Automorphisms of toroidal Lie superalgebras

Dimitar Grantcharov a,*, Arturo Pianzola b, c, 1

a Department of Mathematics, San Jose State University, San Jose, CA 95192-0103, USA
b Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
c Instituto Argentino de Matemática, Saavedra 15, (1083) Buenos Aires, Argentina

Received 13 April 2007
Available online 18 March 2008
Communicated by Vera Serganova

Abstract

We give a description of the algebraic group Aut(g) of automorphisms of a simple finite-dimensional Lie superalgebra g over an algebraically closed field k of characteristic 0, which is obtained by viewing g as a module over a Levi subalgebra of its even part. As an application, we give a detailed description of the group of automorphism of the k-Lie superalgebra g ⊗k R for a large class of commutative rings R.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Automorphisms; Toroidal superalgebras

1. Introduction

The group Aut(g) of automorphisms of a finite-dimensional simple Lie superalgebra over an algebraically closed field k of characteristic 0 has been described in [S] and [GP]. The automorphisms of the finite-dimensional contragredient Lie superalgebras have been classified in [FSS1] and [vdL]. The results herein somehow refine and complement those of [S] and [GP], and provide a framework whereby the explicit nature of the abstract group of R-points of Aut(g) can be determined for a large class of interesting rings R. In the Lie algebra case, the group Aut(g) is a split extension of a finite constant group (the symmetries of the Dynkin diagram) by a simple group (the adjoint group, which is also the connected component of the identity of Aut(g)). By

* Corresponding author.
E-mail addresses: grantcharov@math.sjsu.edu (D. Grantcharov), a.pianzola@math.ualberta.ca (A. Pianzola).
1 Supported by the NSERC Discovery Grant program, and by CONICET.

0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2008.01.031
contrast, in the super case the analogous extension is not split, and the connected component of the identity of $\text{Aut}(\mathfrak{g})$ need not even be reductive (let alone simple).

Our approach is to view \mathfrak{g} as a module over a Levi subalgebra \mathfrak{g}_0^{ss} of the even part of \mathfrak{g}. We will introduce three subgroups of $\text{Aut}(\mathfrak{g})$; denoted by $\text{Aut}(\mathfrak{g}; \mathfrak{g}_0^{ss})$, $\text{Aut}(\mathfrak{g}; \Pi_0)$ and \mathbf{H}, which help clarify the nature of $\text{Aut}(\mathfrak{g})$ and its outer part. These subgroups are interesting on their own right, and should prove useful in any future classification of multiloop algebras of \mathfrak{g} via Galois cohomology (see [P4] and [P5] for the case of affine Lie algebras, and [GP] for the case of affine Lie superalgebras. See also [GiPi1] and [GiPi2] for toroidal Lie algebras).

As another application, we give an explicit description of the group of automorphisms of the (in general infinite-dimensional) k-Lie superalgebra $\mathfrak{g} \otimes_k R$ for a large class of commutative ring extensions R/k. This result generalizes the simple Lie algebra situation studied in [P1] (which is considerably easier by comparison). Of particular interest is the “toroidal case,” namely when $R = k[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$.

2. Notation and conventions

Throughout k will be an algebraically closed field of characteristic zero. The category of associative commutative unital k-algebras will be denoted by k-alg. If V is a vector space over k, and R an object of k-alg, we set $V_R = V \otimes_k R$. For a nilpotent Lie algebra \mathfrak{a}, a finite-dimensional \mathfrak{a}-module M, and $\lambda \in \mathfrak{a}^*$, we denote by M^λ the subspace of M on which $\mathfrak{a} - \lambda(\mathfrak{a})$ acts nilpotently for every $\alpha \in \mathfrak{a}$. We have then $M = \bigoplus_{\lambda \in \mathfrak{a}^*} M^\lambda$.

In what follows, $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ will denote a simple finite-dimensional Lie superalgebra over k (see [K] and [Sch] for details). A Cartan subsuperalgebra $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$ of \mathfrak{g}, is by definition a selfnormalizing nilpotent subsuperalgebra. Then \mathfrak{h}_0 is a Cartan (in particular nilpotent) subalgebra of \mathfrak{g}_0, and \mathfrak{h}_1 is the maximal subspace of \mathfrak{g}_1 on which \mathfrak{h}_0 acts nilpotently (see Proposition 1 in [PS] for the proof). We denote by $\Delta = \Delta(\mathfrak{g}, \mathfrak{h})$ the roots of \mathfrak{g} with respect to \mathfrak{h}. Thus $\Delta = \{ \alpha \in \mathfrak{h}_1^*, \alpha \neq 0 \mid \mathfrak{g}^{\alpha} \neq 0 \}$. For $\bar{i} \in \mathbb{Z}/2\mathbb{Z}$ we set $\Delta_{\bar{i}} = \{ \alpha \in \mathfrak{h}_0^* \mid \mathfrak{g}^{\alpha} \neq 0 \}$. Then $\Delta = \Delta_{\bar{0}} \cup \Delta_{\bar{1}}$.

The root lattice $\mathbb{Z}\Delta$ of $(\mathfrak{g}, \mathfrak{h})$ will be denoted by $Q(\mathfrak{g}, \mathfrak{h})$.

A linear algebraic group G over k (in the sense of [B]) can be thought as a smooth affine algebraic group (in the sense of [DG]) via its functor of points $\text{Hom}_k(k[G], -)$. We will find both of these points of view useful, and will henceforth refer to them simply as “Algebraic Groups” (and trust that the reader will be able at all times to understand which of these two viewpoints is being taken).

Let $\text{Aut}_k(\mathfrak{g})$ be the (abstract) group of automorphisms of \mathfrak{g}. We point out that by definition, all automorphisms of a Lie superalgebra preserve the given $\mathbb{Z}/2\mathbb{Z}$-grading. It is clear that $\text{Aut}_k(\mathfrak{g})$ gives rise to a linear algebraic group over k, which we denote by $\text{Aut}(\mathfrak{g})$, whose functor of points is given by $\text{Aut}(\mathfrak{g})(R) = \text{Aut}_k(\mathfrak{g}_R)$; the automorphisms of the R-Lie superalgebra $\mathfrak{g}_R = \mathfrak{g} \otimes_k R$.

We will make repeated use of the following affine k-groups: $\text{Hom}(U, V) : R \to \text{Hom}_{R-mod}(U \otimes R, V \otimes R)$ where U and V are finite-dimensional k-spaces, $G_a : R \to (R, +)$, and $G_m : R \to R^\times$ (the units of R). In addition we will also use many of the classical groups GL, SL, etc.; as well as the groups μ_n defined by $\mu_n(R) := \{ r \in R \mid r^n = 1 \}$.

Recall that there are three types of simple finite-dimensional Lie superalgebras. We use the notation of [Pen].

\[\text{These types are not mutually exclusive, and some overlap is indeed present in small rank.} \]
Type I. \(\mathfrak{sl}(m|n), \mathfrak{psl}(r|r), \mathfrak{osp}(2|2n) \), and \(\mathfrak{sp}(l) \) \((m > n, r \geq 2, l \geq 3)\). Every Lie superalgebra \(\mathfrak{g} \) of Type I comes equipped with a \(\mathbb{Z} \)-grading \(\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \) with \(\mathfrak{g}_0 = \mathfrak{g}_0 \) and \(\mathfrak{g}_1 = \mathfrak{g}_{-1} \oplus \mathfrak{g}_1 \). In addition, \(\mathfrak{g}_0 \) is reductive and \(\mathfrak{g}_{\pm 1} \) are irreducible \(\mathfrak{g}_0 \)-modules.

Type II. \(\mathfrak{osp}(m|2n), \mathfrak{psl}(r)_1, F(4), G(3), \) and \(D(\alpha) \) \((m \neq 2, l \geq 3)\). For these Lie superalgebras \(\mathfrak{g}_0 \) is reductive and \(\mathfrak{g}_1 \) is an irreducible \(\mathfrak{g}_0 \)-module. We set \(\mathfrak{g}_i := \mathfrak{g}_i, i = 0, 1 \).

Cartan type. \(W(n), S(m), S'(2l), H(r) \) \((n \geq 2, m \geq 3, l \geq 2, r \geq 5)\). Every Lie superalgebra \(\mathfrak{g} \) of Cartan type comes equipped with a choice of subspaces \(\mathfrak{g}_i \) for each \(i \in \mathbb{Z} \) (see Appendix A for details). The Lie algebra \(\mathfrak{g}_0 \) is not reductive but admits a \(\mathbb{Z} \)-grading \(\mathfrak{g}_0 = \mathfrak{g}_0 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_r \) for which \(\mathfrak{g}_0 \) is reductive. The Lie superalgebra \(\mathfrak{g} \) itself, for all \(\mathfrak{g} \) except \(\mathfrak{g} = S'(2l) \), admits a \(\mathbb{Z} \)-grading \(\mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_r \), where \(\mathfrak{g}_{-1} \) and \(\mathfrak{g}_r \) are irreducible \(\mathfrak{g}_0 \)-modules. Note that the notation \(\mathfrak{g}_n \) for even \(n \) is not ambiguous (i.e., the same space appears as the degree \(n \) component of the \(\mathbb{Z} \)-gradings of \(\mathfrak{g}_0 \) and of \(\mathfrak{g} \) mentioned above).

We thus have a \(\mathbb{Z} \)-grading \(\mathfrak{g}_0 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_r \) of \(\mathfrak{g}_0 \) in all cases \((r = 0 \text{ if } \mathfrak{g} \text{ is of Type I or Type II})\). Furthermore, \(\mathfrak{g} \) admits a \(\mathbb{Z} \)-grading \(\mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_r \) for \(\mathfrak{g} \) of Type I or Cartan type except for \(\mathfrak{g} = S'(2l) \). For convenience, all of the above will be referred to as standard \(\mathbb{Z} \)-gradings.

3. Structure of \(\mathfrak{g} \) with respect to \(\mathfrak{g}_0^{ss} \)

We set \(\mathfrak{g}_0^{ss} := [\mathfrak{g}_0, \mathfrak{g}_0] \). This is the semisimple part of the reductive Lie algebra \(\mathfrak{g}_0 \), and a Levi subalgebra of \(\mathfrak{g}_0 \). Henceforth we fix a Cartan subsuperalgebra \(\mathfrak{h} \) of \(\mathfrak{g} \) for which \(\mathfrak{h}_0^{ss} := \mathfrak{h}_0 \cap \mathfrak{g}_0^{ss} \) is a Cartan subalgebra of \(\mathfrak{g}_0^{ss} \). If \(\mathfrak{g}_0 \) is reductive, then every Cartan subsuperalgebra of \(\mathfrak{g} \) has this property. For the remaining cases, namely when \(\mathfrak{g} \) is of Cartan type, the choice of \(\mathfrak{h} \) is specified in Appendix A. The root system of \((\mathfrak{g}_0^{ss}, \mathfrak{h}_0^{ss}) \) will be denoted by \(\Delta_{\mathfrak{g}_0^{ss}} \) and the corresponding root lattice by \(Q_{\mathfrak{g}_0^{ss}} \). We fix once and for all a base \(\Pi_0 \) of \(\Delta_{\mathfrak{g}_0^{ss}} \). Let \(p : \mathfrak{h}_0^s \to \mathfrak{h}_0^{ss} \) be the canonical map (namely the transpose of the inclusion \(\mathfrak{h}_0^{ss} \subset \mathfrak{h}_0 \)).

