Permanent estimators via random matrices

Mark Rudelson
joint work with Ofer Zeitouni

Department of Mathematics
University of Michigan

Saint Petersburg, 2013

Permanent of a matrix

Let A be an $n \times n$ matrix with $a_{i, j} \geq 0$.

Permanent of A :

$$
\operatorname{perm}(A)=\sum_{\pi \in \Pi_{n}} \prod_{j=1}^{n} a_{j, \pi(j)}
$$

Permanent of a matrix

Let A be an $n \times n$ matrix with $a_{i, j} \geq 0$.

Permanent of A :

$$
\operatorname{perm}(A)=\sum_{\pi \in \Pi_{n}} \prod_{j=1}^{n} a_{j, \pi(j)}
$$

Determinant of A :

$$
\operatorname{det}(A)=\sum_{\pi \in \Pi_{n}} \operatorname{sign}(\pi) \prod_{j=1}^{n} a_{j, \pi(j)} .
$$

Permanent of a matrix

Let A be an $n \times n$ matrix with $a_{i, j} \geq 0$.

Permanent of A :

$$
\operatorname{perm}(A)=\sum_{\pi \in \Pi_{n}} \prod_{j=1}^{n} a_{j, \pi(j)}
$$

Determinant of A :

$$
\operatorname{det}(A)=\sum_{\pi \in \Pi_{n}} \operatorname{sign}(\pi) \prod_{j=1}^{n} a_{j, \pi(j)} .
$$

Evaluation of determinants is fast: use e.g., triangularization by Gaussian elimination.

Permanent of a matrix

Let A be an $n \times n$ matrix with $a_{i, j} \geq 0$.

Permanent of A :

$$
\operatorname{perm}(A)=\sum_{\pi \in \Pi_{n}} \prod_{j=1}^{n} a_{j, \pi(j)} .
$$

Evaluation of permanents is $\# P$-complete (Valiant 1979) if there exists a polynomial-time algorithm for permanent evaluation, then any $\# P$ problem can be solved in polynomial time. Fast computation $\Rightarrow \mathrm{P}=\mathrm{NP}$.

Determinant of A :

$$
\operatorname{det}(A)=\sum_{\pi \in \Pi_{n}} \operatorname{sign}(\pi) \prod_{j=1}^{n} a_{j, \pi(j)} .
$$

Evaluation of determinants is fast: use e.g., triangularization by Gaussian elimination.

Applications of permanents

Wick's formula
Let $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ be complex centered normal random variables. Then

$$
\mathbb{E} \prod_{j=1}^{n} f_{j} \bar{g}_{j}=\operatorname{perm}(A),
$$

where A is the correlation matrix: $a_{i, j}=\mathbb{E} f_{i} \bar{g}_{j}$.

Applications of permanents

Perfect matchings
Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.

Applications of permanents

Perfect matchings
Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A perfect matching is a bijection
$\tau: E \rightarrow R$ such that $e \rightarrow \tau(e)$ for all $e \in E$.

Applications of permanents

Perfect matchings
Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A perfect matching is a bijection
$\tau: E \rightarrow R$ such that $e \rightarrow \tau(e)$ for all $e \in E$.

Applications of permanents

Perfect matchings
Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A perfect matching is a bijection $\tau: E \rightarrow R$ such that $e \rightarrow \tau(e)$ for all $e \in E$.

$$
\#(\text { perfect matchings })=\operatorname{perm}(A),
$$

where A is the adjacency matrix of the graph:

$$
a_{i, j}=1 \quad \text { if } i \rightarrow j
$$

Deterministic bounds

- Linial-Samorodnitsky-Wigderson algoritm: if perm $(A)>0$, then one can find in polynomial time diagonal matrices D, D^{\prime} such that the renormalized matrix $A^{\prime}=D^{\prime} A D$ is almost doubly stochastic:

$$
\begin{aligned}
& 1-\varepsilon<\sum_{i=1}^{n} a_{i, j}^{\prime}<1+\varepsilon, \quad \text { for all } j=1, \ldots, n \\
& 1-\varepsilon<\sum_{j=1}^{n} a_{i, j}^{\prime}<1+\varepsilon, \quad \text { for all } i=1, \ldots, n
\end{aligned}
$$

