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Smoothed analysis. [Spielman-Teng '01]

In theoretical computer science:

“An object should become better under a random perturbation.”

Better = non-degenerate (hence algorithms are faster, more accurate).

Objects: polytopes, convex sets (?), polynomials, etc.
In this talk, an n x n matrix D.

Random perturbation = adding to D a random matrix R:

A=D+R.

"An n X n matrix D should become non-degenerate when replaced
by D + R, where R is a random matrix.”




Non-degeneracy

Qualitatively: A has full rank, invertible.

Quantitatively: control of ||A71.

Equivalently, the smallest singular value (smallest eigenvalue of v/ A*A),
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sn(A) = ——— = min
A=Y (xll2

= dist|.|| (A, non-invertible matrices).



Problem (Smoothed analysis of matrices)

Let D be a n x n deterministic matrix,
R be an n x n random matrix (some natural distribution, or “ensemble”).
Does the smallest singular value satisfy

sn(D + R) > something nice

with high probability?

Intuition in 1D: if R has a continuous distribution, bounded density, then
ID+R| 21 w.h.p.
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The bound does not depend on D. Worst case: D = 0.



Gaussian random matrices R with iid entries (“Ginibre™)
Matrix case: D, R are n X n matrices.

Theorem [Sankar-Spielman-Teng '06]

Let D be arbitrary, R be a Gaussian random matrix (entries iid N(0,1)).
Then

P{s)(D+ R) <en 2} <e, e>0.

Hence
so(D+ R) > n~? with high probability.

The bound is independent of D.

“Worst case” is D = 0, since s,(R) ~ n—1/2 [Edelman '88, Szarek '90].



General random matrices with iid entries (general Ginibre)

Theorem [Rudelson-Vershynin '08]

Let ||D|| = O(v/n) and R be a random matrix with iid sub-gaussian
entries, zero means, unit variances. Then

P{sn(D + R) < sn_1/2} <Ce+c", e>0.

Hence:

if ||D|| < +/n, the result does not depend on D,
the “worst case” is D = 0.

If ||[D]| > n, the result is generally false:



Example (Rudelson), see also [Tao-Vu '08]

D = M -diag(0,1,...,1),

R = Bernoulli random matrix (entries iid £1). Then
Cy/n

. b 1
sn(D+ R) < W with probability 5>

Hence D = 0 is not the worst case!
D + R can become more degenerate for D large.

Open question: How large?
When does s,(D + R) start to feel the deterministic part D?

What we know:
Does not feel for ||D|| < +/n, feels for ||D|| > n. Where is the threshold?



Polynomiality

In any case:

If ||D|| is polynomial in n, then s,(A + B) is polynomial, too.
Theorem. [Tao-Vu '08]
For any B > 0 there exists A = A(a, B) so that if ||[D|| < n®, then

P{s)(D+R) < Cn*} <nB.




Symmetric random matrices

R has iid sub-gaussian entries modulo symmetry: R; = Rj;.
(“general Wigner")

Similar results, more difficult:

Theorem [Vershynin '11]

P{sn(R) < en Y2} < Ce'/® +exp(—n°), &> 0.

Same for D + R where D is any diagonal matrix.
Thus Rudelson’s example is not a problem for symmetric matrices.

Theorem [Nguyen '11]
For any B > 0 there exists A = A(a, B) so that if ||[D|| < n®, then

P{ss(D+R) < Cn"} <n™".




When entries have continuous distributions

Conjecture

Suppose the entries of R have uniformly bounded densities.
Then s,(D + R) should not feel the deterministic part D.
The worst case should be D = 0.

What we know: Polynomial bounds independent of D, but non-optimal.
Theorem (simple for indep. entries; [Farrell-Vershynin '12] for symmetric)
P{sp(D+ R) <en P} < Ce, e>0.

p = 3/2 for indep. entries (maybe better), and p = 2 for symmetric.
C depends only on the maximal density of the entries of R.

Question. Is p=1/2,i.e. sp(D+ R) 2 en~1/2_ like in the Gaussian case?



Proof for symmetric matrices [Farrell, Vershynin '12]

Enough to show that

(A71); = O(1) with high probability.