Remark 3.1. Assume \(\mathfrak{V} \subseteq \mathfrak{g} \) is an \(\mathfrak{h}_0^{ss} \)-module (under the adjoint action). Then \(\mathfrak{V} \) can be viewed as an \(\mathfrak{h}_0^{ss} \)-module as well. The generalized weight spaces \(\mathfrak{V}^\lambda \) are thus defined for both actions. Note that in the last case, i.e., for \(\lambda \in \mathfrak{h}_0^{ss} \), we have \(\mathfrak{V}^\lambda = \{ \mathfrak{x} \in \mathfrak{V} | [h, \mathfrak{x}] = \lambda(h)\mathfrak{x}, \text{ for all } h \in \mathfrak{h}_0^{ss} \} \). Indeed, since \(\mathfrak{h}_0^{ss} \) is a Cartan subalgebra of the semisimple Lie algebra \(\mathfrak{g}_0^{ss} \) it acts semisimply on the \(\mathfrak{g}_0^{ss} \)-module \(\mathfrak{g} \), hence also on \(\mathfrak{V} \).

Lemma 3.2.

(i) The set of weights of the \((\mathfrak{g}_0^{ss}, \mathfrak{h}_0^{ss})\)-module \(\mathfrak{g} \) coincides with \(p(\Delta) \). Moreover, \(\mathfrak{g}^{p(\alpha)} = \{ \mathfrak{x} \in \mathfrak{g} | [h, \mathfrak{x}] = \alpha(h)\mathfrak{x}, \text{ for all } h \in \mathfrak{h}_0^{ss} \} \) whenever \(\alpha \in \Delta \).

(ii) The root lattice \(Q_{\mathfrak{g}_0^{ss}} \) is a sublattice of \(p(Q_{\mathfrak{g}}) \).

Proof. (i) follows from the previous remark.

(ii) follows from (i), and the fact that \(\mathfrak{g}_0^{ss} \) is a \(\mathfrak{g}_0^{ss} \)-submodule of \(\mathfrak{g} \).
Lemma 3.4. \(h \) for some \(x \) and therefore \(g \) in \(\ker(ad) \) (see Proposition 1.2.12 in [K]). Considering \(g \) has a nontrivial center then for \(0 \in \ker(ad) \) we consider first the case when \(\alpha \in \ker(ad) \) stabilizes the reverse inclusion, we consider first the case when \(\alpha \in \ker(ad) \) for example, for \(g = \mathfrak{psq}(n) \), \(P_{(\mathfrak{g}_0^0, \mathfrak{h}_0^0)}(\mathfrak{g}) = Q_{\mathfrak{h}_0^0} \) and \(\mathfrak{g}_0^0 \simeq \mathfrak{s}_n \).

If \(V \) is a finite-dimensional \(k \)-space, and \(\sigma \in \text{GL}_k(V) \), then \(\sigma^* \in \text{GL}_k(V^*) \) will denote the transpose inverse of \(\sigma \). Thus, under the natural pairing \(\langle - , - \rangle : V^* \times V \to k \) we have \(\langle \sigma^* \alpha , x \rangle = \langle \alpha , \sigma^{-1}x \rangle \).

Lemma 3.4. Assume \(\sigma \in \text{Aut}_k(\mathfrak{g}(R)) \) stabilizes \(\mathfrak{h}_0^0 \) and \(\mathfrak{g}_0^x(R) \). Then \((\sigma|_{\mathfrak{h}_0^0})^* \) stabilizes \(\Delta_{\mathfrak{g}_0^x} \).

Proof. A straightforward calculation shows that \(\sigma((\mathfrak{g}_0^x)\beta \otimes R) = (\mathfrak{g}_0^x)\sigma^*(\beta) \otimes R \) for any root \(\beta \) in \(\Delta_{\mathfrak{g}_0^x} \). \(\square \)

Lemma 3.5. Let \(i \in \mathbb{Z} \). Assume \(\alpha_0 \in p(\Delta) \) is such that \(\mathfrak{g}_{i_0}^x \neq 0 \). Then there exists a unique \(\alpha \in \Delta \) with the property that \(p(\alpha) = \alpha_0 \) and \(g^\alpha \cap \mathfrak{g}_i \neq 0 \). Moreover, \(\mathfrak{g}_{i_0}^\alpha = \mathfrak{g}^\alpha \cap \mathfrak{g}_i \).

Proof. First observe that the spaces \(\mathfrak{g}_i \) are naturally \(\mathfrak{h}_0^x \)-modules, so the notation \(\mathfrak{g}_i^\beta \) is meaningful for all \(\beta \in \mathfrak{h}_0^x \). The inclusion \(\mathfrak{g}_i^{p(\alpha)} \supseteq \mathfrak{g}^\alpha \cap \mathfrak{g}_i \) is obvious for every \(\alpha \in \Delta \) and \(i \in \mathbb{Z} \). To establish the reverse inclusion, we consider first the case when \(\mathfrak{h}_0 \subset \mathfrak{g}_0 \). If \(\mathfrak{h}_0 = \mathfrak{h}_0^0 \) (i.e. \(\mathfrak{g}_0 \) is semisimple), it is clear that \(\mathfrak{g}_i^{p(\alpha)} = \mathfrak{g}^\alpha \cap \mathfrak{g}_i \) for every \(\alpha \in \Delta \) and \(i \in \mathbb{Z} \). Let us assume now that \(\mathfrak{g}_0 \) has a nontrivial center \(\mathfrak{z} \). In this case we fix \(z \in \mathfrak{z} \) such that \(z = k\mathfrak{z} \) and \([z, y] = iy \) whenever \(y \in \mathfrak{g}_i \) (see Proposition 1.2.12 in [K]). Considering \(\mathfrak{g}_i \) as an \(\mathfrak{h}_0 \)-module we have that every nonzero \(x_0 \) in \(\mathfrak{g}_i^{\alpha_0} \) decomposes as a sum \(x_0 = \sum_{\alpha \in p^{-1}(\alpha_0) \cap \Delta} x_\alpha \) for some \(x_\alpha \in \mathfrak{g}^\alpha \cap \mathfrak{g}_i \) (recall that the action of \(\mathfrak{h}_0^{\alpha_0} \) on \(\mathfrak{g} \) is semisimple). But since \([z, x_\alpha] = ix_\alpha \) we have \(\alpha(z) = i \). Therefore \(x_0 \in \mathfrak{g}^\alpha \cap \mathfrak{g}_i \), where \(\alpha \in \Delta \) is determined uniquely by \(\alpha|_{\mathfrak{h}_0^x} = \alpha_0 \) and \(\alpha(z) = i \). In particular, \(\mathfrak{g}_{i_0}^{\alpha_0} \subseteq \mathfrak{g}^\alpha \cap \mathfrak{g}_i \) and therefore \(\mathfrak{g}_i^{\alpha_0} = \mathfrak{g}^\alpha \cap \mathfrak{g}_i \). If \(\alpha' \in \Delta \) is another root with the properties described in the lemma, then for \(0 \neq x' \in \mathfrak{g}^\alpha \cap \mathfrak{g}_i \) we have \([z, x'] = ix' \) and thus \(\alpha'(z) = i \). Hence \(\alpha' = \alpha \).

It remains to consider the case when \(\mathfrak{h}_0 \neq \mathfrak{h}_0^0 \cap \mathfrak{g}_0 \), which is present for \(\mathfrak{g} = H(n) \) only. Using the explicit description of \(\mathfrak{h}_0 \) provided in Appendix A we see that if \(h \in \mathfrak{h}_0 \), then \(h = h_0 + h_n \) for some \(h_0 \in \mathfrak{h}_0^0 \) and \(h_n \in \mathfrak{g}^2 = \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_{2r} \) (here \(r = \lfloor \frac{n-3}{2} \rfloor \)). Let \(x \) be a nonzero element in \(\mathfrak{g}_i^{\alpha_0} \) and let \(\alpha \) be any root in \(\Delta \) such that \(p(\alpha) = \alpha_0 \). Then the identities \(\alpha(h_n) = 0 \) and \((\text{ad}(h_0) - \alpha(h_0))(x) = 0 \) imply that \((\text{ad}(h) - \alpha(h))^N(x) = (\text{ad}(h_n))^N(x) \) and, in particular, \((\text{ad}(h) - \alpha(h))^N(x) \in \mathfrak{g}_{2N+i} \oplus \mathfrak{g}_{2N+i+2} \oplus \cdots \) from which it follows that \(x \in \mathfrak{g}^\alpha \cap \mathfrak{g}_i \) and thus \(\mathfrak{g}_i^{\alpha_0} = \mathfrak{g}^\alpha \cap \mathfrak{g}_i \). The uniqueness of \(\alpha \) follows from the fact that if \(x \in \mathfrak{g}_i^{\alpha_0} \) and \(\alpha_0 = p(\alpha) \), then \(x \in \mathfrak{g}^\alpha \). \(\square \)
If \(B \) is a basis of \(Q_S \), then \(p(B) \cap Q_S \) is not necessarily a basis of \(Q_S \). However, this statement is true to some extent as the following result shows.

Lemma 3.6. Suppose that either \(g = \mathfrak{psl}(2|2) \), or \(g \neq H(2k) \) with \(g_S \) simple.

(i) There exists a basis \(B \) of \(Q_S \) for which \(p(B) \cap \Delta_S \) is a base of \(\Delta_S \).

(ii) Every group homomorphism \(\tau \in \text{Hom}(Q_S, R^\times) \) can be extended to a group homomorphism \(\hat{\tau} \in \text{Hom}(Q_S, R^\times) \), i.e., \(\hat{\tau} = \tau \circ p \).

(iii) If \(\alpha \in B \) is such that \(p(\alpha) \in \Delta_S \), then \(g^{p(\alpha)} \cap g = g^{p(\alpha)} = (g_S)^{p(\alpha)} \).

Proof. (i) This statement follows by a case-by-case verification. We will use the notations and explicit description of the root systems provided in Appendix A of [Pen].

Case 1. \(g = \mathfrak{psl}(2|2) \). We set \(B = \{\varepsilon_1 - \varepsilon_2, \varepsilon_2 - \delta_1, \delta_1 - \delta_2\} \).

Case 2. \(g = \mathfrak{sl}(n|1) \). We set \(B = \{\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n - \delta\} \).

Case 3. \(g = \mathfrak{osp}(m|2n), m = 1, 2 \). In the case \(m = 1 \) we have that \(\Delta = \Delta_S \). For \(m = 2 \) we set \(B = \{\varepsilon_1 - \delta_1, \delta_1 - \delta_2, \ldots, \delta_{n-1} - \delta_n, 2\delta_n\} \).

Case 4. \(g = \mathfrak{sp}(n) \). Set \(B = \{-2\varepsilon_1, \varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n\} \).

Case 5. \(g = \mathfrak{psq}(n) \). In this case \(\Delta = \Delta_S \).

Case 6. \(g = W(n), S(n), \text{ or } S'(n) \) (\(n = 2l \) in the last case). Set \(B = \{\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n\} \).

Case 7. \(g = H(2l + 1) \). We set \(B = \{\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{l-1} - \varepsilon_l, \varepsilon_l\} \).

