hand, rather than having one general
“formula” that applies to a generic system. With this method, we can get all of the
invariants of the n-body problem conserved exactly, even when using large time steps.
This leads to a more accurate picture of the motion of the bodies (Shadwick et al.

1999, figure 9) with a large time step.
According to Ge and Marsden (1988), if an integrator is symplectic (preserves

phase space structure) and is conservative (conserves the energy), then it must be
exact. Therefore, a drawback with conservative integration is that the phase space
structure is not preserved. Likewise, a disadvantage with symplectic integration is
that the energy is not conserved.

2.2 Kepler Problem

2.2.1 Derivation of the Equations of Motion

The Kepler problem can be described as follows: begin with two bodies m1 and
m2 respectively, located at positions r1 and r2. The problem can be reduced to an
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equivalent one-body problem (a single particle under the influence of a central force
of mass m = m1m2/(m1 + m2), at position r = r2 − r1). The gravitational force
given by Eq. (1.2) is derivable from a potential V = −k/r, where r = |r|, and k is
the gravitational constant. This is a conservative system with Hamiltonian

H =
1

2
mv2 + V, (2.3)

where v is the magnitude of the velocity and v = dr/dt.
The equations of motion for the Kepler problem can be derived by letting

r = rr̂, (2.4)

where
r̂ = (cos θ, sin θ)

and
˙̂r = (−θ̇ sin θ, θ̇ cos θ).

If we set
θ̂ = (− sin θ, cos θ),

then
˙̂r = θ̇θ̂.

From Eq. (2.4),
ṙ = ṙr̂ + rθ̇θ̂ = v, (2.5)

where v = (vr, vθ) = (ṙ, rθ̇). Differentiating once more, we get

v̇ = r̈r̂ + 2ṙθ̇θ̂ + rθ̈θ̂ − rθ̇2r̂. (2.6)

The acceleration v̇ per unit mass is, from Eq. (1.1),

v̇ = F /m = −∇V/m;

that is,

v̇ =
−1

m

(

∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂

)

. (2.7)

In particular, since V is independent of θ, only the first term remains. Equating
Eq. (2.6) and Eq. (2.7), we find

−1

m

(

∂V

∂r

)

=
dvr

dt
− rθ̇2

and
0 = 2ṙθ̇ + rθ̈.
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The last equation can also be written as

0 =
1

r

d

dt
(r2θ̇),

or
˙̀ = 0,

where ` = mr2θ̇ is the conserved angular momentum. (Note that m is assumed to be
constant.) Therefore our equations of motion are

vr =
dr

dt
, (2.8a)

dvr

dt
=

−1

m

(

∂V

∂r

)

+ rθ̇2, (2.8b)

dθ

dt
=

`

mr2
, (2.8c)

d`

dt
= 0. (2.8d)

Rewriting the equations in terms of the linear momentum p = mvr and the angular
momentum ` gives

dr

dt
=

∂H

∂p
=

p

m
,

dp

dt
= −

∂H

∂r
=

`2

mr3
−

(

∂V

∂r

)

,

dθ

dt
=

∂H

∂`
=

`

mr2
,

d`

dt
= −

∂H

∂θ
= 0,

where the Hamiltonian is

H =
p2

2m
+

`2

2mr2
+ V (r).

Also see Goldstein (1980) for another derivation.

2.2.2 Integration

To set the framework for generalizing the two-body problem to the n-body problem, I
slightly modified the presentation in the paper of Shadwick et al. (1999) to make the
constant ` a variable that is formally being integrated, but which remains constant.
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The predictor step of the conservative integrator is given by Eqs. (2.1a), where
x = (r, θ, p, `). To derive the corrector, we transform the vector (r, p, `) to a new
space:

ξ1 = −
k

r
,

ξ2 =
p2

2m
+

`2

2mr2
,

ξ3 = `.

(Note: unless otherwise specified, each variable is a function of t.) Differentiating
these variables and using the fact that H = ξ1 + ξ2 and L = ξ3 are both conserved,
we find

ξ̇1 =
kp

mr2
,

ξ̇2 = −ξ̇1,

ξ̇3 = 0.

