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|K| will denote the volume of K.

D,- Euclidean ball with radius 1.

S"~1_ Unit sphere.

Projg- Orthogonal projection onto subspace E.

K - will denote the convex hull of K. (non-standard notation).

R, - Reflection with respect to u™.

Let hk(x) = sup,(x, y) denote the support function of K. Then, the
mean width is defined to be

w(K)=2M"(K) =2 | hi(u)do(u).
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Steiner symmetrization

Let K C R" be a compact set, and let u € S"~1. Think of K as a family
of line segments parallel to u. Translate each segment along u until it is
symmetric with respect to u. The result S, K, a set symmetric with
respect to u™, is called Steiner symmetrization of K.
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SuK is symmetric with respect to u™.

Vol (S,K) = Vol(K) (Cavalieri’s principle).
K C L implies S,K C S, L.

Su(K+ L) DS,(K)+ Su(L) (Super-aditivity with respect to
Minkowski sum).

If K is convex, so is S,K (Brunn principle).

Decreases surface area, diameter and outer radius.

Increases inradius.

If u L v then S,S,K is symmetric with respect to ut and v=.

Maps ellipsoids to ellipsoids. Any ellipsoid may be symmetrized to a
ball with n — 1 symmetrizations.

Euclidean ball - the only set invariant under any Steiner
symmetrization.
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Convergence

Theorem (Gross, 1917)

Given a convex body K, there exists a sequence of directions {u;} such
that the sequence
Sy Su K

converges to a Euclidean ball with the same volume as K.

Many applications. For example, isoperimetric inequality.

Gross's result was extended by Mani:

Theorem (Mani, 1986)

Given a convex set K and sequence {u;} chosen uniformly at random, the
sequence S, ... S, K converges to a ball with probability 1.
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Convergence

Mani's result was recently extended by Volcic to compact sets:

Theorem (Volcic, 2012)

Given a compact set K and sequence {u;} chosen uniformly at random,
the sequence S, ... S,, K converges to a ball with probability with respect
to Hausdorff metric.

And the more general case of measurable sets:

Theorem (Volcic, 2012)

Given a measurable set K and sequence {u;} chosen uniformly at
random, the sequence S, ... S,, K converges to a ball with probability 1
with respect to the symmetric difference metric.
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Rate of convergence

o First result for convex set by Hadwiger - exponential rate of
convergence (Cn)"/2

@ Bourgain, Lindenstrauss and Milman - Cnlog n convergence up to
universal constant.

@ Klartag and Milman showed that one may approach the Euclidean
ball isomorphically with at most 3n symmetrizations. That is,

Theorem (Klartag-Milman)

Let K be a convex set such that |K| = |D,|. Then, there exist 3n Steiner
symmetrizations that transform K into a set K’ such that

cD, C K' C CD,,.

e Klartag (2003) - polynomial in n and Iog% - isometric result.

No results of this spirit exist for non-convex sets.
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p-convex sets

Definition

Let 0 < p < 1. A set K is called p-convex if for every A and u such that
AP+ uP =1 we have AK + uK C K.

Note: p-convex sets can differ greatly from convex sets. The
Banach-Mazur distance of I, to its convex hull is n*/P~1.

Alexander Segal Isomorphic Steiner symmetrization 8 /20



Isomorphic result for p-convex sets

Let K be a p-convex set for some 0 < p < 1, such that |K| = |D,|. Then,
there exist 5n Steiner symmetrizations that transform the set K into a set
K' such that a,D, C K' C BpD,, where ap, B are constants dependent
only on p.

The proof is composed of several iterations. The plan:

@ First we show that C,nlog n symmetrizations are enough (following
methods of Bourgain, Lindenstrauss and Milman).

@ Using Milman's quotient of subspace theorem (for p-convex sets) we
get a bound of C,n.

© lterating the above method we get the desired result of 5n
symmetrizations.
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Properties of p-convex sets

Steiner symmetrization preserves p-convexity. l

Follows from super-additivity: For AP 4 uP =1,
Su(K) D Su(AK + uK) D ASu(K) + uSu(K).
@ Transforms projections to sections:
HNK C Projy(K) = Sy(K)NH.
e Transforms (in some sense) sections to projections:

Pyi(SH(K)) C ap(SH(K) N HL), whenever K is
centrally-symmetric.

@ Always contained in Minkowski symmetrization, i.e.

1 _
SuK C 5 (K + R.K).
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First estimate (C,nlogn) |

© Apply n symmetrizations with respect to some orthonormal basis to
obtain a centrally symmetric set.