The second assertion follows directly from (i). It remains to show (iii). This assertion follows from Lemma 3.5 by verifying case by case that \(g^{\alpha} \cap g = 0 \) for \(\alpha \in B \). This verification is trivial if \(\mathfrak{h}_0 = \mathfrak{h}_S \) (see the proof of Lemma 3.5). In the remaining three cases we proceed as follows.

If \(g = \mathfrak{sl}(n|1) \) then \(g^{\varepsilon_i - \varepsilon_j} \cap g = g_0^{p(\varepsilon_i - \varepsilon_j)} \) is generated by the matrix \(\begin{pmatrix} E_{ij} & 0 \\ 0 & 0 \end{pmatrix} \), where \(E_{ij} \) is the \((i, j) \)th elementary \(n \times n \) matrix. If \(g = W(n) \) then \(g^{\varepsilon_i - \varepsilon_j} \cap g = g_0^{p(\varepsilon_i - \varepsilon_j)} \) is generated by the derivations \(D_{\xi_i \xi_j} \).

If \(g = H(2l + 1) \), then we use the description of the roots of \(g \) provided in Appendix A. In particular, we verify that \(g^{\varepsilon_i - \varepsilon_j} \cap g = g_0^{p(\varepsilon_i - \varepsilon_j)} \) is generated by \(D_{\eta_i \eta_j} \), and that \(g^{\varepsilon_i} \cap g = g_0^{p(\varepsilon_i)} \) is generated by \(D_{\eta_i \eta_2l+1} \). \(\Box \)

Lemma 3.7. Suppose that \(g_S \) is not simple and that \(g \neq \mathfrak{psl}(2|2) \). Then \(\dim g^{\alpha} = \dim g^{-\alpha} = 1 \) for every \(\alpha \in \Delta \). In addition, there exists a set \(\Pi \) of simple roots of \(\Delta \) such that the root spaces \(g^{\pm \alpha}, \alpha \in \Pi \), generate \(g \).

Proof. This follows from the classification of the contragredient finite-dimensional Lie superalgebras (see §2.5 and Theorem 3 in [K]). \(\Box \)
4. Some subgroups of \(\text{Aut}(g) \)

In this section we introduce and study an important list of subgroups of \(\text{Aut}(g) \) for each simple Lie superalgebra \(g \). These groups will be used in the next section for describing \(\text{Aut}(g(R)) \).

4.1. The even superadjoint group \(G_0^{\text{sad}} \)

Lemma 4.1. Let \(G \) be the Chevalley \(k \)-group of simply connected type corresponding to \(g_0^{ss} \). The restriction \(\text{ad}_{g_0^{ss}} : g_0^{ss} \rightarrow \text{gl}(g) \) of the adjoint representation of \(g \), lifts uniquely to a morphism \(\text{Ad} : G \rightarrow \text{Aut}(g) \) of linear algebraic groups.

Proof. Because \(G \) is simply connected, there exists a homomorphism \(\text{Ad} : G \rightarrow \text{GL}(g) \) of linear algebraic \(k \)-groups whose differential is \(\text{ad} \). The group \(G \) is generated by the root subgroups, namely by elements \(\exp(z) \), where the elements \(z \) belong to the root spaces of \(g_0^{ss} \) with respect to \(h_{g_0^{ss}} \). We have \(\text{Ad}(\exp(z)) = \exp(\text{ad}(z)) \). Since the \(\exp(\text{ad}(z)) \) are automorphisms of the Lie superalgebra \(g \), the result follows. \(\square \)

The image of \(\text{Ad} \) (in the schematic sense) is denoted by \(G_0^{\text{sad}} \). For \(R \in k\text{-alg} \) and \(\sigma \in \text{Aut}(g)(R) \) we have that \(\sigma \in G_0^{\text{sad}}(R) \) if and only if there exists an \(fppf \) extension \(\tilde{R}/R \) and an element \(x \in G(\tilde{R}) \) such that \(\text{Ad}_{\tilde{R}}(x) = \tilde{\sigma} \), where \(\tilde{\sigma} \) is the image of \(\sigma \) under the map \(\text{Aut}(g)(R) \rightarrow \text{Aut}(g(\tilde{R})) \). The homomorphism \(\text{Ad} \) induces an isomorphism between the quotient group \(G/\text{ker}(\text{Ad}) \) and \(G_0^{\text{sad}} \). The structure of \(G_0^{\text{sad}} \) is given in Table 1 at the end of the paper.

There is another morphism of adjoint type—the morphism \(\text{Ad}_g \) defined in [GP] which is used to describe the connected component of the identity \(\text{Aut}^0(g) \) of \(\text{Aut}(g) \). The morphism \(\text{Ad} \) defined in Lemma 4.1 can roughly be thought as the part of \(\text{Ad}_g \) that arises from the semisimple part of \(g \). For a matter of completeness we recall the definitions of \(\text{Ad}_g \) for Lie subsuperalgebras \(g \) of \(\text{gl}(m|n) \) and \(W(n) \). For \(g \subseteq \text{gl}(m|n) \), \((X,Y) \in (\text{GL}_m \times \text{GL}_n)(k) \) and \(\left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in g \) we define

\[
\text{Ad}_g(X,Y) : \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \mapsto \left(\begin{array}{cc} XAX^{-1} & XBX^{-1} \\ YCY^{-1} & YDY^{-1} \end{array} \right).
\]

If \(g \subseteq W(n) \) and \(\phi \) is an automorphism of the Grassmann (super)algebra \(\Lambda(n) = \Lambda(\xi_1, \ldots, \xi_n) \) we set \(\text{Ad}_g(\phi)(D) := \phi(D) \phi^{-1} \) for every \(D \in g \).

4.2. The diagonal subgroup \(H \)

It is easier to describe \(H \) via its functor of points. We have \(H(R) := \text{Hom}(Q_g, R^\times) \). By definition, an element \(\lambda \) in \(H(R) \) fixes \(h \otimes_k R \) pointwise, and acts on \(g^\sigma \otimes R \) as a multiplication by \(\lambda(\alpha) \). As an algebraic group, \(H \) is a split torus (hence connected). In the case of semisimple Lie algebra, \(H \) is a Cartan subgroup of adjoint type.

4.3. The unipotent group \(N \)

The groups \(N \) appear only when \(g \) is of Cartan type. If \(g \) is not of Cartan type we set \(N = 1 \). For the automorphisms of the Cartan type Lie superalgebras we refer the reader to [K]. Details can be found in Table 2 at the end of this paper and in §6.9 of [GP] as well. Every automorphism
σ ∈ Aut(g) of a Cartan type Lie superalgebra g ⊆ W(n) is of the form Adg(σ) = Dσ −1 for some automorphism σ of Λ(n). For any Cartan type Lie subsuperalgebra g of W(n) we set

\[N := \left\{ \text{Ad}_g(\hat{\varphi}) \in \text{Aut}(g) \mid \hat{\varphi}(x) - x \in \bigoplus_{j \geq 1} \Lambda(n)_{i + 2j}, \text{ if } x \in \Lambda(n)_i, \ i \geq 0 \right\}. \]

Alternatively, N is the unipotent group that corresponds to the nilpotent Lie algebra g^2 := g_2 ⊕ \cdots ⊕ g_{2r}, whenever g ≠ H(2l). If g = H(2l), then N corresponds to H(2l)^2 := H(2l)^2 ⊕ kDg_{1···gL} where Df := \sum_{i=1}^{2l} \frac{\partial f}{\partial x_i} and f ∈ Λ(2l). Note that g^2 is the radical of g_0 if g ≠ W(n), and is the radical of [g_0, g_0] if g = W(n).

Lemma 4.2. Let g be a Cartan type Lie superalgebra and let σ ∈ Aut(g)(R). Then σ = σ_0σ_n where σ_n ∈ N(R) and σ_0 preserves the standard Z or Z/2Z gradings of g_0(R) and g(R) (the latter if g ≠ S'(2k)). In particular, σ_0(Γ(g_0(R))) = g_0(R).

Proof. This follows from the explicit description of Aut(g) given in §6.9 and Table 1 of [GP]. □

4.4. The group SL^out_2

Let g = psl(2|2). Recall (see §6.4 in [GP] for details) that we have a closed embedding ρ : SL_2 → Aut(g). The image of ρ will be denoted by SL^out_2. We recall for future use the explicit nature of ρ.

Let V_2 be the standard sl_2-module. We have that g = g_{-1} ⊕ g_0 ⊕ g_1, where g_0 = g_0 ⊕ sl_2, g_{-1} ∼ V_2^* ⊗ V_2, and g_1 ∼ V_2 ⊗ V_2^*. The g_0-modules g_1 and g_{-1} are isomorphic and an explicit isomorphism ϕ : g_1 → g_{-1} is determined by the linear transformation ψ : M_2 → M_2, where ψ(E) := −J E' J^{-1} for J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (M_2 is the space of 2 × 2 matrices with entries in k). Then ρ is given by

\[\begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} A & aB + b\psi(C) \\ c\psi(B) + dC & D \end{pmatrix}, \]

where \((a, b, c, d) ∈ SL_2(k)\).

4.5. The group Aut(g; g_0^x)

For a given Lie subalgebra s of g_0^x, we let Aut(g; s) be the subgroup of Aut(g) consisting of those automorphisms that fix all elements of s. Clearly Aut(g; s) is a closed subgroup of Aut(g), hence a linear algebraic group. Its functor of points is given by Aut(g; s)(R) = {φ ∈ Aut_R(g(R)) | φ|_{s(R)} = Id}. Our main interest is the case when s = g_0^x.

If g = \bigoplus_{n ∈ Z} g_n is Z-graded, then each c ∈ k^× defines an automorphism δ_c ∈ Aut_k(g) via δ_c|_{g_n} := c^n Id. This yields a closed embedding δ : G_m → Aut(g). Along similar lines, if g is Z/mZ-graded, we have a closed embedding δ : \(\mu_m\) → Aut(g) (this presupposes a choice of primitive mth root of unity in k). It is clear that for the standard Z or Z/2Z gradings of g the resulting closed subgroups δ(G_m) or δ(\(\mu_2\)) of Aut(g) lie inside Aut(g; g_0^x).
If \(g = g_{-1} \oplus g_0 \oplus g_1 \) is of Type I then the irreducible \(g_0^{ss} \)-modules \(g_{-1} \) and \(g_1 \) are nonisomorphic for all \(g \) except for \(g = \mathfrak{p}sl(2|2), g = \mathfrak{sl}(2|1), \) and \(g = \mathfrak{osp}(2|2n) \). In the case \(g = \mathfrak{p}sl(2|2) \) we defined an isomorphism \(\phi: g_1 \to g_{-1} \) in Section 4.4. For \(g = \mathfrak{sl}(2|1) \) and \(g = \mathfrak{osp}(2|2n) \) there is an automorphism \(\tau \) in \(\text{Aut}(g; g_0^{ss}) \) for which \(\phi := \tau \vert_{g_1} \) is an isomorphism of \(g_1 \) and \(g_{-1} \). We define \(\tau \) as follows. For \(g = \mathfrak{sl}(2|1) \), \(\tau \) is the composition of \(-\text{Id}, \) the supertransposition \(X \mapsto X^{st}, \) and the automorphism \(\text{Ad}_g(J, \text{Id}) \). In matrix terms we have

\[
\tau: \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \begin{pmatrix} JA' J & JC' \\ B' J & -D \end{pmatrix}, \quad \text{tr}(A) = D.
\]

For \(g = \mathfrak{osp}(2|2n) \) we set \(\tau := \text{Ad}_g((0 \ 1) \ 0)^2 \). Here we use that

\[
\mathfrak{osp}(m|2n) = \left\{ \begin{pmatrix} A & B \\ J_n B' & D \end{pmatrix} \ \bigg| \ A \in \mathfrak{o} \mathfrak{s} \mathfrak{m}, \ B \in \mathcal{M}_{m,2n}, \ D \in \mathfrak{sp}_{2n} \right\}, \quad J_n := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix},
\]

where \(\mathcal{M}_{p,q} \) denote the space of \(p \times q \) matrices with entries in \(k \).

