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Definition
For an n × n matrix A let µA denote its spectral measure, i.e.

µA =
1
n

n∑
i=1

δλi (A),

where λi(A) are the eigenvalues of A.

Theorem (Tao, Vu (2008))
Let (Xij)i,j<∞ be an infinite array of i.i.d. mean zero, variance one
complex random variables. Let An = (Xij)i,j≤n. Then the spectral
measure of n−1/2An converges almost surely as n→∞ to the uniform
measure on the unit disc.

Previous contributions:
Ginibre, Mehta, Girko, Edelman, Bai, Götze-Tikhomirov, Pan-Zhou



Question:

Can the independence assumption on the entries of An be
relaxed?
The first idea: independent entries –> independent rows with
some geometric condition?
The second idea: dependent rows, but an additional symmetry
assumption?

Existing results:
random Markov matrices - Bordenave, Caputo, Chafaï (2008)
±1 matrices with a given row sum - Nguyen, Vu (2012)
uniform doubly-stochastic matrices - Nguyen (2012)
truncations of random unitary matrices – Dong, Jiang, Li (2012)
matrices with independent log-concave isotropic rows – R.A.
(2010-2013)
matrices with log-concave isotropic unconditional distribution –
Chafaï, R. A. (2013)
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Isotropy, log-concavity

A random vector X in Rn is isotropic if

EX = 0

and
EX ⊗ X = Id

or equivalently for all y ∈ Rn,

E〈X , y〉2 = |y |2.

A random vector X in Rn is log-concave if its law µ satisfies a
Brunn-Minkowski type inequality

µ(θA + (1− θ)B) ≥ µ(A)θµ(B)1−θ.

Theorem (Borell)
A random vector not supported on any (n − 1) dimensional hyperplane
is log-concave iff it has density of the form exp(−V (x)), where
V : Rn → (−∞,∞] is convex.



Theorem (R.A. (2010–2013))
Let An be a sequence of n× n random matrices with independent rows
X (n)

1 , . . . ,X (n)
n (defined on the same probability space). Assume that for

each n and i ≤ n, X (n)
i has a log-concave isotropic distribution. Then,

with probability one, the spectral measure µ 1√
n

An
converges weakly to

the uniform distribution on the unit disc.



Strategy of proof (Girko)

Definition
Let µ be a probability measure on C integrating log(| · |) at infinity. The
logarithmic potential of µ is defined as

Uµ(z) =

∫
C

log(|x − z|)dµ(x).

Fact

µ = − 1
2π

∆Uµ.



Strategy of proof (Girko)

Definition
Let µ be a probability measure on C integrating log(| · |) at infinity. The
logarithmic potential of µ is defined as

Uµ(z) =

∫
C

log(|x − z|)dµ(x).

For the empirical spectral measure of n−1/2An,

Uµn (z) =
1
n

log |det(n−1/2An − z)| =
1

2n
log |det(An − z)|2

=
1
2

∫
log xdνz,n(x),

where νz,n is the empirical spectral measure of the (Hermitian) matrix
(n−1/2An − z)(n−1/2An − z)∗.
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Uµ(z) =

∫
C

log(|x − z|)dµ(x).

Strategy

Prove that (µn)n is tight and νz,n converge weakly. Use the
log-potential to identify the limit.

Problem: singularities of the logarithm
One needs to show that for all z, log(·) is a.s. uniformly integrable
with respect to the random measures νz,n
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Log-concave toolkit

Theorem (Prekopa-Leindler (1970’s))
Marginals of log-concave isotropic random vectors are themselves
isotropic and log-concave.

Theorem (Hensley (1980))
The density of a one-dimensional variance one log-concave variable is
bounded by a universal constant.

Theorem (Klartag’s thin shell concentration (2007))
Let X be an isotropic log-concave random vector in Rn. There exist
numerical positive constants C and c such that for all ε ∈ (0,1),

P
(∣∣∣∣ |X |2n

− 1
∣∣∣∣ ≥ ε) ≤ C exp(−cεCnc).