, _ det A1,
Influence of A1, on (A~1)q, ? Cramer's rule: (A71)1, = edtet(/l\)
A1n A1I’l
Ain)
An1
Al = aA?; + 2b A11 + c, [Aay| = aAn +

Divide, use that Aj, fluctuates continuously by = const w.h.p.
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Proof for non-symmetric matrices: distance argument
A:=D+R. so(D+R) =1/[|A7Y] >?
Negative second moment identity (noticed by [Tao-Vu '08]):

n
IAHZ < A Ifs = D d(AL Hi) 2
i=1

where A; = columns of A and H; = span(A;);;.

hTT /?,: A,

A

Remains to estimate each d(A;, H;); finish by union bound.




Proof for non-symmetric matrices: distance argument

20

h,’[
A7

n
d(Av, H) = [(As, h)| = | 3 bujy
j=1

where h; = unit normal for H;. Condition on h1; A; is independent.
Hence we have a sum of independent random variables.

Ay are continuous, densities bounded by M =- same for their sum
[Rogozin] 4 [Ball]. Hence

P{d(A1, H1) <e} < CMe. O

Remark. Discrete distributions - combinatorial arguments [Rudelson-\/ '08].



Theoretical applications: limit laws in RMT

Polynomial estimates of s,(A) are essential for validating limit laws of
random matrix theory.

Two examples:

Circular law [Girko, Bai, Gotze-Tikhomirov, Pan-Zhou, Tao-Vu]
Spectrum of n~1/2R converges to the uniform distribution on the unit disc:

Uses s,(R) > n=< w.h.p.



Random unitary and orthogonal matrices

Conjecture (O. Zeitouni).

Let D be a deterministic matrix, U be a random matrix uniformly
distributed in U(n) or O(n). Show that

so(D+R)>n"° whp. (1-n1%.

This is needed to validate the Single ring theorem:

Single ring theorem [Guionnet, Krishnapur, Zeitouni '11]

Distribution of spectrum of UDV is supported in a single ring, where
U,V € U(n) or O(n) random uniform.




Naive approach:

Instead of using the full power of U € U(n)
just multiply by a random complex number r, |r| = 1.

so(D+U)=s,(D+ U Y)=s,(D+r tUY)=s,(rUD - I).
Condition on U.

Multiplication by r < random rotation of spectrum o(UD) in C.

<
*
o
—

o(UD) = {n points}. Rotation separates it from o(/) = {1} w.h.p.

= o(rUD — 1) is bounded away from 0.

Q.E.D.?



Not Q.E.D. Fault:

Spectrum bounded away from 0 % matrix well invertible.
In other words, No eigenvalues near 0 % no singular values near 0.

Example [Trefethen, Viswanath '98] Triangular random Gaussian matrix A:

N(0,1)

o(A) = ding(A) 2

while  s,(A) ~ e ",



Random unitary matrices

Theorem (Unitary perturbations) [Rudelson, Vershynin '12]
Let D be any fixed matrix, and U € U(n) be random uniform. Then

P{sp(D+ U) <tn C} <t°, t>0.

Here C,c > 0 are absolute constants (independent of D).

Hence
so(D+U)>tn"C w.h.p.



Random orthogonal matrices

The result fails over R, for U € O(n) !

Example. If nis odd, every rotation U € SO(n) has eigenvalue 1.
= —/ + U is singular with probability 1/2.

Moreover: by rotation invariance,
every orthogonal matrix D is a counterexample:
D + U is singular with probability 1/2.

Main result: These are the only counterexamples.
If D is not approximately orthogonal, then

so(D+U)>tn € w.hp.:



Random orthogonal matrices

Theorem (Orthogonal perturbations) [Rudelson, Vershynin '12]
Let D be a fixed matrix, and U € U(n) be random uniform. Suppose

inf [D—V|>6 D] <K.
VeO(n)

Then
P{s,(D + U) < t(6/Kn)C} <, t>0.

Here C,c > 0 are absolute constants (independent of D).

Remarks.
Orthogonal case is harder than unitary.
Nontrivial even in low dimensions n = 3, 4.

The bound ||D|| < K may not be needed.

Optimal exponents C, ¢ are unknown.



Approach: local perturbations

Difficulty: entries of U € U(n) are dependent.