If \(g = H(2l) \), we have an extra “additive” group of automorphisms of \(g \) which we now describe. For \(a \in k \) we define an automorphism \(\hat{β}_a \) of \(\Lambda(2l) \), by \(\hat{β}_a(ξ) := ξ + a \frac{d}{d\xi}(ξ_1 \ldots ξ_{2l}) \). This automorphism lifts to an automorphism \(β_a = \text{Ad}_g(\hat{β}_a) \) of \(g \). Since \(\hat{β}_{a_1}\hat{β}_{a_2} = \hat{β}_{a_1 + a_2} \), we have a closed embedding \(β: G_a \to \text{Aut}(g) \). Furthermore, if \(δ_c \) is the automorphism of \(\Lambda(a) \) corresponding to \(δ_c \), then one easily checks that \(\hat{δ}_c(ξ) = cξ_i \), and therefore

\[
\hat{β}_a(\hat{δ}_c(ξ_i)) = \hat{δ}_c(\hat{β}_a(ξ_i)) = cξ_i + ac^{2l-1} \frac{d}{d\xi}(ξ_1 \ldots ξ_{2l}).
\]

The latter identity easily implies that \(δ \) and \(β \) commute, and that the resulting homomorphism \(δ \times β: G_m \times G_a \to \text{Aut}(g; g_0^{ss}) \) is injective.

Proposition 4.3. Let \(g \) be a finite-dimensional simple Lie superalgebra over \(k \).

(i) Assume that \(g \) is of Type I and \(g \neq \mathfrak{p}sl(2|2), \mathfrak{sl}(2|1), \mathfrak{osp}(2|2n) \). Then the map \(δ: G_m \to \text{Aut}(g; g_0^{ss}) \) resulting from the standard \(\mathbb{Z} \)-grading of \(g \) is an isomorphism.

(ii) If \(g = \mathfrak{sl}(2|1) \) or \(g = \mathfrak{osp}(2|2n) \), then \(\text{Aut}(g; g_0^{ss}) = \delta(G_m) \times \langle τ \rangle \) is isomorphic to \(G_m \times μ_2 \).

(iii) Assume that \(g \) is of Type II. Then the map \(δ: μ_2 \to \text{Aut}(g; g_0^{ss}) \) resulting from the standard \(\mathbb{Z}/2\mathbb{Z} \)-grading of \(g \) is an isomorphism.

(iv) If \(g = \mathfrak{p}sl(2|2) \), then \(\text{Aut}(g; g_0^{ss}) = \text{SL}_2 \).

(v) If \(g \) is of Cartan type and \(g \neq S'(2l), g \neq H(2l) \), then \(\text{Aut}(g; g_0^{ss}) \) resulting from the standard \(\mathbb{Z} \)-grading of \(g \) is an isomorphism.

(vi) If \(g = H(2l) \), then \(δ \times β: G_m \times G_a \to \text{Aut}(g; g_0^{ss}) \) is an isomorphism.

(vii) Let \(g = S'(2l) \). Then \(\text{Aut}(g; g_0^{ss}) \simeq μ_{2l} \), where \(μ_{2l} \) corresponds to the group \(\text{Ad}_g(cI) \subset \text{Aut}_κ(g) \), \(c^{2l} = 1 \).

Proof. We will make a repeated use of the explicit structure of \(g \) as a \(g_0^{ss} \)-module via the adjoint action. For details we refer the reader to [K] and [FSS2].

\[\text{3 The crucial ideas within this proof are due to Serganova [S].}\]
(i) In this case \(g_1 \) and \(g_{-1} \) are nonisomorphic irreducible \(g_0^{ss} \)-modules. We must show that the closed embedding \(\delta: G_m \to \text{Aut}(g; g_{0}^{ss}) \) is surjective. Let \(\sigma \in \text{Aut}(g; g_{0}^{ss}) \). Then \(\sigma(g_1) \) is an irreducible \(g_0^{ss} \)-submodule of \(g_1 \). Therefore \(\sigma(g_1) \simeq g_1 \) or \(\sigma(g_1) \simeq g_{-1} \). The latter case is impossible because \(g_1 \) and \(g_{-1} \) are nonisomorphic \(g_0^{ss} \)-modules. Thus \(\sigma(g_1) = g_1 \). Similarly \(\sigma(g_{-1}) = g_{-1} \).

By Schur’s Lemma we conclude that \(\sigma_{|_{g_{\pm 1}}} = c_{\pm 1} \text{Id} \) for some scalars \(c_{\pm 1} \in \mathbb{K} \). But since \([g_1, g_{-1}] = g_0 \), we obtain that \(c_1 c_{-1} = 1 \) (because \(\sigma \) fixes \(g_0^{ss} \)), hence \(\sigma \) fixes \(g_0 \). Thus \(\sigma = \delta c_1 \) which completes the proof of (i).

(ii) As mentioned in the beginning of this subsection, for these Lie superalgebras, there is an isomorphism \(\phi: g_1 \to g_{-1} \). Let \(\sigma \in \text{Aut}(g; g_{0}^{ss}) \). We will show that \(\sigma \in \delta(G_m) \ltimes \langle \tau \rangle \). We will apply Schur’s Lemma to \(\pi_{-1} \sigma i_{-1}, \pi_1 \sigma i_1, \phi^{-1} \pi_{-1} \sigma i_1, \) and \(\phi^{-1} \pi_1 \sigma i_{-1} \), where \(i_{\pm 1} : g_{\pm 1} \to g_1 \oplus g_{-1} \) and \(\pi_{\pm 1} : g_1 \to g_{\pm 1} \) are the natural inclusions and projections. Let us first consider the case \(g = \mathfrak{sl}(2|1) \). We have \(a, b, c, d \in \mathbb{K} \) for which

\[
\sigma \left(\begin{array}{cc} A & B \\ C & 0 \end{array} \right) = \left(\begin{array}{cc} A & aB + bJC' \\ cB' J + dC & 0 \end{array} \right), \quad \text{tr}(A) = 0.
\]

Applying

\[
\sigma \left(\begin{array}{cc} 0 & B_1 \\ C_1 & 0 \end{array} \right) \cdot \left(\begin{array}{cc} 0 & B_2 \\ C_2 & 0 \end{array} \right) = \left[\sigma \left(\begin{array}{cc} 0 & B_1 \\ C_1 & 0 \end{array} \right) \right] \cdot \left[\sigma \left(\begin{array}{cc} 0 & B_2 \\ C_2 & 0 \end{array} \right) \right]
\]

for any \(B_1, C_1 \), for which \(C_1 B_2 + C_2 B_1 = 0 \) we obtain \(ad + bc = 1, ac = bd = 0 \). Therefore we have either \(a = d = 0, bc = 1 \), or \(b = c = 0, ad = 1 \). These easily imply that either \(\sigma = \delta_b \circ \tau \) or \(\sigma = \delta_a \).

For \(g = \mathfrak{osp}(2|2n) \) we reason in a similar way. Namely, using Schur’s Lemma we find a matrix \(Y \) in \(\mathcal{M}_{2,2} \) for which

\[
\sigma \left(\begin{array}{cc} 0 & B \\ J_n B' & D \end{array} \right) = \left(\begin{array}{cc} 0 & Y B \\ J_n B' Y' & D \end{array} \right).
\]

Now applying

\[
\sigma \left(\begin{array}{cc} 0 & B \\ J_n B' & 0 \end{array} \right) \cdot \left(\begin{array}{cc} 0 & B \\ J_n B' & 0 \end{array} \right) = \left[\sigma \left(\begin{array}{cc} 0 & B \\ J_n B' & 0 \end{array} \right) \right] \cdot \left[\sigma \left(\begin{array}{cc} 0 & B \\ J_n B' & 0 \end{array} \right) \right]
\]

for \(B \) such that \(BJ_n B' = 0 \) we find that \(Y' Y = I \). Thus \(Y \in \mathfrak{O}_2 \). From this we easily conclude that \(\sigma = \text{Ad}_g(Y, I) \). Therefore the map \(Y \mapsto \text{Ad}_g(Y, I) \) defines an isomorphism \(\mathfrak{O}_2 \simeq \text{Aut}(g; g_0^{ss}) \).

We complete the proof of (ii) by using that \(\mathfrak{O}_2 \simeq G_m \ltimes \mathfrak{m}_2 \). More explicitly, the subgroup \(\delta(G_m) \) in \(\text{Aut}(g; g_0^{ss}) \) consists of the elements

\[
\delta_c = \text{Ad}_g \left(\begin{pmatrix} c+c^{-1} & \frac{c-c^{-1}}{2\sqrt{-1}} \\ \frac{-c-c^{-1}}{2\sqrt{-1}} & c+c^{-1} \end{pmatrix}, I \right).
\]

(iii) The reasoning is similar to that of (i) above.

(iv) It is clear from the definition that \(\mathfrak{SL}_2^{\text{out}} \) is a subgroup of \(\text{Aut}(g; g_0^{ss}) \), so (iv) comes down to showing that \(\rho: \mathfrak{SL}_2 \to \text{Aut}(g; g_0^{ss}) \) is surjective. Let \(\sigma \in \text{Aut}(g; g_0^{ss}) \). As in (iii), we apply
we find $ad - bc = 1$. Therefore $\sigma \in \text{SL}_2^\text{out}$.

(v) In these cases we use the fact that the standard \mathbb{Z}-grading $g_1 \oplus g_0 \oplus \cdots \oplus g_s$ of g is such that g_i is an irreducible g_0^s-module for $i = -1$ or s. Furthermore, for all such Lie superalgebras g, except $g = W(n)$, the g_0^s-modules g_0 and g_i (via the adjoint action) are multiplicity free. Let $\sigma \in \text{Aut}(g; g_0^s)$. We have $\sigma(g_i) = g_i$ for $i = -1, \ldots, s$ if $g \neq W(n)$. If $g = W(n)$, then

$$W(n)^g_{-1} := \{D \in W(n) \mid [D, x] = 0 \text{ for all } x \in g_0^s\} = kE,$$

where $E := \sum_{i=1}^{n} \xi_i \otimes \frac{\partial}{\partial \xi_i}$. Since $\sigma(W(n)^g_{-1}) = W(n)^g_{-1}$ we have $\sigma(E) = cE$ for some $c \in k^\times$.

But since $g_{-1} \oplus \cdots \oplus g_{n-1}$ coincides with the E-eigenspace decomposition of g, with g_i corresponding to eigenvalue i, we have that $\sigma(x)$ is in the (ic)-eigenspace of E whenever $x \in g_i$. Therefore $c = 1$ and in particular $\sigma \in \text{Aut}(g; g_0)$. Now observing that $g = W(n)$ is multiplicity free g_0-module we conclude again that $\sigma(g_i) = g_i$ for $i = -1, \ldots, n-1$.