Deterministic bounds

- Linial-Samorodnitsky-Wigderson algoritm: if perm $(A)>0$, then one can find in polynomial time diagonal matrices D, D^{\prime} such that the renormalized matrix $A^{\prime}=D^{\prime} A D$ is almost doubly stochastic:

$$
\begin{aligned}
& 1-\varepsilon<\sum_{i=1}^{n} a_{i, j}^{\prime}<1+\varepsilon, \quad \text { for all } j=1, \ldots, n \\
& 1-\varepsilon<\sum_{j=1}^{n} a_{i, j}^{\prime}<1+\varepsilon, \quad \text { for all } i=1, \ldots, n
\end{aligned}
$$

- $\operatorname{perm}(A)=\prod_{i=1}^{n} d_{i} \cdot \prod_{j=1}^{n} d_{j}^{\prime} \cdot \operatorname{perm}\left(A^{\prime}\right)$

Deterministic bounds

- Linial-Samorodnitsky-Wigderson algoritm: reduces permanent estimates to almost doubly stochastic matrices
- Van der Waerden conjecture, proved by Falikman and Egorychev: if A is doubly stochastic, then

$$
1 \geq \operatorname{perm}(A) \geq \frac{n!}{n^{n}} \approx e^{-n}
$$

- Linial-Samorodnitsky-Wigderson algorithm estimates the permanent with the multiplicative error at most e^{n}

Deterministic bounds

- Linial-Samorodnitsky-Wigderson algoritm: reduces permanent estimates to almost doubly stochastic matrices
- Van der Waerden conjecture, proved by Falikman and Egorychev: if A is doubly stochastic, then

$$
1 \geq \operatorname{perm}(A) \geq \frac{n!}{n^{n}} \approx e^{-n}
$$

- Linial-Samorodnitsky-Wigderson algorithm estimates the permanent with the multiplicative error at most e^{n}
- Bregman's theorem (1973) implies that if A is doubly stochastic, and $\max a_{i, j} \leq t \cdot \min a_{i, j}$, then

$$
\operatorname{perm}(A) \leq e^{-n} \cdot n^{O\left(t^{2}\right)}
$$

- Conclusion: if $\max a_{i, j} \leq t \cdot \min a_{i, j}$, then

Linial-Samorodnitsky-Wigderson algoritm with multiplicative error $n^{O\left(t^{2}\right)}$

- Doesn't cover matrices with zeros.

Probabilistic estimates

- Jerrum-Sinclair-Vigoda algorithm estimates the permanent of any matrix with polynomial multiplicative error with high probability.

Probabilistic estimates

- Jerrum-Sinclair-Vigoda algorithm estimates the permanent of any matrix with polynomial multiplicative error with high probability.
- Deficiency: running time is $O\left(n^{10}\right)$

Probabilistic estimates

- Jerrum-Sinclair-Vigoda algorithm estimates the permanent of any matrix with polynomial multiplicative error with high probability.
- Deficiency: running time is $O\left(n^{10}\right)$
- Godsil-Gutman estimator Let $A_{1 / 2}$ be the matrix with entries $a_{i, j}^{1 / 2}$. Let R be an $n \times n$ random matrix with i.i.d. ± 1 entries. Form the Hadamard product $R \odot A_{1 / 2}: \quad w_{i, j}=\sqrt{a_{i, j}} \cdot r_{i, j}$. Then

$$
\operatorname{perm}(A)=\mathbb{E} \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right) .
$$

Estimator: $\operatorname{perm}(A) \approx \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right)$.

Probabilistic estimates

- Jerrum-Sinclair-Vigoda algorithm estimates the permanent of any matrix with polynomial multiplicative error with high probability.
- Deficiency: running time is $O\left(n^{10}\right)$
- Godsil-Gutman estimator Let $A_{1 / 2}$ be the matrix with entries $a_{i, j}^{1 / 2}$. Let R be an $n \times n$ random matrix with i.i.d. ± 1 entries.
Form the Hadamard product $R \odot A_{1 / 2}: \quad w_{i, j}=\sqrt{a_{i, j}} \cdot r_{i, j}$.
Then

$$
\operatorname{perm}(A)=\mathbb{E} \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right) .
$$

Estimator: $\operatorname{perm}(A) \approx \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right)$.