Convergence of νz,n

We are interested in convergence of the empirical spectral
measure of (n−1/2An − zId)(n−1/2An − zId)∗.

By general properties of random matrices with independent
rows(exponential concentration for the Stieltjes transform), it is
enough to prove the convergence of expected spectral measure.

Lemma (folklore(?)– Corollary to Azuma’s inequality)
Let A be any n × N random matrix with independent rows and let
S : C+ → C be the Stieltjes transform of the spectral measure of
H = AA∗. Then for any α = x + iy ∈ C+ and any ε > 0,

P(|Sn(α)− ESn(α)| ≥ ε) ≤ C exp(−cnε2y2).



Convergence of νz,n

We are interested in convergence of the empirical spectral
measure of (n−1/2An − zId)(n−1/2An − zId)∗.
By general properties of random matrices with independent
rows(exponential concentration for the Stieltjes transform), it is
enough to prove the convergence of expected spectral measure.

Lemma (folklore(?)– Corollary to Azuma’s inequality)
Let A be any n × N random matrix with independent rows and let
S : C+ → C be the Stieltjes transform of the spectral measure of
H = AA∗. Then for any α = x + iy ∈ C+ and any ε > 0,

P(|Sn(α)− ESn(α)| ≥ ε) ≤ C exp(−cnε2y2).



Theorem (R.A. (2011), following Dozier-Silverstein)
Let N = Nn and assume that n/N → c > 0. Let Rn be a deterministic
n × N matrix such that the spectral measure of 1

N RnR∗n converges to
some probability measure H. Let An be an n × N random matrix with
independent rows Xi = X (n)

i such that

1
n

n∑
i=1

sup
‖C‖≤1

1
N
E|〈CXi ,Xi〉 − tr C| = o(1).

Then the spectral measure of the matrix Mn = 1
N (Rn + An)(Rn + An)∗

converges a.s. to a deterministic probability measure µ, whose
Stieltjes transform S(z) =

∫∞
0

1
x−zµ(dx) is characterized by

S(z) =

∫ ∞
0

1
t

1+cS(z) − (1 + S(z))z + 1− c
H(dt).



Remarks

The Marchenko-Pastur theorem for random matrices with
independent rows distributed uniformly on `np balls was proved by
Aubrun (2006) by reduction to the independent case

The Marchenko-Pastur theorem for general matrices with
independent rows such that

max
‖C‖≤1

1
N2E|〈CX ,X 〉 − tr C|2 = o(1)

was obtained by Pajor and Pastur (2007). They also verified that
log-concave isotropic vectors satisfy this assumption.
One can state a more general condition, which works when the
rows are dependent. Examples: 1) a generalization of a recent
result by O’Rourke for random matrices with decaying
correlations, 2) random matrices with exchangeable entries.
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Uniform integrability of the log(·)

Following Tao and Vu, one needs three ingredients
a polynomial bound on the largest singular value
a polynomial bound on the smallest singular value
a bound on the distance of a single row of the matrix from the
span of some other k -rows. It should be with high probability of
the order

√
n − k .



largest singular value

Theorem (Litvak, Pajor,Tomczak-Jaegermann, R.A. (2010))
With high probability we have

‖A‖ ≤ C
√

n.

In fact for the circular law a weaker bound suffices, so one can
simply use Klartag’ thin shell or Paouris large deviation inequality
for the Hilbert-Schmidt (Euclidean) norm of the matrix.
smallest singular value

Proposition
Let An be an n × n matrix with independent log-concave isotropic rows
and let Mn be any deterministic matrix. Let σn be the smallest singular
value of An + Mn. Then with probability at least 1− n−2,

σn ≥ cn−4.



largest singular value

Theorem (Litvak, Pajor,Tomczak-Jaegermann, R.A. (2010))
With high probability we have

‖A‖ ≤ C
√

n.