By Schur’s Lemma $\sigma|g_j = c_j \text{Id}$ for $j = -1, s$, and some $c_j \in k^\times$. Now using $[g_{i+1}, g_{-1}] = g_i \neq 0$ and $i = -1, s-1, s-2, \ldots, -1$ we find $\sigma|g_i = c_i \text{Id}$ and $c_i = c_i(c_{i-1})^{i-1}$. Thus $c_i = c_i^1$ and $\sigma = \delta_{c_1}$. Hence δ is surjective.

(vi) In this case $g = g_{-1} \oplus \cdots \oplus g_{2l-3}$ and g_i are irreducible g_0^s-modules with $g_i \simeq g_j$ iff $i + j = 2l - 4$. Let $\sigma \in \text{Aut}(g; g_0^s)$. Set $\iota := (\beta_1 - \text{Id})|g_{-1}$. Then $\iota : g_{-1} \rightarrow g_{2l-3}$ is an isomorphism of g_0^s-modules. Then by Schur’s Lemma, the restriction of σ on g_{2l-3} is of the form $a \text{Id} + bt^{-1}$ for $a, b \in k$. Since $\sigma(g_{-2}) = g_{-2}$, $[g_{-2}, g_{-1}] \neq 0$, and $[g_{-2}, g_{2l-3}] = 0$ we conclude that $b = 0$ and thus $a \in k^\times$. Again by Schur’s Lemma, the restriction of σ on g_{-1} is of the form $c \text{Id} + dt$ for some $c, d \in k$. Now using that $[g_i, g_{-1}] = g_{-1}$ for $i = 2l - 3, 2l - 4, \ldots, 0$ we obtain $\sigma|g_i = ac^{2l-3-i} \text{Id}$. In particular, $ac^{2l-3} = 1$, because $g_0 = g_0^s$. Hence $\sigma \circ \delta_c$ is identity on all g_i, $i \geq 0$ and $\sigma(\delta_c(x)) = x + c^{-1}dt(x)$ for $x \in g_{-1}$. Thus $\sigma = \beta_{c^{-1}d} \circ \delta_{c^{-1}}$ which implies that $\delta \circ \beta$ is surjective.

(vii) Let $\sigma \in \text{Aut}(g; g_0^s)$. Recall that $S'(2l) = (1 - \theta)S(2l)$, where $\theta := \xi_1 \ldots \xi_{2l}$. We have $g = S'(2l) = \bigoplus_{i=1}^{2l-2} g_i$, where $g_i = S(2l)_i = g \cap W(2l)_i$, $i \geq 0$, and $g_{-1} := (1 - \theta)S(n)_{-1}$. Since $S'(2l)$ is multiplicity free g_0^s-module and g_i are irreducible we conclude that $\sigma(g_i) = g_i$ for all $i \geq -1$. By Schur’s Lemma we find constants $c_i \in k$, $i = -1, \ldots, 2l - 2$ for which $\sigma|g_i = c_i \text{Id}$ (thus $c_0 = 1$). Since $g_{-1} \subset W(2l)_{-1} + W(2l)_{2l-1}$, we have $[g_i, g_{-1}] \subset g_{2l-1}$ for $i > 0$ and thus $c_i = c_i^1$. However $g_{-1}, g_{-1} \subset g_{2l-2}$ and hence $c_i^{1^2} = c_i^{2l-2}$. Therefore $c_i^{2l} = 1$ and $\sigma = \text{Ad}_g(\sigma)$, where $\sigma(\xi_i) = c_i \xi_i$. This completes the proof.

4.6. The group $\text{Aut}(g, \Pi_0)$

This group measures the automorphisms of g that induce symmetries of the Dynkin diagram of (g^s_0, h_0^s) with respect to the chosen base Π_0 of $\Delta_{g^s_0}$. By definition $\text{Aut}(g, \Pi_0) := \{\varphi \in \text{Aut}(g) \mid \varphi(g^s_0) = g^s_0, \varphi(h_0^s) = h_0^s, \text{ and } \varphi^*(\Pi_0) = \Pi_0\}$.

Proposition 4.4. Let $\text{Aut}^0(g)$ be the connected component of the identity of $\text{Aut}(g)$, and let $F_k = \text{Aut}(g)/\text{Aut}^0(g)$ be the corresponding (finite constant) group of connected components of $\text{Aut}(g)$ (see Theorem 4.1 in [GP]).

(i) If $\sigma \in \text{Aut}^0(g)$ is such that $\sigma(g_{ss}^s) = g_{0}^s$, then $\sigma|_{g_{0}^s}$ is in the connected component of the identity of $\text{Aut}(g_{0}^s)$ (namely the Chevalley group of adjoint type of g_{0}^s).

(ii) $\text{Aut}(g; \Pi_0) \cap \text{Aut}^0(g) = H(\text{Aut}(g; g_{ss}^s) \cap \text{Aut}^0(g))$.

(iii) The restriction of the canonical map $j : \text{Aut}(g) \to F_k$ to $\text{Aut}(g; \Pi_0)$ is surjective.

Proof. (i) We follow the descriptions of $\text{Aut}^0(g)$ and G_{ss}^s provided in Table 1 of [GP] and the first table at the end of this paper, respectively. Let $\sigma \in \text{Aut}^0(g)$ be such that $\sigma(g_{ss}^s) = g_{0}^s$. We first consider the case when g is of Type I or Type II. Then σ is a product of three automorphisms: an element σ_0 of G_{ss}^s, an element σ_c of G_{m}, $c \in k^\times$ (in fact, $\sigma_c = \delta_c$); and (in the case $g = \mathfrak{psl}(2|2)$) an element θ of $\mathfrak{sl}_2^\text{out}$. But $\sigma_k(c) = \delta_{c}^{-1} = \Id$. On the other hand, the restriction of G_{ss}^s to g_{ss}^s is precisely the connected component of the identity of $\text{Aut}(g_{ss}^s)$, from which the assertion follows. Let now g be of Cartan type. Then $\sigma = \sigma_c \sigma_0 \sigma_n$, where (for $g = H(2|1)$) $\sigma_0 \in \text{Aut}(g_{ss}^s)$, $\sigma_c \in G_{m}$ corresponds to the multiplication by $c \in k^\times$ in $\Lambda(2|1)$ (in fact, $\sigma_c = \delta_c$), and $\sigma_n \in N$. Then since σ_c and σ_0 leave invariant g_{ss}^s, so does σ_n. Thus $\sigma|_{g_{0}^s} = \Id$, and, as before, we conclude that $\sigma|_{g_{0}^s} = \sigma|_{g_{0}^s}$ is in the connected component of the identity of $\text{Aut}(g_{ss}^s)$.

(ii) We first check that H is a subgroup of $\text{Aut}(g; \Pi_0)$. Let $\sigma \in H$. Since $h_{g_{ss}^s} \subset g^0$ and $\sigma|_{g_{ss}^s} = \Id$ we have that $\sigma|_{g_{0}^s} = \Id$. In particular, $\sigma^*(\Pi_0) = \Pi_0$. Since $g_{ss}^s = h_{g_{ss}^s} \oplus (\bigoplus_{\sigma_0 \in \Delta_{g_{ss}^s}(g_{ss}^s)^0})$ and $(g_{ss}^s)^0 = g^0 \cap g_0$ (this last by Lemma 3.5) we see that σ acts as a multiplication by a constant $\lambda(\sigma_0)^{0\times}$ on each $(g_{ss}^s)^0$. In particular, $\sigma(g_{ss}^s) \subset g_{ss}^s$. This shows that $H \subset \text{Aut}(g; \Pi_0)$.

Clearly H normalizes $\text{Aut}(g; g_{ss}^s) \cap \text{Aut}^0(g)$. Thus $H(\text{Aut}(g; g_{ss}^s) \cap \text{Aut}^0(g))$ is a closed subgroup of $\text{Aut}(g)$. The inclusion $H(\text{Aut}(g; g_{ss}^s) \cap \text{Aut}^0(g)) \subset \text{Aut}(g; \Pi_0) \cap \text{Aut}^0(g)$ is clear because H is connected. Let $\sigma \in \text{Aut}(g; \Pi_0) \cap \text{Aut}^0(g)$. By (i) we see that $\sigma|_{g_{ss}^s}$ is an inner automorphism of g_{ss}^s that stabilizes $h_{g_{ss}^s}$ and P_0 (this last via the * action). Thus $\sigma|_{g_{ss}^s} = \text{Ad}(x)|_{g_{ss}^s}$ for some $x \in T$, where T is the maximal torus of G corresponding to $h_{g_{ss}^s}$. Note that $\text{Ad}(T) \subset H$. Because H is connected, we have $H \subset \text{Aut}^0(g)$. Thus $\text{Ad}(x)^{-1} \sigma \in \text{Aut}(g; g_{ss}^s) \cap \text{Aut}^0(g)$ as desired.

(iii) This statement follows by a case-by-case verification. For example, for $g = \mathfrak{s}(m|n)$, we see that the negative supertransposition $S : (\begin{array}{cc} A & B \\ C & D \end{array}) \mapsto (\begin{array}{cc} A' & C' \\ -B' & -D' \end{array})$ is in $\text{Aut}(g; \Pi_0)$, and that $j(S)$ generates F_k. □

Corollary 4.5. $\text{Aut}(g; \Pi_0)/H(\text{Aut}(g; g_{ss}^s) \cap \text{Aut}^0(g)) \cong F_k$.

Remark 4.6. We have $\text{Aut}(g; g_{ss}^s) \subset \text{Aut}^0(g)$ for all $g \neq \mathfrak{s}(2|1), \otimes(2|2)n, \mathfrak{psq}(n)$. For $g = \mathfrak{s}(2|1)$ and $g = \mathfrak{osp}(2|2n)$, $\tau \in \text{Aut}(g; g_{ss}^s)$ and $\tau \notin \text{Aut}^0(g)$. If $g = \mathfrak{psq}(n)$, then $\delta_{-1} \in \text{Aut}(g; g_{ss}^s)$ and $\delta_{-1} \notin \text{Aut}^0(g)$.

This follows from a case-by-case verification using Table 1 at the end of the paper. If $\text{Aut}(g; g_{ss}^s)$ is connected there is nothing to prove. Otherwise $g = \mathfrak{s}(2|1)$, $g = \mathfrak{osp}(2|2n)$, g is of Type II, or $g = S^*(2|2)$. In the cases for which $\text{Aut}(g; g_{ss}^s) \cong \mu_2$ or $\text{Aut}(g; g_{ss}^s) \cong \mu_2$, $\text{Aut}(g; g_{ss}^s)$ is generated by δ_{-1} or $\text{Ad}_g(cI)$, $c^{2l} = 1$. If $g \neq \mathfrak{psq}(n)$ then δ_{-1} is of the form $\text{Ad}_g(x)$. For ex-
ample, if \(g = D(\alpha) \), then \(x = (I, I, -I) \). Furthermore, it is easy to check that for \(g = \mathfrak{psq}(n) \), \(\delta_{-1} = \text{Ad}_g(x) \) has no solutions for \(x \in \text{SL}_n \).