- Advantage: Godsil-Gutman estimator is faster than any other algorithm.

Probabilistic estimates

- Jerrum-Sinclair-Vigoda algorithm estimates the permanent of any matrix with polynomial multiplicative error with high probability.
- Deficiency: running time is $O\left(n^{10}\right)$
- Godsil-Gutman estimator Let $A_{1 / 2}$ be the matrix with entries $a_{i, j}^{1 / 2}$. Let R be an $n \times n$ random matrix with i.i.d. ± 1 entries. Form the Hadamard product $R \odot A_{1 / 2}: \quad w_{i, j}=\sqrt{a_{i, j}} \cdot r_{i, j}$. Then

$$
\operatorname{perm}(A)=\mathbb{E} \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right) .
$$

Estimator: $\operatorname{perm}(A) \approx \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right)$.

- Advantage: Godsil-Gutman estimator is faster than any other algorithm.
- Deficiency: Godsil-Gutman estimator performs well for "generic" matrices, but fails for large classes of $\{0,1\}$ matrices, because of arithmetic issues.

Barvinok's estimator

- Godsil-Gutman estimator Let $A_{1 / 2}$ be the matrix with entries $a_{i, j}^{1 / 2}$. Let R be an $n \times n$ random matrix with i.i.d. ± 1 entries. Form the Hadamard product $R \odot A_{1 / 2}$. Then

$$
\operatorname{perm}(A)=\mathbb{E} \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right) .
$$

Estimator: $\operatorname{perm}(A) \approx \operatorname{det}^{2}\left(R \odot A_{1 / 2}\right)$.

Barvinok's estimator

- Barvinok's estimator Let $A_{1 / 2}$ be the matrix with entries $a_{i, j}^{1 / 2}$. Let G be an $n \times n$ random matrix with i.i.d. $N(0,1)$ entries. Form the Hadamard product $G \odot A_{1 / 2}$. Then

$$
\operatorname{perm}(A)=\mathbb{E} \operatorname{det}^{2}\left(G \odot A_{1 / 2}\right) .
$$

Estimator: $\operatorname{perm}(A) \approx \operatorname{det}^{2}\left(G \odot A_{1 / 2}\right)$.

- Barvinok's estimator has no arithmetic issues.

Barvinok's estimator

- Barvinok's estimator Let $A_{1 / 2}$ be the matrix with entries $a_{i, j}^{1 / 2}$. Let G be an $n \times n$ random matrix with i.i.d. $N(0,1)$ entries. Form the Hadamard product $G \odot A_{1 / 2}$. Then

$$
\operatorname{perm}(A)=\mathbb{E} \operatorname{det}^{2}\left(G \odot A_{1 / 2}\right) .
$$

Estimator: $\operatorname{perm}(A) \approx \operatorname{det}^{2}\left(G \odot A_{1 / 2}\right)$.

- Barvinok's estimator has no arithmetic issues.

Theorem (Barvinok)
Let A be any $n \times n$ matrix. Then, with high probability,

$$
((1-\varepsilon) \cdot \theta)^{n} \operatorname{perm}(A) \leq \operatorname{det}^{2}\left(G \odot A_{1 / 2}\right) \leq C \operatorname{perm}(A),
$$

where C is an absolute constant and

- $\theta=0.28$ for real Gaussian matrices;
- $\theta=0.56$ for complex Gaussian matrices;

Subexponential bounds for Barvinok's estimator

- Identity matrix: multiplicative error at least $\exp (c n)$ w.h.p.
- Matrix of all ones: multiplicative error at most $\exp (C \sqrt{\log n})$ (Goodman, 1963).
- What happens for other matrices?