In fact for the circular law a weaker bound suffices, so one can
simply use Klartag’ thin shell or Paouris large deviation inequality
for the Hilbert-Schmidt (Euclidean) norm of the matrix.
smallest singular value

Proof (now standard, following Rudelson-Vershynin).
Let Xi be the rows of An + Mn. We have

σn ≥
1√
n

min
i≤n

(dist(Xi , span{Xj}j 6=i).

LHS easily bounded by independence of rows and bounded density of
marginals.



Digression: Mn = 0

Theorem (Guédon, Litvak, Pajor, Tomczak-Jaegermann, R.A.
(2010))
Let An be an n × n matrix with independent log-concave isotropic rows
and let σn be the smallest singular value of An. Then for every
ε ∈ (0,1),

P
(
σn ≤ cεn−1/2

)
≤ Cε log2

(2
ε

)
.

This may be considered a counterpart of the Edelman-Szarek result
for the Gaussian case. Remark: everything is smooth so no discrete
problems present e.g. for sign matrices.

Problems:

get rid of the log,
extend to nonzero Mn (for Gaussian matrix - Sankar, Spielman,
Teng (2003)).
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distance from the subspace
We need a good lower estimate on dist(X,E), where E is a
deterministic subspace of Cn of dimension k .
For Rn it follows directly from Klartag’s result, since PEc X is an
isotropic log-concave random vector on Ec (by Prekopa-Leindler)
and thus

P
(
|PEc X |2 − (n − k)| ≥ ε(n − k)

)
≤ C exp(−cεC(n − k)c).

For Cn one needs some simple adjustments.

Instead of Klartag’s result one may also use the following

Theorem (Paouris (2009))
Let X be an isotropic log-concave random vector in Rn and let A be an
n × n real nonzero matrix. Then for y ∈ Rn and ε ∈ (0, c1),

P(|AX − y | ≤ ε‖A‖HS) ≤ εc1(‖A‖HS/‖A‖),

where c1 > 0 is a universal constant.

Here (after passing to real matrices) ‖A‖HS =
√

n − k , ‖A‖ ≤ 1.
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Beyond independent rows (joint work with D. Chafaï)

Definition
A random vector X = (X1, . . . ,Xn) is called unconditional if its
distribution is equal to the distribution of (ε1X1, . . . , εnXn) for any
choice of εi ∈ {−1,+1}.

Theorem (Chafaï, R.A. (2013))

Let us identify the space of n × n real matrices with Rn2
in a natural

way. Assume that for each n, An is a random matrix with log-concave
isotropic unconditional distribution. Then, with probability one, the
empirical spectral measure of 1√

n An converges to the uniform measure
on the unit disc.

Remark:

There are models with log-concave isotropic distribution for which the
limiting spectral measure is not the circular law
(Feinberg-Zee,Guionnet-Krishnapur-Zeitouni).
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Convergence of νz,n

Theorem (R.A. (2010))

Let An = [X (n)
ij ]1≤i≤n,1≤j≤n. Let us assume that the following

assumptions are satisfied

(A1) for every k ∈ N, supn maxi≤n,j≤n E|X
(n)
ij |

k <∞,

(A2) for every n, i , j , E(X (n)
ij |Fij) = 0, where Fij is the σ-field generated

by {X (n)
kl : (k , l) 6= (i , j)},

(A3) |Rn|/
√

n, |Cn|/
√

n→ 1 in probability, where Rn and Cn are resp.
random row and column of An.

Then the expected spectral measure of

(n−1/2An − zId)(n−1/2An − zId)∗

converges to a measure which does not depend on the distribution of
An.



Convergence of νz,n

In the log-concave unconditional case the assumptions are
satisfied thanks to Klartag’s thin shell inequality
This gives convergence of Evz,n to the same measure as in the
Gaussian case.