5. Abstract automorphisms of \(g(R) \) and its universal central extension

Recall that the supercentroid \(\text{Ctd}(g) \) of \(g \) is defined by

\[
\text{Ctd}_k(g) := \{ \chi \in \text{End}_k(g) \mid \chi([x, y]) = [\chi(x), y] \text{ for all } x, y \in g \}.
\]

We call \(g \) central if \(\text{Ctd}_k(g) = \lambda_g(k) \), where \(\lambda_g : k \to \text{End}_k(g) \) is defined by \(\lambda_g(a)(x) := ax \) for \(a \in k \) and \(x \in g \).

Lemma 5.1. \(\text{Aut}_k(g(R)) = \text{Aut}_R(g(R)) \times \text{Aut}_k(R) \).

Proof. Proposition 7.1 in [GP] implies that \(g \) is central. Since \(g \) is also perfect (i.e. \([g, g] = g \)), the lemma follows from a superversion of Lemma 4.4 in [ABP] (see also Corollary 2.28 in [BN]). More precisely, for a \(k \)-algebra automorphism \(\varphi : g(R) \to g(R) \) there exists a unique \(\tilde{\varphi} \in \text{Aut}_k(R) \) for which \(\varphi(rx) = \tilde{\varphi}(r)\varphi(x) \) for all \(x \in g \) and \(r \in R \). It is also evident that every element of \(\text{Aut}_k(R) \) lifts naturally to and element of \(\text{Aut}_k(g(R)) \). This leads to the split exact sequence

\[
1 \to \text{Aut}_R(g(R)) \to \text{Aut}_k(g(R)) \to \text{Aut}_k(R) \to 1.
\]

Let \(G \) and \(\text{Ad} \) be as in Lemma 4.1. The (abstract) group \(\text{Ad}_R G(R) \subset \text{Aut}(g)(R) = \text{Aut}_R(g(R)) \) is in general much smaller than the group of \(R \)-points of the quotient group \(G/\ker(\text{Ad}) \simeq G_{\text{ss}}^{\text{ad}} \). While the group \(\text{Ad} G(R) \) is quite explicit, \(G_{\text{ss}}^{\text{ad}}(R) \) is not. The following theorem shows that, for a large class of objects in \(k \text{-alg} \), an explicit and concrete description of \(\text{Aut}_k(g(R)) \) can still be achieved.

Theorem 5.2. Assume the object \(R \) in \(k \text{-alg} \) is such that \(\text{Spec}(R) \) is connected, admits a rational point, and has trivial Picard group (for example \(R \) factorial). Then \(\text{Aut}_k(g(R)) \) is generated by the subgroups \(\text{Aut}_k(R), \text{Ad} G(R), \text{Aut}(g, \Pi_0)(R), \text{N}(R), \) and \(\text{Aut}(g; g_{\text{ss}}^x)(R) \).

Proof. Let \(\sigma \in \text{Aut}_k(g(R)) \). By Lemma 5.1, we may assume that \(\sigma \in \text{Aut}_R(g(R)) \). Let \(g_0 = g_0 \oplus g_2 \oplus \cdots \oplus g_{2r} \) be the fixed \(\mathbb{Z} \)-grading of \(g_0 \). Using Lemma 4.2, we can write \(\sigma \) as a product \(\sigma_0 \sigma_r \), where \(\sigma_0(g_0(R)) = g_0(R) \) and \(\sigma_r \in \text{N}(R) \). Replacing \(\sigma \) by \(\sigma \sigma_r^{-1} \), we may then assume that \(\sigma \) acts on \(g_0(R) \) by \(\sigma_0 \). Since \(g_{\text{ss}}^{x_0} = \{ g_0, g_0 \} \), we conclude that \(\sigma(g_{\text{ss}}(R)) \simeq g_{\text{ss}}^{x_0}(R) \). Given our assumptions on \(R \), and by taking Lemma 4.1 into consideration, we can appeal to the conjugacy theorem of regular maximal abelian \(k \)-diagonalizable subalgebras of \(g_{\text{ss}}^{x_0}(R) \) ([P2] Theorem 1(ii)(a), see also [P3]) for the existence of an element of \(\text{Ad} G(R) \) taking \(\sigma(g_{\text{ss}}^{x_0}) \) to \(h_{g_0}^{x_0} \). We may thus assume that \(\sigma \) stabilizes \(h_{g_0}^{x_0} \). Lemma 3.4 implies that the contragradient automorphism \(\sigma^* \) of \(h_{g_0}^{x_0} \) stabilizes \(\Delta_{g_0}^{x_0} \). By means of the Weyl group of \((g_0^{x_0}, h_{g_0}^{x_0}) \), whose elements we can recreate as restrictions to \(h_{g_0}^{x_0} \) of elements of \(\text{Ad} G(k) \), we may further assume that \(\sigma^*(\Pi_0) = \Pi_0 \). Let \(m \) be a maximal ideal of \(R \) for which \(R/m \simeq k \). Then \(\sigma \otimes 1 \in \text{Aut}_R((g \otimes R) \otimes_R R/m) \). Clearly \(\sigma \otimes 1 \), when viewed as an element of \(\text{Aut}(g) \), is in fact an element of \(\text{Aut}(g, \Pi_0) \). Let \(\tilde{\sigma} \) denote the \(R \)-linear extension of this element.
to Aut$_R$(g(R)). Then, after replacing σ by $\tilde{\sigma}^{-1}\sigma$, we may assume that σ fixes $h_{g_0}^{ss}$ pointwise, hence that σ stabilizes $g^\sigma \otimes R$ for every α in $\Delta_{g_0}^{ss}$ (see Lemma 3.4).

We now proceed by a case-by-case reasoning using Lemmas 3.6 and 3.7.

Case 1. $g = \mathfrak{psl}(2|2)$; or g_0^{ss} is simple, $g \neq H(2l)$. In this case we use Lemma 3.6(i) and fix a basis B of $Q_\mathfrak{g}$ such that $p(B) \cap \Delta_{g_0}^{ss}$ is a base of $\Delta_{g_0}^{ss}$. By multiplying σ with an element of $H(R) \subset \text{Aut}(\mathfrak{g}, \Pi_0)(R)$ (see Lemma 4.4(ii)) we may assume that σ fixes a set of generators e_α of $(g_0^{ss})^p(\alpha) = g_0 \cap g^\alpha$ (see Lemma 3.6(iii)), for any $\alpha \in B$. Since σ is R-linear, it fixes $g_0^{ss}(R)$, and thus is in Aut$(g; g_0^{ss})(R)$.

Case 2. g_0^{ss} is not simple and $g \neq \mathfrak{psl}(2|2)$. Now we use Lemma 3.7. For our chosen base $\Pi = \{\alpha_1, \alpha_2, \ldots, \alpha_l\}$ of Δ, we fix $e_i \in g^{\alpha_i}$, $f_i \in g^{-\alpha_i}$, and $\alpha_i^\vee = [e_i, f_i]$. Since the spaces g^{α_i} are 1-dimensional, after multiplying by an element of $H(R)$ we may assume that σ fixes e_i, f_i, and α_i^\vee. Since these generate g and σ is R linear, we have $\sigma = \text{Id}$.

Case 3. $g = H(2l), l \geq 3$. In this case using the description of Δ provided in Appendix A we see that $g_{-1} \cap g^{-\alpha} \neq 0 \iff \alpha = \pm \varepsilon_i, i = 1, \ldots, l$. Moreover, the spaces $g_{-1} \cap g^{\pm \varepsilon_i} = g^{p(\pm \varepsilon_i)}$ are one-dimensional. Multiplying σ by an element of $H(R)$ we may assume that $\sigma|_{g_{-1} \cap g^{r \varepsilon_i}} = \text{Id}$ for every $i = 1, \ldots, l$. Let $r \in R^\times$ be such that $\sigma|_{g_{-1} \cap g^{-r \varepsilon_i}} = r \text{ Id}$ (strictly speaking $\sigma|_{g_{l} \cap g^{-r \varepsilon_i}}(R) = r \text{ Id}$). From $[g_0, g_{-1}] = g_{-1}$ and the fact that the spaces $g_i \cap g^{\alpha_i}, i = -1, 0$, are at most one-dimensional, we easily conclude that $\sigma|_{g_{-1} \cap g^{-r \varepsilon_i}} = \text{Id}, \sigma|_{g_0 \cap g^{-r \varepsilon_i}} = \text{Id}$, and $\sigma|_{g_0 \cap g^{r \varepsilon_i}} = r^{-1} \text{ Id}$ for $1 \leq i \neq j \leq l$. This completely determines $\sigma \in \text{Aut}_R(g(R))$ since every automorphism of g is uniquely determined by its restriction on g_{-1} (see [S]). In order to explicitly express σ we apply the change of coordinates $\eta_i := \frac{1}{\sqrt{2}}(\xi_i + \sqrt{-1}\xi_{l+i}); \eta_{l+i} := \frac{1}{\sqrt{2}}(\xi_i - \sqrt{-1}\xi_{l+i}).$ Then $D_{\eta_i} \in g_{-1} \cap g^{\varepsilon_i}$ and $D_{\eta_i} \in g_{-1} \cap g^{\varepsilon_i+l}$ as explained at the end of Appendix A. In terms of the new coordinates we have that $\sigma = \text{Ad}_g(\tilde{\sigma})$, where $\tilde{\sigma}$ is the linear automorphism of $L(2l)(R)$ given by the matrix $A_{\sigma} = \begin{pmatrix} r^{-1} & 0 \\ 0 & 1 \end{pmatrix}$, i.e. $\tilde{\sigma}(\eta) = A_{\sigma} \eta$. It then follows that $\sigma \in \text{Aut}(g, \Pi_0)(R)$. □

Remark 5.3. The proof of Theorem 5.2 yields an analogous result in the case when g is a finite-dimensional simple Lie algebra: Under the assumptions of R therein, the group Aut$_k(g(R))$ is generated by Aut$_k(R), \text{Ad} G(R), H(R)$, and Aut$(g, \Pi_0)$. If, furthermore, the automorphism is R-linear, then the three last groups suffice.

In what follows we give an example of a Dedekind domain R over \mathbb{C} for which these results fail.

Let $k = \mathbb{C}$. We first look at the case of Lie algebras. Let $g = \mathfrak{sl}_2$. Then Aut$(g) = \text{PGL}_2$ and $G = \text{SL}_2$. The subgroup H of Aut(g) is the “standard” (split) torus of PGL_2. Thus, for R in \mathbb{C}-alg, $H(R) = R^\times$, and $r \in R^\times$ acts as an automorphism of $\mathfrak{sl}_2(R) = Rf \oplus Rh \oplus Re$ via $f \mapsto r^{-1}f, h \mapsto h$, and $e \mapsto re$. We will denote this automorphism by \hat{r}.

Consider the adjoint representation $\text{Ad} : \text{GL}_2 \to \text{Aut}(g)$. Let S_R be the subgroup of Aut$(g)(R)$ generated by $\text{Ad} \text{SL}_2(R)$ and $H(R)$. Theorem 5.2 asserts that Aut$_R(g(R)) = S_R$. We will see that this may fail if Pic(R) is not trivial.