Subexponential bounds for Barvinok's estimator

- Identity matrix: multiplicative error at least $\exp (c n)$ w.h.p.
- Matrix of all ones: multiplicative error at most $\exp (C \sqrt{\log n})$ (Goodman, 1963).
- What happens for other matrices?
- Balanced entries (Friedland, Rider, Zeitouni, 2004): if $\max a_{i, j} \leq t \cdot \min a_{i, j}$, then

$$
e^{-o(n)} \leq \frac{\operatorname{det}^{2}\left(G \odot A_{1 / 2}\right)}{\operatorname{perm}(A)} \leq e^{o(n)}
$$

with probability $1-o(1)$ as $n \rightarrow \infty$.

Subexponential bounds for Barvinok's estimator

- Identity matrix: multiplicative error at least $\exp (c n)$ w.h.p.
- Matrix of all ones: multiplicative error at most $\exp (C \sqrt{\log n})$ (Goodman, 1963).
- What happens for other matrices?
- Balanced entries (Friedland, Rider, Zeitouni, 2004):
if $\max a_{i, j} \leq t \cdot \min a_{i, j}$, then

$$
e^{-o(n)} \leq \frac{\operatorname{det}^{2}\left(G \odot A_{1 / 2}\right)}{\operatorname{perm}(A)} \leq e^{o(n)}
$$

with probability $1-o(1)$ as $n \rightarrow \infty$.

- The bound is asymptotic.
- Not applicable for matrices with zeros.
- Linial-Samorodnitsky-Wigderson algorithm estimates the permanent with polynomial error for balanced matrices.

Subexponential bounds for Barvinok's estimator

Question:

for which graphs would Barvinok's estimator yield a small error?

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected
to a set $J \subset R$ if it is connected
to at least $(\delta / 2) \cdot|J|$ vertices of J.

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected
to a set $J \subset R$ if it is connected
to at least $(\delta / 2) \cdot|J|$ vertices of J.
Strongly connected graph
Let $\delta, \kappa>0, \delta / 2>\kappa$. The graph Γ is (δ, κ)-strongly connected if
(1) Left degree condition: $\operatorname{deg}(i) \geq \delta n$ for all $i \in[n]$;

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected
to a set $J \subset R$ if it is connected
to at least $(\delta / 2) \cdot|J|$ vertices of J.
Strongly connected graph
Let $\delta, \kappa>0, \delta / 2>\kappa$. The graph Γ is (δ, κ)-strongly connected if
(1) Left degree condition: $\operatorname{deg}(i) \geq \delta n$ for all $i \in[n]$;
(2) Right degree condition: $\operatorname{deg}(j) \geq \delta n$ for all $j \in[n]$;

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected to a set $J \subset R$ if it is connected to at least $(\delta / 2) \cdot|J|$ vertices of J.

Strongly connected graph
Let $\delta, \kappa>0, \delta / 2>\kappa$. The graph Γ is (δ, κ)-strongly connected if
(1) Left degree condition: $\operatorname{deg}(i) \geq \delta n$ for all $i \in[n]$;
(2) Right degree condition: $\operatorname{deg}(j) \geq \delta n$ for all $j \in[n]$;
(3) Strong expansion condition: for any set $J \subset[m]$
the set of its δ-strongly connected
 neighbors has the cardinality $|I(J)| \geq \min ((1+\kappa)|J|, n)$.

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected to a set $J \subset R$ if it is connected
to at least $(\delta / 2) \cdot|J|$ vertices of J.
Strongly connected graph
Let $\delta, \kappa>0, \delta / 2>\kappa$. The graph Γ is (δ, κ)-strongly connected if
(1) Left degree condition: $\operatorname{deg}(i) \geq \delta n$ for all $i \in[n]$;
(2) Right degree condition: $\operatorname{deg}(j) \geq \delta n$ for all $j \in[n]$;
(3) Strong expansion condition: for any set $J \subset[m]$
the set of its δ-strongly connected
 neighbors has the cardinality $|I(J)| \geq \min ((1+\kappa)|J|, n)$.

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected to a set $J \subset R$ if it is connected
to at least $(\delta / 2) \cdot|J|$ vertices of J.
Strongly connected graph
Let $\delta, \kappa>0, \delta / 2>\kappa$. The graph Γ is (δ, κ)-strongly connected if
(1) Left degree condition: $\operatorname{deg}(i) \geq \delta n$ for all $i \in[n]$;
(2) Right degree condition: $\operatorname{deg}(j) \geq \delta n$ for all $j \in[n]$;
(3) Strong expansion condition: for any set $J \subset[m]$
the set of its δ-strongly connected
 neighbors has the cardinality $|I(J)| \geq \min ((1+\kappa)|J|, n)$.