After applying Eq. (2.2), we use the inverse transformation

r = −
k

ξ1

,

` = ξ3,

p = sgn(p̃)

√

2mξ2 −
`2

r2

to obtain updated values of the variables. See Shadwick et al. (1999) for details on
how the invariance of the Runge–Lenz vector A = v×`+V r is exploited to evolve θ.

Reworking the Kepler problem gave me a clearer understanding of how to apply
conservative integration to the equations of motion of planets. Now that I have looked
at the simple case which has an analytic solution, the next step is to integrate the
chaotic n-body problem using methods similar to those used in the Kepler problem.
First I will look at a special case of the three-body problem, and then consider the
general n-body case.
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Chapter 3

Restricted Three-Body Problem

3.1 Derivation of the Equations of Motion

The following derivation of the equations of motion is taken from Szebehely (1967).
Two bodies of masses m1 and m2, called the primaries, revolve around their center
of mass in circular orbits. A third body, with a mass m3 that is negligible compared
to m1 and m2, moves in a plane defined by the other two revolving bodies but does
not influence their motion. The circular restricted three-body problem describes the
motion of this third body.

Let R be the distance between the two primaries, ω be their common angular
velocity, a be the distance from the origin (center of mass) to the second primary,
b be the distance from the origin to the first primary, and M = m1 + m2. In the
fixed frame, the first mass is located at (X1, Y1), the second mass at (X2, Y2), and
(X, Y ) are the coordinates of the massless body (see Fig. 3.1). A balance between
the gravitational and centrifugal (see the last term of Eq. (2.6)) forces requires that

k2m1m2

R2
= m2aω2 = m1bω

2,

where k is the gravitational constant. From this, we see that

k2m1 = aω2R2,

k2m2 = bω2R2,

k2M = ω2R3.

As well, a = m1R/M and b = m2R/M . The distances from the massless body to
mass m1 and m2 are respectively given by

R1 =
√

(X − X1)2 + (Y − Y1)2,

R2 =
√

(X − X2)2 + (Y − Y2)2.
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Figure 3.1: The fixed and rotating coordinate systems.

In terms of these variables, the gravitational potential is given by

V = −
k2m1

R1

−
k2m2

R2

.

Then the equations of motion of m3 in the fixed coordinate system are

Ẍ = −
dV

dX
, (3.1a)

Ÿ = −
dV

dY
. (3.1b)

Since the two primaries are traveling in circular orbits, their coordinates can be
defined as, denoting time by t,

X1 = b cos ωt,

Y1 = b sin ωt,

X2 = −a cos ωt,

Y2 = −a sin ωt.

Therefore, we can write Eqs. (3.1) as

Ẍ = −
k2m1(X − b cos ωt)

R3

1

−
k2m2(X + a cos ωt)

R3

2

, (3.2a)
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Ÿ = −
k2m1(Y − b sin ωt)

R3

1

−
k2m2(Y + a sin ωt)

R3

2

. (3.2b)

We want to convert this to a coordinate system that will result in a potential with
no explicit dependence on time. We transform to a rotating frame. Let (x, y) be the
coordinates of the massless body in the rotating frame. Then

X = x cos ωt − y sin ωt,

Y = x sin ωt + y cos ωt.

We transform to the complex variables z = x + iy and Z = X + iY , where i2 = −1.
Let Z = zeiωt, Z1 = beiωt, and Z2 = −aeiωt. Then

R1 = |Z − Z1| ,

R2 = |Z − Z2| ,

or
R1 = |z − b| =

√

(x − b)2 + y2,

R2 = |z + a| =
√

(x + a)2 + y2.

