Linearization, Taylor polynomials, hyperbolic functions

Material covered: Chapter 3, Sections 3.10, 3.11

Linearization

Definition: For values of x near a, the linear or tangent line approximation of f at a is given by

$$f(x) \approx f(a) + f'(a)(x - a)$$

where we think of a as fixed, so that $f(a)$ and $f'(a)$ are constant. In other words, this is a linear function that approximates $f(x)$ well near a.
Definition: If \(y = f(x) \), where \(f \) is a differentiable function, then the differential of \(x \), \(dx \), can be thought of as an independent variable, while the differential of \(y \), \(dy \), is given in terms of \(dx \) as

\[
dy = f'(x)dx
\]

Note: There is a difference between \(\Delta y \), the amount that the curve \(y = f(x) \) rises or falls in the \(y \)-direction, and the differential \(dy \), which is the amount that the tangent line rises or falls.
Taylor polynomials

Idea: We want to approximate a function $f(x)$ near a point a using a polynomial of degree n

Definition: The Taylor polynomial of degree n approximating $f(x)$ for x near a is given by

$$f(x) \approx P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^n(a)}{n!}(x - a)^n$$
Special case: Maclaurin polynomials are Taylor polynomials about $x = 0$.

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^n(0)}{n!}x^n$$
Hyperbolic functions

Definition of hyperbolic functions:

\[
\begin{align*}
\sinh x &= \frac{e^x - e^{-x}}{2} \\
\cosh x &= \frac{e^x + e^{-x}}{2} \\
\tanh x &= \frac{\sinh x}{\cosh x} \\
\csch x &= \frac{1}{\sinh x} \\
\sech x &= \frac{1}{\cosh x} \\
\coth x &= \frac{\cosh x}{\sinh x}
\end{align*}
\]
Hyperbolic identities:

\[
\begin{align*}
\sinh(-x) & = -\sinh x \\
\cosh(-x) & = \cosh x \\
\cosh^2 x - \sinh^2 x & = 1 \\
1 - \tanh^2 x & = \text{sech}^2 x \\
\sinh(x + y) & = \sinh x \cosh y + \cosh x \sinh y \\
\cosh(x + y) & = \cosh x \cosh y + \sinh x \sinh y
\end{align*}
\]
Derivatives of hyperbolic functions:

\[
\begin{align*}
\frac{d}{dx} \sinh x &= \cosh x \\
\frac{d}{dx} \cosh x &= \sinh x \\
\frac{d}{dx} \tanh x &= \operatorname{sech}^2 x \\
\frac{d}{dx} \operatorname{csch} x &= -\operatorname{csch} x \coth x \\
\frac{d}{dx} \operatorname{sech} x &= -\operatorname{sech} x \tanh x \\
\frac{d}{dx} \coth x &= -\operatorname{csch}^2 x
\end{align*}
\]
Inverse hyperbolic functions:

\[y = \sinh^{-1} x \iff \sinh y = x \]
\[y = \cosh^{-1} x \iff \cosh y = x, \text{ and } y \geq 0 \]
\[y = \tanh^{-1} x \iff \tanh y = x \]

Inverse hyperbolic functions and natural logarithms:

\[\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right), x \in \mathbb{R} \]
\[\cosh^{-1} x = \ln \left(x + \sqrt{x^2 - 1} \right), x \geq 1 \]
\[\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right), -1 < x < 1 \]

8
Derivatives of inverse hyperbolic functions:

\[
\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1 + x^2}} \\
\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}} \\
\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} \\
\frac{d}{dx} \text{csch}^{-1} x = -\frac{1}{|x|\sqrt{1 + x^2}} \\
\frac{d}{dx} \text{sech}^{-1} x = -\frac{1}{x\sqrt{1 - x^2}} \\
\frac{d}{dx} \coth^{-1} x = \frac{1}{1 - x^2}
\]