For $r \in H(R) \simeq R^\times$ we have that $\hat{r} \in \text{Ad}(\text{SL}_2(R))$ if and only if $r \in (R^\times)^2$. All automorphisms \hat{r}, however, do belong to Ad$(\text{GL}_2(R))$. Indeed, \hat{r} is conjugation by the matrix $\begin{pmatrix} r & 0 \\ 0 & 1 \end{pmatrix}$. Thus, if Theorem 5.2 were to hold, then the natural map $\text{GL}_2(R) \to \text{PGL}_2(R)$ would be surjec-
tive. From a theorem of Rosenberg and Zelinsky one knows that for a Dedekind domain \(R \) we have

\[
PGL_2(R)/\text{Ad}(GL_2(R)) \simeq 2\text{Pic}(R),
\]

the 2-torsion of the Picard group of \(R \) ([RZ], see also [KO] and [I]).

Let \(X \) be an irreducible complete smooth curve over \(\mathbb{C} \) of genus \(g > 0 \). If \(\text{Spec}(R) \) is a nonempty open affine subscheme of \(X \) then \(R \) is a Dedekind domain whose Picard group has \(n \)-torsion for all \(n \) [Ha, pp. 429 and 427].

The above shows that for this type of Dedekind domains the Lie algebra version of Theorem 5.2 fails for \(g = sl_2 \). Similar considerations apply to \(sl_n \) for all \(n > 2 \). The obstruction lies in the fact that the matrix algebra over \(R \) may have noninner automorphisms. In fact by taking the genus of \(X \) arbitrary large, we can make the order of \(n\text{Pic}(R) \), hence also the index of \(\text{Ad}(GL_n(R)) \) in \(PGL_n(R) \), arbitrary large.

These Dedekind domains also provide counterexamples to Theorem 5.2 for the Lie superalgebras of type \(psq(n) \). This follows from the above reasoning when taking into consideration the explicit nature of the isomorphism

\[
\text{Aut}(psq(n)) \simeq PGL_n \rtimes \mathbb{Z}/4\mathbb{Z}
\]
described in §6.6 of [GP].

Remark 5.4. Let \(r \in R^\times \), and consider the quadratic extension \(\widetilde{R} = R[r^{\frac{1}{2}}] \) of \(R \). Then \(\widetilde{R}/R \) is finite étale (in fact Galois). Let \(g = H(2l) \) and \(\widetilde{\sigma} = \text{Ad}_g(\begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}) \). Then \(\widetilde{\sigma} \in \text{Aut}(g)(\widetilde{R}) \) is such that \(\widetilde{\sigma} \) stabilizes \(g(R) \) and \(\sigma|_{g(R)} = \sigma \), where \(\sigma \) is the automorphism of \(g(R) \) determined by the matrix \(A_\sigma \) in Case 3 of the proof of Theorem 5.2. According to Proposition 4.4 we should be able to write \(\sigma \) as an \(R \)-point of the product of the groups \(H \) and \(\text{Aut}(g, g^{ss}_{0}) \). The \(R \)-points of the product group are in general a larger group than the naive product of the \(R \)-points of the respective groups. In fact, \(\text{Ad}_g(\begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}) \in H(\widetilde{R}) \) and \(\delta_{\frac{1}{2}} \in \text{Aut}(g, g^{ss}_{0})(\widetilde{R}) \), which shows that \(\sigma \) is an \(R \)-point of the product group.

Remark 5.5. Let \(\widetilde{g}(R) \) be the universal central extension of the \(k \)-Lie superalgebra \(g(R) \). A result of Neher (Corollary 2.8 in [Ne]) implies that \(\text{Aut}_k(g(R)) = \text{Aut}_k(\widetilde{g}(R)) \). Theorem 5.2 can also be applied to this last group.

The following corollary (of the proof) of Theorem 5.2, is useful for the representation theory of \(g(R) \) (notably in the case of \(R = k[t, t^{-1}] \), which corresponds to the untwisted affine Kac–Moody superalgebras). It provides a description of the subgroup of the \(k \)-automorphisms of \(g(R) \) that leave invariant the category of weight \((g(R), h^{ss}_{0}) \)-modules, i.e., all \(g(R) \)-modules \(M \) for which \(M = \bigoplus_{\lambda \in h^{ss}_{0}} M^\lambda \).

Corollary 5.6. Let \(R \) be as in Theorem 5.2. Let \(T \) be the maximal torus of \(G \) corresponding to \(h^{ss}_{0} \). The subgroup of \(\text{Aut}_k(g(R)) \) consisting of all automorphisms \(\sigma \) for which \(\sigma(h^{ss}_{0}) = h^{ss}_{0} \), is generated by \(\text{Ad}(NG(T))(k) \) together with \(\text{Aut}_k(R) \), \(\text{Aut}(g, \Pi_0)(R) \), and \(\text{Aut}(g, g^{ss}_{0})(R) \).
Proof. We may assume that $\sigma \in \text{Aut}_R(\mathfrak{g}(R))$. The group $\text{Ad}(N_G(T))$ accounts for the action of the Weyl group used in the proof of Theorem 5.2. Now if σ stabilizes $h_{\mathfrak{g}^s}$, we reason as in the proof of Theorem 5.2 to conclude that σ belongs to the subgroup of $\text{Aut}_R(\mathfrak{g}(R))$ which is generated by the subgroups prescribed by the corollary.

6. Tables

1. The groups $G_{\text{sad}}^{\mathfrak{g}}$ and $\text{Aut}(\mathfrak{g}; \mathfrak{g}_0^s)$

<table>
<thead>
<tr>
<th>\mathfrak{g}</th>
<th>$G_{\text{sad}}^{\mathfrak{g}}$</th>
<th>$\text{Aut}(\mathfrak{g}; \mathfrak{g}_0^s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathfrak{sl}(m</td>
<td>n)$, $(m, n) \neq (2, 1)$</td>
<td>$(\mathfrak{sl}_m \times \mathfrak{sl}_n)/\langle \mu_m \times \mu_n \rangle$</td>
</tr>
<tr>
<td>$\mathfrak{sl}(2</td>
<td>1)$</td>
<td>\mathfrak{sl}_2/μ_2</td>
</tr>
<tr>
<td>$\mathfrak{psl}(n</td>
<td>n)$, $n > 2$</td>
<td>$(\mathfrak{sl}_n \times \mathfrak{sl}_n)/\langle \mu_n \times \mu_n \rangle$</td>
</tr>
<tr>
<td>$\mathfrak{psl}(2</td>
<td>2)$</td>
<td>$(\mathfrak{sl}_2 \times \mathfrak{sl}_2)/\mu_2$</td>
</tr>
<tr>
<td>$\mathfrak{sp}(n)$</td>
<td>\mathfrak{sl}_n/μ_n</td>
<td>G_m</td>
</tr>
<tr>
<td>$\mathfrak{psq}(n)$</td>
<td>\mathfrak{sl}_n/μ_n</td>
<td>μ_2</td>
</tr>
<tr>
<td>$\mathfrak{osp}(2</td>
<td>2n)$, $l > 1$</td>
<td>$(\mathfrak{so}l \times \mathfrak{sp}{2n})/\mu_2$</td>
</tr>
<tr>
<td>$\mathfrak{osp}(2</td>
<td>2n)$</td>
<td>$(\mathfrak{so}l \times \mathfrak{sp}{2n})/\mu_2$</td>
</tr>
<tr>
<td>$\mathfrak{osp}(2l+1</td>
<td>2n)$</td>
<td>$\mathfrak{SO}{2l+1} \times \mathfrak{Sp}{2n}$</td>
</tr>
<tr>
<td>$F(4)$</td>
<td>$(\mathfrak{spin}_7 \times \mathfrak{sl}_2)/\mu_2$</td>
<td>μ_2</td>
</tr>
<tr>
<td>$G(3)$</td>
<td>$\mathfrak{g}_2 \times \mathfrak{sl}_2$</td>
<td>μ_2</td>
</tr>
<tr>
<td>$D(\alpha)$</td>
<td>$(\mathfrak{sl}_2 \times \mathfrak{sl}_2 \times \mathfrak{sl}_2)/\langle \mu_2 \times \mu_2 \rangle$</td>
<td>μ_2</td>
</tr>
<tr>
<td>$W(n)$</td>
<td>GL_n</td>
<td>G_m</td>
</tr>
<tr>
<td>$S(n)$</td>
<td>\mathfrak{sl}_n</td>
<td>G_m</td>
</tr>
<tr>
<td>$S'(2l)$</td>
<td>\mathfrak{sl}_{2l}</td>
<td>μ_2</td>
</tr>
<tr>
<td>$H(2l)$</td>
<td>\mathfrak{so}_{2l}/μ_2</td>
<td>$G_a \times G_m$</td>
</tr>
<tr>
<td>$H(2l+1)$</td>
<td>\mathfrak{so}_{2l+1}</td>
<td>G_m</td>
</tr>
</tbody>
</table>

2. The groups N

Two alternative definitions of the unipotent groups N have been provided in Section 4.3. The table below gives an explicit description of N in terms of the n-dimensional vector space $V := k\xi_1 \oplus \cdots \oplus k\xi_n$, where ξ_1, \ldots, ξ_n are odd variables, i.e. $\xi_i^2 = 0$, $\xi_i \xi_j = -\xi_j \xi_i$ if $i \neq j$. Recall that the additive affine group of a finite-dimensional k-space U is denoted by U_a, that is $U_a = \text{Hom}_k(S(U^*), -)$. For the proofs we refer the reader to Lemmas 6.1 and 6.2 in [GP].

<table>
<thead>
<tr>
<th>\mathfrak{g}</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(n)$</td>
<td>$\text{Hom}(V, \bigoplus_{i \geq 1} A^{2i} V)$</td>
</tr>
<tr>
<td>$S(n)$</td>
<td>$(\bigoplus_{i \geq 1} (V^* \otimes A^{2i+1} V) / A^{2i} V)_a$</td>
</tr>
<tr>
<td>$S'(n)$, $n = 2l$</td>
<td>$(\bigoplus_{i \geq 1} (V^* \otimes A^{2i+1} V) / A^{2i} V)_a$</td>
</tr>
<tr>
<td>$H(n)$</td>
<td>$(\bigoplus_{i \geq 2} A^{2i} V)_a$</td>
</tr>
</tbody>
</table>
Acknowledgments

We are indebted to the referee for a most thorough report. We are particularly grateful for his/her remarks on Proposition 4.3, which substantially improved the statement of this result and its proof.

Appendix A. Cartan subsuperalgebras and root systems of the Cartan type Lie superalgebras

We first recall some generalities about the Cartan type Lie superalgebras. By \(W(n) \) we denote the (super)derivations of the Grassmann algebra \(\Lambda(n) := \Lambda(\xi_1, \ldots, \xi_n) \) over \(k \). Every element \(D \) of \(W(n) \) is of the form \(D = \sum_{i=1}^{n} P_i(\xi_1, \ldots, \xi_n) \frac{\partial}{\partial \xi_i} \), where by definition \(\frac{\partial}{\partial \xi_i}(\xi_j) = \delta_{ij} \). Both \(\Lambda(n) \) and \(W(n) \) have natural gradings \(\Lambda(n) = \bigoplus_{i=0}^{n} \Lambda(n)_i \) and \(W(n) = \bigoplus_{j=-1}^{n} W(n)_j \), where \(\Lambda(n)_i := \{ P(\xi_1, \ldots, \xi_n) \mid \deg P = i \} \) and \(W(n)_j := \{ \sum_{i=-1}^{n} P_i \frac{\partial}{\partial \xi_i} \mid \deg P_i = j+1 \} \).