Strongly connected bipartite graphs

Let $\Gamma=(L, R, V)$ be an $n \times n$ bipartite graph.
A vertex $i \in L$ is δ-strongly connected to a set $J \subset R$ if it is connected
to at least $(\delta / 2) \cdot|J|$ vertices of J.
Strongly connected graph
Let $\delta, \kappa>0, \delta / 2>\kappa$. The graph Γ is (δ, κ)-strongly connected if
(1) Left degree condition: $\operatorname{deg}(i) \geq \delta n$ for all $i \in[n]$;
(2) Right degree condition: $\operatorname{deg}(j) \geq \delta n$ for all $j \in[n]$;
(3) Strong expansion condition: for any set $J \subset[m]$
the set of its δ-strongly connected
 neighbors has the cardinality $|I(J)| \geq \min ((1+\kappa)|J|, n)$.

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability
- Bad news: It can be concentrated around a wrong value

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability
- Bad news: It can be concentrated around a wrong value

Theorem (R'-Zeitouni, 2013)
Let A be the adjacency matrix A of an $n \times n$ bipartite graph, which has

- the minimal degree at least δn with some $\delta>0$;
- expander-type property
then for any $\tau \geq 1$

$$
\begin{array}{ll}
\mathbb{P}[& \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \\
\geq 1-\text { small } &
\end{array}
$$

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability
- Bad news: It can be concentrated around a wrong value

Theorem (R'-Zeitouni, 2013)

Let A be the adjacency matrix A of an $n \times n$ bipartite graph, which has

- the minimal degree at least δn with some $\delta>0$;
- expander-type property
then for any $\tau \geq 1$

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C(\tau n \log n)^{1 / 3}\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C(\tau n \log n)^{1 / 3}\right)\right] \\
& \geq 1-\text { small }
\end{aligned}
$$

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability
- Bad news: It can be concentrated around a wrong value

Theorem (R'-Zeitouni, 2013)

Let A be the adjacency matrix A of an $n \times n$ bipartite graph, which has

- the minimal degree at least δn with some $\delta>0$;
- expander-type property
then for any $\tau \geq 1$

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C(\tau n \log n)^{1 / 3}\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C(\tau n \log n)^{1 / 3}\right)\right] \\
& \geq 1-\exp (-\tau)+\exp (-c \sqrt{n} / \log n)
\end{aligned}
$$

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability
- Bad news: It can be concentrated around a wrong value

Theorem (R'-Zeitouni, 2013)

Let A be the adjacency matrix A of an $n \times n$ bipartite graph, which has

- the minimal degree at least δn with some $\delta>0$;
- expander-type property
then for any $\tau \geq 1$

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C(\tau n \log n)^{1 / 3}\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C(\tau n \log n)^{1 / 3}\right)\right] \\
& \geq 1-\exp (-\tau)+\exp (-c \sqrt{n} / \log n)
\end{aligned}
$$

and

$$
\exp \left(-C(\tau n \log n)^{1 / 2}\right) \leq \frac{M}{\operatorname{perm}(A)} \leq 1 .
$$

Results for bipartite graphs

- Good news: the Barvinok estimator is strongly concentrated: the multiplicative error is $O\left(\exp \left((c n \log n)^{1 / 3}\right)\right.$ with high probability
- Bad news: It can be concentrated around a wrong value

Theorem (R'-Zeitouni, 2013)

Let A be the adjacency matrix A of an $n \times n$ bipartite graph, which has

- the minimal degree at least δn with some $\delta>0$;
- expander-type property
then for any $\tau \geq 1$

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C(\tau n \log n)^{1 / 3}\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{\exp \left(\mathbb{E} \log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)\right)} \leq \exp \left(C(\tau n \log n)^{1 / 3}\right)\right] \\
& \geq 1-\exp (-\tau)+\exp (-c \sqrt{n} / \log n)
\end{aligned}
$$

and

$$
\exp \left(-C(\tau n \log n)^{1 / 2}\right) \leq \frac{\exp \left(\mathbb{E} \log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)\right)}{\mathbb{E} \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)} \leq 1
$$