Converting the left-hand sides of Eqs. (3.2) to complex notation and making substi-
tutions in the right-hand sides of these equations gives the following complex form of
the equations of motion in the rotating system:

z̈ + 2ωiż − ω2z = −
k2m1(z − b)

|z − b|3
−

k2m2(z + a)

|z + a|3
,

of which the real and imaginary parts are

ẍ − 2ωẏ − ω2x = −
k2m1(x − b)

R3

1

−
k2m2(x + a)

R3

2

, (3.3a)

ÿ + 2ωẋ − ω2y = −
k2m1y

R3

1

−
k2m2y

R3

2

, (3.3b)

respectively. Note that the right-hand side has no explicit dependence on time.
We now want to express this in dimensionless coordinates. Let

µ1 =
m1

M
=

a

R
,

µ2 =
m2

M
=

b

R
,

t = ωt,
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x =
x

R
,

y =
y

R
,

ζ =
X

R
,

η =
Y

R
,

r1 =
R1

R
,

r2 =
R2

R
.

Note that µ1 + µ2 = 1. The nondimensional form of Eqs. (3.3) becomes

ẍ − 2ẏ = −
µ1(x − µ2)

r3

1

−
µ2(x + µ1)

r3

2

+ x, (3.4)

ÿ + 2ẋ = −
µ1y

r3

1

−
µ2y

r3

2

+ y, (3.5)

where
r2

1
= (x − µ)2 + y2,

r2

2
= (x + 1 − µ)2 + y2,

and µ = µ2. The Hamiltonian is

H =
1

2
(ẋ2 + ẏ2) −

1

2
(y2 + x2) −

1 − µ

r1

−
µ

r2

,

where r1 and r2 are defined above.

3.2 Integration

Let
q1 = x,

q2 = y,

p1 = ẋ − y,

p2 = ẏ + x.

The Hamiltonian then becomes

H =
1

2
(p2

1
+ p2

2
) + p1q2 − p2q1 −

1 − µ

r1

−
µ

r2

,
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where r1 and r2 are now
r2

1
= (q1 − µ)2 + q2

2
,

r2

2
= (q1 + 1 − µ)2 + q2

2
.

The time derivatives of the four variables are

q̇1 =
∂H

∂p1

= p1 + q2, (3.6a)

q̇2 =
∂H

∂p2

= p2 − q1, (3.6b)

ṗ1 = −
∂H

∂q1

= p2 −
1 − µ

r3

1

(q1 − µ) −
µ

r3

2

(q1 + 1 − µ), (3.6c)

ṗ2 = −
∂H

∂q2

= −p1 −
1 − µ

r3

1

q2 −
µ

r3

2

q2. (3.6d)

Note that when differentiating the Hamiltonian with respect to one variable, the
other variables are kept fixed. The Hamiltonian can now be rewritten as

H =
1

2
(q̇2

1
+ q̇2

2
) −

1

2
(q2

1
+ q2

2
) −

1 − µ

r1

−
µ

r2

. (3.7)

The conventional predictor is (refer to Eq. (2.1a)):

q̃i = qi + q̇iτ,

p̃i = pi + ṗiτ,

for i = 1, 2. Note that, unless specified otherwise, the variables are functions of t.
Let

ξ1 =
1

2
q2

1
, (3.8a)

ξ2 =
1

2
q2

2
, (3.8b)

ξ3 =
1

2
q̇2

1
−

1 − µ

r1

−
µ

r2

, (3.8c)

ξ4 =
1

2
q̇2

2
. (3.8d)

Here
H = −ξ1 − ξ2 + ξ3 + ξ4 (3.9)

and H is written as a linear functions of the ξs. Differentiating the ξs with respect
to time, we get

ξ̇1 = q1q̇1,

ξ̇2 = q2q̇2,

15



ξ̇4 = q̇2q̈2 = q̇2(ṗ2 − q̇1),

ξ̇3 = ξ̇1 + ξ̇2 − ξ̇4,

upon making use of Eq. (3.9) together with the conservation of H. The conservative
corrector is given by

ξi(t + τ) = ξi +
τ

2
(ξ̇i + ˙̃ξi),

for i = 1, . . . , 4 (refer to Eq. (2.1b)), where ξ̃i is simply Eq. (3.8) evaluated at q̃i, p̃i

and t + τ . To invert, we take each variable qi and pi and write it as a function of ξi.
We find

q1 = sgn(q̃1)
√

2ξ1,

q2 = sgn(q̃2)
√

2ξ2,

and, on using Eqs. (3.6a) and (3.6b),

p1 = −q2 + sgn(p̃1 + q̃2)

√

2ξ3 +
2(1 − µ)

r1

+
2µ

r2

,

p2 = q1 + sgn(p̃2 − q̃1)
√

2ξ4.