In this appendix we will use the following explicit description of the Cartan type Lie subsuperalgebras \(S(n) \), \(S'(n) \), \(H(n) \), and \(\tilde{H}(n) \), of \(W(n) \):

\[
S(n) = \text{Span}_k \left\{ \frac{\partial f}{\partial \xi_i} \frac{\partial}{\partial \xi_j} + \frac{\partial f}{\partial \xi_j} \frac{\partial}{\partial \xi_i} \mid f \in \Lambda(n), \ i, j = 1, \ldots, n \right\},
\]

\[
S'(n) = \text{Span}_k \left\{ (1 - \xi_1 \ldots \xi_n) \left(\frac{\partial f}{\partial \xi_i} \frac{\partial}{\partial \xi_j} + \frac{\partial f}{\partial \xi_j} \frac{\partial}{\partial \xi_i} \right) \mid f \in \Lambda(n), \ i, j = 1, \ldots, n \right\},
\]

\[
\tilde{H}(n) = \text{Span}_k \left\{ D_f := \sum_i \frac{\partial f}{\partial \xi_i} \frac{\partial}{\partial \xi_i} \mid f \in \Lambda(n), \ f(0) = 0, \ i, j = 1, \ldots, n \right\},
\]

\[
\tilde{H}(n) = H(n) \oplus kD_{\xi_1 \ldots \xi_n}.
\]

We have also that \([D_f, D_g] = D_{\{f, g\}} = (-1)^{\deg f} \sum_{i=1}^{n} \frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial \xi_j} \). For any of the Lie subsuperalgebras \(s \) of \(W(n) \) listed above, except for \(s = S'(n) \), we set \(s_j := s \cap W(n)_j \).

In what follows we give an explicit description of specific Cartan subsuperalgebras of \(W(n) \), \(S(n) \), \(S'(n) \), and \(H(n) \). This description can serve as a complement to the root structures provided in Appendix A in [Pen].

Case 1. \(g = W(n), \ n \geq 2 \). In this case the elements \(h_i = \xi_i \frac{\partial}{\partial \xi_i} \) form a basis for a Cartan subsuperalgebra \(h \) of \(g \). In particular, \(h = h_0 \) is a subalgebra of \(g_0 \simeq \mathfrak{gl}_n \). The elements in \(h_0^* \) that form the dual basis to \(h_i \) will be denoted by \(\varepsilon_i \). The root system of \(g \) is

\[
\Delta = \{ \varepsilon_{i_1} + \cdots + \varepsilon_{i_k}, \varepsilon_{i_1} + \cdots + \varepsilon_{i_k} - \varepsilon_j \mid i_r \neq i_s, \ j \neq i_r, \ 0 \leq k \leq n-1, \ 1 \leq j \leq n \}.
\]

Case 2. \(g = S(n), S'(n) \) (\(n = 2l \) in the second case), \(n \geq 3 \). Now we consider the Cartan subsuperalgebra \(h \) spanned by \(h_i - h_{i+1} = \xi_i \frac{\partial}{\partial \xi_i} - \xi_{i+1} \frac{\partial}{\partial \xi_{i+1}} \), \(i = 1, \ldots, n-1 \). We have again that \(h = h_0 \) is a subalgebra of \(g_0 \simeq \mathfrak{sl}_n \). Denote by \(\varepsilon_i \) the images in \(h_0^* \) of the basis dual to \(h_i \), \(\varepsilon_1 + \cdots + \varepsilon_n = 0 \).
The root system of \mathfrak{g} is
\[
\Delta = \{\varepsilon_{i_1} + \cdots + \varepsilon_{i_k} \mid 0 \leq l \leq n-1, 1 \leq k \leq n-2, 0 \leq i \neq i, j \neq i, 1 \leq j \leq n\}.
\]

Case 3. $\mathfrak{g} = H(2l), l \geq 3$. We fix \mathfrak{h} to be the Cartan subalgebra of \mathfrak{g} spanned by
\[
\{D_{\xi_{i_l}} \cdots \xi_{i_1} + \xi_{i_{l-1}} \mid 1 \leq r \leq l-1, 1 \leq i_1 \cdots i_r \leq l\}.
\]
In this case we have $\mathfrak{h} = \mathfrak{h}_0 = \mathfrak{h}_0^+ \oplus \mathfrak{h}_0^-$ where $\mathfrak{h}_0^+ \subset \mathfrak{g}^+ = \bigoplus_{i \geq 1} \mathfrak{g}_i$. Let $h_i := \sqrt{-1}D_{\xi_{i_{l+1}}}$ and define $\varepsilon_i \in \mathfrak{h}_0^+$ by $\varepsilon_i(h_j) = \delta_{ij}$ and $\varepsilon_i(h_0) = 0$. The root system of \mathfrak{g} is
\[
\Delta = \{\varepsilon_{i_1} + \cdots + \varepsilon_{i_r} - \varepsilon_{j_1} - \cdots - \varepsilon_{j_s} \mid r \neq p, r \neq p, i \neq j, 0 \leq t, s \leq l\}.
\]

Case 4. $\mathfrak{g} = H(2l+1), l \geq 2$. We fix \mathfrak{h} to be the Cartan subalgebra of \mathfrak{g} spanned by
\[
\{D_{\xi_{i_l}} \cdots \xi_{i_1} + \xi_{i_{l-1}} + \xi_{i_{l-2}} \mid 0 \leq r \leq l-1, 1 \leq s \leq l, 1 \leq i_1 \cdots i_r \leq l\}.
\]
We have $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$ where \mathfrak{h}_0 is spanned by the elements $D_{\xi_{i_l}} \cdots \xi_{i_1} + \xi_{i_{l-1}} + \xi_{i_{l-2}}$, while \mathfrak{h}_1 is spanned by the elements $D_{\xi_{i_l}} \cdots \xi_{i_1} + \xi_{i_{l-1}} + \xi_{i_{l-2}} + \xi_{i_{l-3}}$. In particular, $\mathfrak{h}_0^+ := \mathfrak{h} \cap \mathfrak{g}_0 = \text{Span}_{\mathbb{K}}\{D_{\xi_{i_{l+1}}} \mid 1 \leq i \leq l\}$ is a Cartan subalgebra of $\mathfrak{g}_0 \cong \mathfrak{so}_{2l+1}$. We have again that $\mathfrak{h}_0 = \mathfrak{g}_0^+ \oplus \mathfrak{g}_0^-$, where $\mathfrak{g}_0^+ = \bigoplus_{i \geq 1} \mathfrak{g}_i$. As in Case 3 we set $h_i := \sqrt{-1}D_{\xi_{i_{l+1}}}$ and define $\varepsilon_i \in \mathfrak{h}_0^+$ by $\varepsilon_i(h_j) = \delta_{ij}$ and $\varepsilon_i(h_0) = 0$. Then the root system of \mathfrak{g} is
\[
\Delta = \{\varepsilon_{i_1} + \cdots + \varepsilon_{i_r} - \varepsilon_{j_1} - \cdots - \varepsilon_{j_s} \mid r \neq p, r \neq p, i \neq j, 0 \leq t, s \leq l\}.
\]
In what follows we describe the graded root spaces $\mathfrak{g}^\alpha \cap \mathfrak{g}_i$ of $\mathfrak{g} = H(2l)$ and $\mathfrak{g} = H(2l+1)$. For this description it is convenient to use the following coordinate change: $\eta_i := \frac{1}{\sqrt{2}}(\varepsilon_i + \sqrt{-1}\xi_{i_{l+1}})$, $\eta_{i+l} := \frac{1}{\sqrt{2}}(\varepsilon_i - \sqrt{-1}\xi_{i_{l+1}})$, $\eta_{2l+1} := \xi_{i_{l+1}}$ (the last in the case $\mathfrak{g} = H(2l+1)$). Using the new coordinates we have that if $\mathfrak{g} = H(2l+1)$, $\epsilon = 0$ or 1, then
\[
D_f = \sum_{i=1}^l \frac{\partial f}{\partial \eta_i} \frac{\partial}{\partial \eta_i} + \sum_{i=1}^l \frac{\partial f}{\partial \eta_{i+l}} \frac{\partial}{\partial \eta_{i+l}} + \epsilon \frac{\partial f}{\partial \eta_{2l+1}} \frac{\partial}{\partial \eta_{2l+1}}, \text{ and } \{f, g\} = (-1)^{\deg f} \sum_{i=1}^l \frac{\partial f}{\partial \eta_i} \frac{\partial g}{\partial \eta_i} + \sum_{i=1}^l \frac{\partial f}{\partial \eta_{i+l}} \frac{\partial g}{\partial \eta_{i+l}} + \epsilon \frac{\partial f}{\partial \eta_{2l+1}} \frac{\partial g}{\partial \eta_{2l+1}}.
\]

For $I = (i_1, \ldots, i_l), 1 \leq i_1 < \cdots < i_l \leq l$, we set $\tilde{I} := (i_1 + l, \ldots, i_l + l), |I| := i_1 + \cdots + i_l$, $\varepsilon_I := \varepsilon_{i_1} + \cdots + \varepsilon_{i_l}$, and $\eta_I := \eta_{i_1} \ldots \eta_{i_l}$. Fix now I and J such that $I \neq J$. For $\mathfrak{g} = H(2l)$ we have that $D_{\eta_{|I|}} \in \mathfrak{g}^{\epsilon_{I-|J|}} \cap \mathfrak{g}_{|I|+|J|-|I\cap J|-1}$. If $I \cap J = \emptyset$, then the set
\[
B_{I,J} := \{D_{\eta_{|I|}} \eta_{|J|} \mid K \cap I = \emptyset, K \cap J = \emptyset\}
\]
forms a basis of $\mathfrak{g}^{\epsilon_{I-|J|}}$ and the set
\[
B_{I,J,i} := B_{I,J} \cap \mathfrak{g}_i = \left\{D_{\eta_{|I|}} \eta_{|J|} \eta_k \mid K \cap I = \emptyset, K \cap J = \emptyset, |K| = \frac{i-1-|I|-|J|}{2}\right\}
\]
forms a basis of $\mathfrak{g}^{\epsilon_{I-|J|}} \cap \mathfrak{g}_i$ (we have $\mathfrak{g}^{\epsilon_{I-|J|}} \cap \mathfrak{g}_i \neq 0$ iff $i-1-|I|-|J|$ is even).
In the case of \(g = H(2l + 1) \) and \(I \cap J = \emptyset \), the set \(B_{I,J} \cup B'_{I,J} \) forms a basis of \(g^{\varepsilon_I - \varepsilon_J} \), where

\[
B'_{I,J} := \{ D_{\eta I \eta K \eta J \eta K^{2l+1}} \mid K \cap I = \emptyset, K \cap J = \emptyset \}.
\]

Furthermore, \(g^{\varepsilon_I - \varepsilon_J} \cap g_i \) has \(B_{I,J,i} \) as a basis if \(i - 1 - |I| - |J| \) is even and

\[
B'_{I,J,i} := B'_{I,J} \cap g_i = \left\{ D_{\eta I \eta K \eta J \eta K^{2l+1}} \mid K \cap I = \emptyset, K \cap J = \emptyset, |K| = \frac{i - |I| - |J|}{2} \right\}
\]

as a basis if \(i - 1 - |I| - |J| \) is odd.

References