Results for matrices

Large entries graph
Let $s>0$ and let B be an $n \times n$ matrix B with non-negative entries.
Define the bipartite graph $\Gamma_{B}(s)$ connecting the vertices i and j whenever $b_{i, j} \geq s$

Results for matrices

Large entries graph
Let $s>0$ and let B be an $n \times n$ matrix B with non-negative entries.
Define the bipartite graph $\Gamma_{B}(s)$ connecting the vertices i and j whenever $b_{i, j} \geq s$

$$
B=\left(\begin{array}{cccc}
0.7 & 0 & 0.1 & 0.5 \\
0.1 & 0.6 & 0.8 & 0.2 \\
0.6 & 0.6 & 0.3 & 0.5 \\
0.2 & 0.8 & 0.7 & 0.3
\end{array}\right) \quad \Rightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \quad(s=0.5)
$$

Consider matrices with strongly connected large entries graphs.

Results for matrices

Theorem

Let B be an $n \times n$ matrix such that

$$
\sum_{i=1}^{n} b_{i, j} \leq 1 \quad \text { for all } j \in[n] ; \quad \text { and } \quad \sum_{j=1}^{n} b_{i, j} \leq 1 \quad \text { for all } i \in[n],
$$

and $0 \leq b_{i, j} \leq b_{n} / n$, where $0<b_{n} \leq n$.
Assume that the large entries graph $\Gamma_{B}(1 / n)$ is (δ, κ)-strongly connected.

Results for matrices

Theorem

Let B be an $n \times n$ matrix such that

$$
\sum_{i=1}^{n} b_{i, j} \leq 1 \quad \text { for all } j \in[n] ; \quad \text { and } \quad \sum_{j=1}^{n} b_{i, j} \leq 1 \quad \text { for all } i \in[n],
$$

and $0 \leq b_{i, j} \leq b_{n} / n$, where $0<b_{n} \leq n$.
Assume that the large entries graph $\Gamma_{B}(1 / n)$ is (δ, κ)-strongly connected.
Then for any $\tau \geq 1$

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right)\right] \\
& \geq 1-\exp (-\tau)+\exp \left(-c \sqrt{n} / \log ^{c} n\right)
\end{aligned}
$$

Results for matrices

Theorem

Let B be an $n \times n$ matrix such that

$$
\sum_{i=1}^{n} b_{i, j} \leq 1 \quad \text { for all } j \in[n] ; \quad \text { and } \quad \sum_{j=1}^{n} b_{i, j} \leq 1 \quad \text { for all } i \in[n],
$$

and $0 \leq b_{i, j} \leq b_{n} / n$, where $0<b_{n} \leq n$.
Assume that the large entries graph $\Gamma_{B}(1 / n)$ is (δ, κ)-strongly connected.
Then for any $\tau \geq 1$

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right)\right] \\
& \geq 1-\exp (-\tau)+\exp \left(-c \sqrt{n} / \log ^{c} n\right) \\
& \quad \text { and } \quad \exp \left(-C\left(\tau b_{n} n\right)^{1 / 2} \log ^{c} n\right) \leq \frac{M}{\operatorname{perm}(A)} \leq 1
\end{aligned}
$$

Results for matrices

Theorem

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right)\right] \\
& \geq 1-\exp (-\tau)+\exp \left(-c \sqrt{n} / \log ^{c} n\right) \\
& \text { and } \quad \exp \left(-C\left(\tau b_{n} n\right)^{1 / 2} \log ^{c} n\right) \leq \frac{M}{\operatorname{perm}(A)} \leq 1 .
\end{aligned}
$$

- Small maximal entry: $\max b_{i, j}=o(1)$ or $b_{n}=o(n)$:
- Barvinok's estimator is well-concentrated about the permanent.