The a.s. convergence follows by concentration implied by the
Poincaré inequality for unconditional log-concave measures,
applied to the Stieltjes transform of νz,n

Theorem (Klartag)

If X is an isotropic unconditional log-concave random vector in Rn,
then for every smooth f : Rn → R,

Varf (X ) ≤ C log2(n + 1)E|∇f (X )|2.
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The largest singular value

Theorem (Latała)
Let X be an unconditional isotropic log-concave random vector in Rn

and let Y be a random vector in Rn whose components are i.i.d.
standard symmetric exponential variables. Then for every norm ‖ · ‖ on
Rn and every t > 0,

P(‖X‖ ≥ t) ≤ CP(‖Y‖ > t/C).

Combining this with known bounds on the operator norm of random
matrices with i.i.d. entries and the Poincaré inequality for teh
exponential distribution, we get

Lemma
Let Mn be a deterministic n × n matrix with ‖Mn‖ ≤ R

√
n for some

R > 0. Then for all t ≥ 1,

P(‖An + Mn‖ ≥ (R + C)
√

n + t) ≤ 2 exp(−ct).



The smallest singular value

Lemma (Chafaï, R.A.)
Let An be an n × n random matrix with log-concave isotropic
unconditional distribution and let Mn be a deterministic n × n matrix.
Then

P(sn(An + Mn) ≤ n−6.5) ≤ Cn−3/2.

A better but still suboptimal result can be obtained
Can one get P(sn(An + Mn) ≤ εn−1/2) ≤ Cε logC(1/ε) at least for
Mn = 0?
The proof uses the fact that conditional distribution of a single
column given all the remaining columns is log-concave and
unconditional. It is not isotropic, but by isotropy, Hensley and
Markov’s ineq. one can get a lower bound on conditional
variances. Then we again use the boundedness of density for
one-dimensional log-concave vectors.



Distance from a subspace

Since the rows of An are not independent we cannot reduce to a
deterministic subspace.

Lemma (Chafaï, R.A.)
Let Mn a deterministic n× n matrix with ‖Mn‖ ≤ R

√
n. Denote the rows

of An + Mn by Z1, . . . ,Zn and let H be the space spanned by Z1, . . . ,Zk
(k < n). Then with probability at least 1− 2n exp(−cR(n − k)1/3),

dist(Zk+1,H) ≥ cR
√

n − k .

Some (not too well motivated) questions:

What is the right probability bound?
Does a similar bound hold without unconditionality (i.e. for
log-concave isotropic matrices)?
Is the dependence on R necessary?
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Outline of the proof of the lemma

For simplicity Mn = 0.

Let e1, . . . ,en−k be an orthonormal basis in H⊥ and X be the
(k + 1)th row of An.
X = (X1ε1, . . . ,Xnεn), where ε’s – i.i.d. Rademachers
By applying Talagrand’s concentration inequality to ε’s we get that

Pε
(

dist(X ,H)2 ≤ c
n−k∑
i=1

n∑
j=1

X 2
j |eij |2

)
≤ 2 exp

(
− c

∑n−k
i=1

∑n
j=1 X 2

j |eij |2

maxi X 2
i

)
.

maxi |Xi | can be controlled easily by log-concavity, so it remains to
prove that with high probability

n−k∑
i=1

n∑
j=1

X 2
j |eij |2 ≥ c(n − k)
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maxi |Xi | can be controlled easily by log-concavity, so it remains to
prove that with high probability

n−k∑
i=1

n∑
j=1

X 2
j |eij |2 ≥ c(n − k)

for this we prove that with high probability
1) ei are incompressible, so a linear proportion of their coordinates
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2) at least (1− α/2)n coordinates of X is larger then θ
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2
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To prove 1) and 2) one uses the fact that unconditional
log-concave measures satisfy the hyperplane conjecture so, their
densities in dimension m are bounded by Cm.
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