The initial conditions are those from Ascher (1998). These initial conditions pro-
duce the orbit of the massless body in the rotating frame. I inverted to the fixed
frame and plotted all three orbits in Fig. 3.2 and Fig. 3.3. Here, τ = 0.0015 and
the period is t = 17.1 in the rotating frame. Time runs from t = 0 to t = 17.1.
The orbit for the predictor–corrector starts to look like the orbit for the conservative
predictor–corrector as the time step is reduced to τ = 0.001.

This example assumes that the mass of one body is negligible to the other two
masses, and that the other two masses are travelling in circular orbits. The rest of this
paper discusses the general case of three or more bodies: no restrictions are placed on
the masses of the bodies, and their orbits do not have to be circular, or even periodic.
In the graphs, each color represents one of the bodies.
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Figure 3.2: The conservative predictor–corrector solution for the restricted three-body
problem.
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Figure 3.3: The predictor–corrector solution for the restricted three-body problem.
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Chapter 4

General Three-Body Problem

4.1 Derivation of the Equations of Motion

The following derivation of the equations of motion of the general three-body problem
in a plane is taken from Barrow-Green (1997), Kovalevsky (1967), and Szebehely
(1967).

Assume that there are three bodies m1, m2, and m3 with position vectors r1, r2,
and r3, where each ri is at location (xi, yi). Define rij = rj − ri, where i, j = 1, 2, 3.
The distances between the three bodies are

rij =
√

(xj − xi)2 + (yj − yi)2.

The potential is

V = −
km1m2

r12

−
km2m3

r23

−
km1m3

r13

, (4.1)

where k is the gravitational constant. The equations of motion are

mir̈i = −
∂V

∂ri

,

where i = 1, 2, 3. The system consists of three second-order differential equations for
the vectors ri, written as follows:

m1r̈1 =
km1m2(r2 − r1)

r3

12

+
km1m3(r3 − r1)

r3

13

,

m2r̈2 =
km1m2(r1 − r2)

r3

21

+
km2m3(r3 − r2)

r3

23

,

m3r̈3 =
km1m3(r1 − r3)

r3

31

+
km2m3(r2 − r3)

r3

32

.
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Note that
∑

3

i=1
mir̈i = 0, which implies the conservation of linear momentum:

3
∑

i=1

miṙi = a,

and so
3

∑

i=1

miri = at + b,

where a and b are constants of integration. If we set a = b = 0, then the center of
mass is at the origin. The conservation of angular momentum may be written as

3
∑

i=1

ri×miṙi = c,

where c is a constant of integration. Finally, the conserved Hamiltonian can be
written as:

H =

3
∑

i=1

miṙ
2

i + V, (4.2)

where V is given by Eq. (4.1). Using these integrals allows us to reduce the number
of free variables, making the system easier to integrate.

However, due to inaccuracies that arise when discretizing the above equations,
many algorithms written to integrate the above system will not guarantee the conser-
vation of linear momentum, angular momentum, and the energy. Therefore, it was
helpful to convert to Jacobi coordinates, where the linear momentum and center of
mass constraints are used to reduce the number of degrees of freedom in the equations
of motion. The remaining constraints are forced constant by conservative integration.
Information on Jacobi coordinates can be found in Khilmi (1961), Pollard (1966), and
Roy (1988).

