Department of
Mathematical and Statistical sciences
 University of Alberta       

Alexey Popov

Research Interests
 My research interests lie in the field of Functional Analysis. In particular, a have been doing research in the following areas:
  • Banach spaces;
  • Operators on Banach and Hilbert spaces and algebras of such operators;
  • Banach lattices;
  • Positive operators on Banach lattices and collections of such operators;
  • Nonnegative matrices and semigroups of such matrices.
List of Publications
 8.  Nonnegative matrix semigroups with finite diagonals, with H. Radjavi, and P. Williamson, Linear Algebra and its Applications,  to appear.
 7.  Almost invariant half-spaces of algebras of operatorsIntegral Equations and Operator Theory,  67 (2010), no. 2, 247-256.
 6.  Bounded indecomposable semigroups of non-negative matrices,  with H.E. Gessesse, H. Radjavi, E. Spinu, A. Tcaciuc, and V.G. Troitsky,  Positivity,  14 (2010), no. 3, 383-394.
 5.  Almost invariant half-spaces of operators on Banach spaces, with G. Androulakis, A. Tcaciuc, and V.G. Troitsky,  Integral Equations and Operator Theory,  65 (2009), no. 4, 473-484.
 4.  Finitely strictly singular operators between James spaces, with I. Chalendar, E. Fricain, D. Timotin, and V.G. Troitsky.  Journal of Functional Analysis,  256 (2009), no. 4, 1258--1268.
 3.  A version of Lomonosov's theorem for collections of positive operators, with V.G. Troitsky. Proceedings of the American Mathematical Society, 137 (2009), 1793-1800.
 2.  Schreier singular operators.  Houston Journal of Mathematics, 35 (2010), no. 1, 209-222.
 1.  Finite representability in fibers of spacious Banach bundles (in Russian),  with A.E. Gutman and A.V.Koptev. Vladikavkaz Mathematical Journal, 7 (2005), no. 1, 39-45.