Fixing it: like in the naive approach, do not use the full strength of U.
Instead, replace U by infinitesimal perturbations of identity
= skew-Hermitian matrices, S* = —8S.

Advantage: skew-Hermitian matrices can be forced to have independent
entries.

Algebraically:

Local structure of Lie group U(n) is given by the associated Lie algebra
(= tangent space at /) = space of skew-Hermitian matrices.



Approach: local perturbations

Problem: skew-symmetric matrices themselves are singular (for odd n)!

Indeed, one one hand
det(S) = det(ST) = det(—S) = (—1)" det(S).

So det(S) = 0.



Approach: complementing by global perturbations

Global perturbation: rotation in one coordinate (say, first) in C”.
Multiply that coordinate by a random complex number r, |r| = 1.

Summary of the approach:

Use both local and global structures of U(n).
Local: skew-symmetric matrices (Lie algebra).
Global: random uniform rotation in one coordinate.



Formalizing local and global perturbations

Local:
S := skew-symmetric real Gaussian random matrix, ¢ > 0 small (n~19).
Then | + €5 is approximately unitary. = Replace U by  + ¢S.

Global:
R := diag(r,1,...,1), where r random uniform, |r| = 1.
Replace further / + &S by R7(/ +£5).

so(D+ U) 2 s,(D+ R}l +¢S)) 2 s,(RD' + | +¢5).



Formalizing local and global perturbations

$n(D + U) = 5,(RD" + 1 +£S) >7

Condition on V.

Summary: two layers of randomness,
local S (Gaussian skew-symmetric); global R (rotation in first coordinate).

Advantages: S has independent entries (modulo skew-symmetry);
R is very simple (determined by one random variable r).

Challenges: skew-symmetry = dependences in half of the entries.
Otherwise we would finish by the distance argument like before.



Distance argument revisited

Distance argument: estimating s,(A) reduces to estimating
d(A1, Hi) = [h{ Al > -+ whp.

where A; = first column of A and H; = span(A;);>1, and h; = HIL.

hl 24

a4

Challenge of skew-symmetry: In our matrix A= RVD + | 4+ ¢S, the
first column A; is correlated with Hy through the first row.

How to express h{ A; ?



Distance argument revisited

.
A=RD +1+4¢e5= [A” Y ]

X BT

Lemma (distance via quadratic forms)

A1 — XTMY]|

V31+1IMY|3

|h{ Ay| = where M = B™L.

Our situation: Z € R"! random Gaussian vector,

o -ZT ,[p VT _[rp+1 (rv—e2)T
5_{Z 0}’ D_[u Q = A= u+eZ I+ Q

Good: thAl is a self-normalized quadratic form in Gaussian random
variables (Z). Essentially a linear form (¢2 = second order term).

Bad: bound it below without knowing much about M = (/ + Q)~1.

Idea (local/global): Use r or Z (or both) depending.on |[M||.



Orthogonal perturbations

Same approach (local/global, via quadratic forms), with one difference:

Global perturbation: instead of random rotation in one coordinate,
rotate in two coordinates.

Argument is more challenging.
Seems to differentiate odd and even n; reduces the problem to n = 3.



Entries of the inverse matrix

Question.

For A a random matrix, what is the magnitude of the entries of A=1?

Is max |[(A~1);| < n~Y2 w.h.p. (up to log-factors)?
ij

This would imply ||A~Y| < [|A~Yus < n'/?, so
sn(A) > n~Y?  w.h.p., as before.

Work by [L. Erdds-Schlein-Yau+Yin '12], [Tao-Vu '12].



Entries of the inverse matrix and delocalization
Question.

Is max;; [(A~1);] < n~Y/2 w.h.p. (up to log-factors) ?

Related to delocalization of eigenvectors of A.

Heuristics. Say, A is symmetric, iid entries. Spectral decomposition:
A= Z)\,-u,-u,-T = Al= Z)\i_lu;u,-T ~ A tugul

where )\, is the smallest eigenvalue in magnitude.

m;\XI(A_l)ijl ~ I un(D)un (7).

Invertibility as before = X\, > n~1/2. Delocalization: all |u,(i)| < n~1/2.

=  max|(A )| < n7Y2 O
I