The idea behind Jacobi coordinates is this: begin with the equations of motion
above. Let r = r2−r1, where r = (rx, ry). Set M = m1 +m2 +m3 and µ = m1 +m2.
The location of the center of mass of m1 and m2 is at µ−1(m1r1 + m2r2), or since
m1r1 + m2r2 + m3r3 = 0, at −µ−1m3r3. Take ρ to be the vector from the center
of mass of the first two bodies to the third body, where ρ = (ρx, ρy). Then ρ =
r3 + µ−1m3r3 = Mµ−1r3 (see Fig. 4.1).

Therefore,
r2 − r1 = r,

r3 − r1 = ρ + m2µ
−1r,

r3 − r2 = ρ − m1µ
−1r.

In these coordinates, following Eq. (4.2), the Hamiltonian can be written as

H =
1

2
g1(ṙ

2

x + ṙ2

y) +
1

2
g2(ρ̇

2

x + ρ̇2

y) + V
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Figure 4.1: Jacobi coordinates for the general three-body problem.

in terms of the reduced masses g1 = m1m2µ
−1 and g2 = m3M

−1µ, and where V is
given by Eq. (4.1).

The next step is to convert the above equations to polar coordinates. Define
rx = r cos θ, ry = r sin θ, r = |r| , ρx = ρ cos Θ ρy = ρ sin Θ, and ρ = |ρ| .

In polar coordinates, the Hamiltonian can be rewritten

H =
p2

2g1

+
P 2

2g2

+
`2

2g1r2
+

L2

2g2ρ2
+ V (r, ρ, θ, Θ), (4.3)

where p is the linear momentum of the first reduced mass, ` is the angular momentum
of the first reduced mass, P is the linear momentum of the second reduced mass, L
is the angular momentum of the second reduced mass, and V = V (r, ρ, θ, Θ) is the
potential energy of the system,

V = −
m1m2

r
−

m1m3
√

ρ2 + m2

2
µ−2r2 + 2ρm2µ−1r cos(Θ − θ)

−
m2m3

√

ρ2 + m2

1
µ−2r2 − 2ρm1µ−1r cos(Θ − θ)

. (4.4)

The Hamiltonian H and the total angular momentum, L = ` + L, are conserved,
and the center of mass remains at the origin for all time.

The equations of motion in polar coordinates (derived the same way as in the
Kepler problem) are

ṙ =
∂H

∂p
=

p

g1

, (4.5a)
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θ̇ =
∂H

∂`
=

`

g1r2
, (4.5b)

ṗ = −
∂H

∂r
=

`2

g1r3
−

∂V

∂r
, (4.5c)

˙̀ = −
∂H

∂θ
= −

∂V

∂θ
, (4.5d)

ρ̇ =
∂H

∂P
=

P

g2

, (4.5e)

Θ̇ =
∂H

∂L
=

L

g2ρ2
, (4.5f)

Ṗ = −
∂H

∂ρ
=

L2

g2ρ3
−

∂V

∂ρ
, (4.5g)

L̇ = −
∂H

∂Θ
= −

∂V

∂Θ
. (4.5h)

4.2 Integration

We transform the variables as follows:

ξ1 =
p2

2g1

+
`2

2g1r2
,

ξ2 =
P 2

2g2

+
L2

2g2ρ2
,

ξ3 = V,

ξ4 = ρ,

ξ5 = `,

ξ6 = L,

ξ7 = θ,

ξ8 = Θ.

All variables are functions of t, unless otherwise specified. Note that our conserved
quantity H becomes a linear function of the transformed variables:

H = ξ1 + ξ2 + ξ3.

The time derivatives become

ξ̇1 =
pṗ

g1

+
`r2 ˙̀− r`2ṙ

g1r4
,
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ξ̇2 =
PṖ

g2

+
Lρ2L̇ − ρL2ρ̇

g2ρ4
,

ξ̇3 =
∂V

∂t
,

ξ̇4 = ρ̇,

ξ̇5 = ˙̀,

ξ̇6 = L̇,

ξ̇7 = θ̇,

ξ̇8 = Θ̇.