Results for matrices

Theorem

$$
\begin{aligned}
& \mathbb{P}\left[\exp \left(-C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right) \leq \frac{\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)}{M} \leq \exp \left(C\left(\tau b_{n} n\right)^{1 / 3} \log ^{c} n\right)\right] \\
& \geq 1-\exp (-\tau)+\exp \left(-c \sqrt{n} / \log ^{c} n\right) \\
& \text { and } \quad \exp \left(-C\left(\tau b_{n} n\right)^{1 / 2} \log ^{c} n\right) \leq \frac{M}{\operatorname{perm}(A)} \leq 1 .
\end{aligned}
$$

- Small maximal entry: $\max b_{i, j}=o(1)$ or $b_{n}=o(n)$:
- Barvinok's estimator is well-concentrated about the permanent.
- Large maximal entry: $\max b_{i, j}=\Omega(1)$ or $b_{n}=\Omega(n)$:
- Barvinok's estimator is well-concentrated: $\left(\tau b_{n} n\right)^{1 / 3}=O\left(n^{2 / 3}\right)$;
- It may be concentrated exponentially far from the permanent: $\sqrt{b_{n} n}=\Omega(n)$.
- Consistent failure is possible.

Example of a consistent failure

Let B be the $n \times n$ matrix with entries

$$
b_{i, j}=\left\{\begin{array}{ll}
\theta & \text { if } i=j \\
\frac{1-\theta}{n-1} & \text { if } i \neq j
\end{array} .\right.
$$

- The matrix B is doubly stochastic for $\theta \in(0,1)$.
- B has no zero entries.
- Γ_{B} is a complete bipartite graph.

Example of a consistent failure

Let B be the $n \times n$ matrix with entries

$$
b_{i, j}=\left\{\begin{array}{ll}
\theta & \text { if } i=j \\
\frac{1-\theta}{n-1} & \text { if } i \neq j
\end{array} .\right.
$$

- The matrix B is doubly stochastic for $\theta \in(0,1)$.
- B has no zero entries.
- Γ_{B} is a complete bipartite graph.

Theorem
There exists $\theta_{0}<1$ such that for any $\theta \in\left(\theta_{0}, 1\right)$

$$
\operatorname{det}^{2}\left(B_{1 / 2} \odot G\right)<e^{-c n} \operatorname{perm}(B)
$$

with high probability.

Approach to concentration

- Aim: $X(G):=\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated.
- $\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is highly non-linear $\quad \Rightarrow \quad \log \left(\operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)\right)$ is easier to control.
- Modified aim : $Y(G)=\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated around its expectation.
We will have to compare the concentration for $X(G)$ and $Y(G)$ at the end.
- There exists a subgaussian concentration inequality for Lipschitz functions on $\mathbb{R}^{n \times n}$ with respect to the gaussian measure.
- $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is not Lipschitz.
- Main challenge: using the Lipschitz concentration for a non-Lipschitz function.

Concentration for Gaussian measure

Aim: $\quad Y(G)=\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated around its expectation. There exists a subgaussian concentration inequality for Lipschitz functions on $\mathbb{R}^{n \times n}$ with respect to the gaussian measure:

$$
\mathbb{P}(|F(G)-\mathbb{E} F(G)| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 L^{2}(F)}\right) .
$$

Concentration for Gaussian measure

Aim: $\quad Y(G)=\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated around its expectation. There exists a subgaussian concentration inequality for Lipschitz functions on $\mathbb{R}^{n \times n}$ with respect to the gaussian measure:

$$
\mathbb{P}(|F(G)-\mathbb{E} F(G)| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 L^{2}(F)}\right) .
$$

- $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=2 \sum_{j=1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)$.
- The maping $G \rightarrow A_{1 / 2} \odot G$ is Lipschitz.
- The mapping $M \rightarrow\left(s_{1}(M), \ldots, s_{n}(M)\right)$ is Lipschitz.
- Truncated $\operatorname{logarithm}^{\log }{ }_{\varepsilon} x=\max (\log x, \varepsilon)$ is a Lipschitz function.

Strategy of the proof

© Singular value estimates:

Strategy of the proof

© Singular value estimates:

- Adaptive threshold: $s_{m}\left(A_{1 / 2} \odot G\right) \geq \varepsilon_{m}$ for all m with high probability.