The procedure for integration that I use is similar to what I had done with the
Kepler problem. Upon inverting to find the original variables as functions of the
transformed variables, we obtain

` = ξ5,

L = ξ6,

θ = ξ7,

Θ = ξ8,

ρ = ξ4,

r = g(ξ3, ρ, θ, Θ),

p = sgn(p̃)

√

2g1

(

ξ1 −
`2

2g1r2

)

,

P = sgn(P̃ )

√

2g2

(

ξ2 −
L2

2g2ρ2

)

.

The value of the inverse function g defined by V (g(ξ3, ρ, θ, Θ), ρ, θ, Θ) = ξ3 is deter-
mined at fixed ρ, θ, Θ with a Newton–Raphson method, using the predicted value r̃
as an initial guess.

The initial conditions for Fig. 4.2 and Fig. 4.3 are computed by Simó (2000) and
cited in Chenciner & Montgomery (2000). Here, τ = 6.5 × 10−5 and each mass goes
once around the figure eight. The period is 6.33. As τ is decreased, the graph of
the predictor–corrector begins to look more like that of the conservative predictor–
corrector. When τ = 5.1× 10−5, the two graphs are identical in appearance. In these
graphs, each color represents one of the bodies.

In the next chapter, I extend the above results to the general n-body case, where
n ≥ 2.
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Figure 4.2: The conservative predictor–corrector solution for the general three-body
problem.
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Figure 4.3: The predictor–corrector solution for the general three-body problem.
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Chapter 5

General n-Body Problem

5.1 Derivation of the Equations of Motion

The Jacobi coordinates can be extended to n bodies in a plane, as discussed by Roy
(1988) and Khilmi (1961), where n ≥ 2.

Let n masses mi have radius vectors ri, where i = 1, . . . , n. Define rij = rj − ri

as the vector joining mi to mj. Also define Ci to be the center of mass of the first i
bodies, where i = 2, . . . , n, and choose the origin of the coordinate system so that
Cn = 0. Let the vectors ρi be defined such that

ρ2 = r12,

ρ3 = r3 − C2,

. . .

ρn = rn − Cn−1.

(See Fig. 5.1.) Also

rk` = ρ` − ρk +

`−1
∑

j=k

mjρj

Mj

,

where 1 ≤ k < ` ≤ n, and Mj =
∑j

k=1
mk.

1

The reduced masses are
g2 =

m2m1

M2

,

g3 =
m3(m2 + m1)

M3

,

. . .

gn =
mnMn−1

Mn

.

1Note that ρ1 is a dummy variable that cancels out in the expression for r12.
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Figure 5.1: Jacobi coordinates for the general n-body problem.

The equations of motion in polar coordinates are just an extension of the three-
body problem:

ρ̇i =
∂H

∂pi

=
pi

gi

, (5.1a)

θ̇i =
∂H

∂`i

=
`i

giρ2

i

, (5.1b)

ṗi = −
∂H

∂ρi

=
`2

i

giρ
3

i

−
∂V

∂ρi

, (5.1c)

˙̀
i = −

∂H

∂θi

= −
∂V

∂θi

, (5.1d)

where ρi, θi, pi and `i are the radius, angle, linear momentum, and angular momen-
tum, respectively, of the ith reduced mass, for i = 2, . . . , n. The potential is defined
to be

V = −
n

∑

i,j=1

i<j

mimj

rij

and the total kinetic energy is

K =
1

2

n
∑

i=2

(

p2

i

gi

+
`2

i

giρ
2

i

)

.

It is easy to verify that the Hamiltonian H = K + V is conserved by Eqs. (5.1). Its
derivatives are taken with respect to one variable at a time; all the other variables are
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held fixed. The total angular momentum,
∑n

i=2
`i, is also conserved and the center

of mass remains at the origin for all time.

5.2 Integration

Transform (ρ, θ, p, `) to (ζ, θ, η, `). Set up the variables as follows:

ζ2 = V,

ζi = ρi, for i = 3, . . . , n,

ηi =
p2

i

2gi

+
`2

i

2giρ
2

i

, for i = 2, . . . , n.