Strategy of the proof

- Singular value estimates:
- Adaptive threshold: $s_{m}\left(A_{1 / 2} \odot G\right) \geq \varepsilon_{m}$ for all m with high probability.
(2) $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)$

Strategy of the proof

© Singular value estimates:

- Adaptive threshold: $s_{m}\left(A_{1 / 2} \odot G\right) \geq \varepsilon_{m}$ for all m with high probability.
(2) $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)$
($\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log _{\varepsilon_{j}} s_{j}\left(A_{1 / 2} \odot G\right)$
is a (?)-Lipschitz function $\quad \Rightarrow \quad$ balance the concentration

Strategy of the proof

(1) Singular value estimates:

- Adaptive threshold: $s_{m}\left(A_{1 / 2} \odot G\right) \geq \varepsilon_{m}$ for all m with high probability.
(2) $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)$
(3) $\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log _{\varepsilon_{j}} s_{j}\left(A_{1 / 2} \odot G\right)$
is a (?)-Lipschitz function $\quad \Rightarrow \quad$ balance the concentration
(4) $\left|\sum_{j=n-k+1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)\right| \leq \sum_{j=n-k+1}^{n}\left|\log \varepsilon_{j}\right|$
$\Rightarrow \quad$ contribution of the last singular values is limited.

Strategy of the proof

(1) Singular value estimates:

- Adaptive threshold: $s_{m}\left(A_{1 / 2} \odot G\right) \geq \varepsilon_{m}$ for all m with high probability.
(2) $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)$
(3) $\sum_{j=1}^{n-k} \log s_{j}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log _{\varepsilon_{j}} s_{j}\left(A_{1 / 2} \odot G\right)$
is a (?)-Lipschitz function $\quad \Rightarrow \quad$ balance the concentration
(4) $\left|\sum_{j=n-k+1}^{n} \log s_{j}\left(A_{1 / 2} \odot G\right)\right| \leq \sum_{j=n-k+1}^{n}\left|\log \varepsilon_{j}\right|$
$\Rightarrow \quad$ contribution of the last singular values is limited.
(6) How to choose the threshold k ?
- Smaller $k \quad \Rightarrow \quad$ smaller error.
- Larger $k \Rightarrow$ stronger concentration.

Choosing the right threshold

$$
\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\sum_{j=1}^{n-k} \log _{\varepsilon_{j}} s_{j}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \text { error terms }
$$

Choosing the right threshold

$$
\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \text { error terms }
$$

$\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated about its expectation.

- Smaller $k \quad \Rightarrow \quad$ smaller error.
- Larger $k \quad \Rightarrow \quad$ stronger concentration.

Choosing the right threshold

$$
\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \text { error terms }
$$

$\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated about its expectation.

- Smaller $k \quad \Rightarrow \quad$ smaller error. $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is close to $\mathbb{E} \log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ with high probability. This may be far from log perm (A).
- Larger $k \quad \Rightarrow \quad$ stronger concentration.

Choosing the right threshold

$$
\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \text { error terms }
$$

$\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated about its expectation.

- Smaller $k \quad \Rightarrow \quad$ smaller error. $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is close to $\mathbb{E} \log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ with high probability. This may be far from $\log \operatorname{perm}(A)$.
- Larger $k \quad \Rightarrow \quad$ stronger concentration.

Strong concentration \Rightarrow

$$
\mathbb{E} \widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right) \approx \widetilde{\log } \mathbb{E} \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)
$$

Choosing the right threshold

$$
\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)+\sum_{j=n-k+1}^{n} \text { error terms }
$$

$\widetilde{\log } \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is concentrated about its expectation.

- Smaller $k \Rightarrow$ smaller error. $\log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ is close to $\mathbb{E} \log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)$ with high probability. This may be far from \log perm (A).
- Larger $k \quad \Rightarrow \quad$ stronger concentration.

Strong concentration \Rightarrow

$$
\mathbb{E} \log \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right) \approx \log \mathbb{E} \operatorname{det}^{2}\left(A_{1 / 2} \odot G\right)=\log \operatorname{perm}(A)
$$

up to the error terms.

- We had to use a random variable to connect two deterministic quantities.