Note that H is a linear function of the transformed variables:

H =
n

∑

i=2

ηi + ζ2.

and the total angular momentum is L =
∑n

i=2
`i. The time derivatives of ζ and η are

given by

ζ̇2 =

n
∑

i=2

(

∂V

∂ρi

ρ̇i +
∂V

∂θi

θ̇i

)

,

ζ̇i = ρ̇i, for i = 3, . . . , n,

η̇i =
piṗi

gi

+
`iρ

2

i
˙̀
i − ρi`

2

i ρ̇i

giρ
4

i

, for i = 2, . . . , n.

Recall that
ρ̃i = ρi + ρ̇iτ,

θ̃i = θi + θ̇iτ,

p̃i = pi + ṗiτ,

˜̀
i = `i + ˙̀

iτ

is the predictor for each variable xi and the corrector is

ζi(t + τ) = ζi +
τ

2
(ζ̇i + ˙̃ζi),

θi(t + τ) = θi +
τ

2
(θ̇i + ˙̃θi),

ηi(t + τ) = ηi +
τ

2
(η̇i + ˙̃ηi).

`i(t + τ) = `i +
τ

2
( ˙̀

i +
˙̃
`i),
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for i = 2, . . . , n.
We then invert to get our original variables as functions of the temporary trans-

formed variables:
`i(t + τ) = `i +

τ

2
( ˙̀

i +
˙̃
`i),

θi(t + τ) = θi +
τ

2
(θ̇i + ˙̃θi),

ρi = ζi for i = 3, . . . , n,

ρ2 = g(ζ2, ρ3, . . . , ρn, θ),

pi = sgn(p̃i)

√

2gi

(

ηi −
`2

i

2giρ
2

i

)

, for i = 2, . . . , n.

The value of the inverse function g defined by

V (g(ζ2, ρ3, . . . , ρn, θ), ρ3, . . . , ρn, θ) = ζ2

is determined at fixed ρ3, . . . , ρn,θ with a Newton–Raphson method, using the pre-
dicted value ρ̃2 as an initial guess.

The initial conditions for Fig. 5.2 and Fig. 5.3 are computed by Simó (2000) and
cited in Chenciner & Montgomery (2000). Here, τ = 2×10−3 and each mass goes once
around the curve. The period is 6.33. As τ is decreased, the graph of the predictor–
corrector begins to look more like that of the conservative predictor–corrector. When
τ = 1 × 10−3, the two graphs identical in appearance. In these graphs, each color
represents one of the bodies.
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Figure 5.2: The conservative predictor–corrector solution for the general four-body
problem.
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Figure 5.3: The predictor–corrector solution for the general four-body problem.
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Chapter 6

Conclusion

In this work, we have seen that conservative integration algorithms can shorten the
time it takes a computer to integrate a system of equations accurately.

In the restricted three-body problem, when the Hamiltonian was conserved, I was
able to obtain bounded orbits for all three bodies with a much larger time step than
when I was not using conservative integration.

The general n-body problem was a much more difficult problem to solve. For
planar motion, this problem has six invariants, all of which need to be considered
when integrating. Making use of Jacobi coordinates for this problem was very useful,
since the problem was converted to an (n − 1)-body problem through the use of
the linear momentum and center of mass constraints. (However, note that there are
different ways of using these constraints to reduce the number of degrees of freedom.)
The advantage of this is that fewer quantities were left for me to conserve when
designing the algorithm. As well, the kinetic energy term of the Hamiltonian remains
in diagonal form (a sum of squares) even after converting to Jacobi coordinates. This
advantage made it easier for me rewrite the Hamiltonian as a linear function of the
transformed variables.

From this project, I have learned a lot about the fundamentals of physics, nu-
merical integration of ordinary differential equations, and classical mechanics. Future
work in this area can include modifying the code for the three-dimensional case,
and regularizing the equations of motions to handle collisions and close approaches.
Further work can include building in precession, nutation, and tidal effects into the
equations of motion.
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