@ Assume that aD, C K C bD,, for some a, b > 0. If M*(K) < %, by
a result of Klartag, there exist 5n Minkowski symmetrizations that
transform K into a set K’ such that K’ C gD,,. Apply the
corresponding Steiner symmetrizations and use the fact that they are
contained in Minkowski symm.

@ If K contains an ellipsoid of volume |2aD,|, symmetrize the ellipsoid
to a ball with n — 1 symmetrizations.

© The above steps reduce the ratio g at least by half each step. Thus,
we may iterate steps 2 and 3 at most Iogg times.

© Denote the new set (after the iterations) by Q. Denote by ag, by the
improved quantities that satisfy agD, C Q C byD,.
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First estimate (C,nlogn) I

@ Obviously, M*(Q) > zdiam(Q). By Dvoretzky-Milman's theorem
there exists a subspace E of dimension h = [én] such that

1 _
ZI\/I*(Q)D,, NE C Proje(Q) C 4M*(Q)D, N E,
where § > 0 is some universal constant.

@ Choose an orthonormal basis in £+ and apply n — h Steiner
symmetrizations with respect to this basis to obtain a new p-convex
set Q. As noted above, they transfer projections to sections so we get

%M*(Q)Dn NECQNEC4M*(Q)D,NE.

@ By a lemma of Kalton and Gordon, we get that Q' N E is isomorphic
to D, N E up to a constant C, dependent on p only.

@ Recall that Q' contains a ball of radius ag, while its section contains a
ball of radius at least C,byD5.
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First estimate (C,nlogn) Il

@ Consider the maximal ellipsoid £ inside the p-convex hull of a9D,, and
CoboDp N E.

@ By our assumption |E] < |2agD,|. A simple computation shows that

% must be bounded by some constant dependent only on p.

@ To sum it up, we have a bound of Cnlogg symmetrizations.

@ John's theorem for p — convex sets (Dilworth) guarantees the
existence of an ellipsoid £ such that

£CQ Cnp 2k
@ Symmetrizing £ to the Euclidean ball we get that Iogg < Cplog n.

Note: Whenever we have a better bound for the Banach-Mazur dk
distance of our set to D,, we automatically get a better result of Cnlog dk.
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Second estimate (C,n and 5n)

We will now use Milman's quotient of subspace theorem for p-convex sets
to improve the first estimate.

Theorem (Milman; Gordon-Kalton)

Let K be a p-convex set. Then, 3 7y, such that for every 0 < A < 1 there
exist subspaces F C E such that dim F > An and an ellipsoid £ such that

1 2 \¢ !
gCPrOJE(K)mFC’)/p<m|Ogm>p E.
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Improving the estimate |

Main ldea:

@ QS theorem guarantees the existence of large (An) sections of
projections isomorphic to Euclidean (up to some function of f(A)).

@ For a given A, find such a section F of projection onto E with
dim F = An. Then, R" = F & FL.

@ Transform the projection into section by applying less than (1 — A)n
Steiner symm in E*+.

@ Using the first estimate, one may symmetrize the new set K/ N F
using at most Cnlog f(A) symmetrizations.

o Additionally, we may symmetrize K’ N F (which is of dimension
(1 —A)n) using Cp(1 —A)nlog((1 — A)n) symmetrizations.
@ Choosing the appropriate A allows us to improve previous result.

@ This procedure can be iterated.
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The details |

@ We show now that using the quotient of subspace theorem, we may
improve the estimate to C,nlog log n.

@ Choose A =1 — - and apply QS theorem to obtain subspaces

logn

F C E and an ellipsoid & :
E C Proje(K)NF C yp(logn - log(2log n))%flg.

@ As before, we may send projections to sections by symmetrizing using
a basis in E* :

E'"CK'NF C vyp(logn-log(2log n))%flg'
@ Symmetrize the ellipsoid £’ to Euclidean ball:

2_

MD,NF C K'"NF C yy(logn-log(2logn))s *A1D, N F
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The details |l

@ By the first estimate K” N F can be symmetrized with C,nloglogn
symmetrizations to obtain K:

SapyDyNF C KNF Cé6BaDyNF.
e And the same for KN FL :
pap,D,NFH C KiNFE C upaDaNFL,

where Kj is the result of the symmetrization process.

@ Combining the above we get that K is isomorphic to D, with some
new constants DC;), ,B;)

o Applying the first estimate we finish the proof with additional

Cnlog % symmetrizations.
P

@ In total, we have performed at most C,nloglog n symmetrizations.
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@ Actually there is no need to continue iterating the above method.

@ One may assume that the optimal bound is nf(n) for some perhaps
unbounded function 6(n).

@ Applying exactly the same procedure gives an a posteriori , which
implies a result of C,n symmetrizations.

@ Adding one more iteration of QS theorem allows us to replace the
constant C, with 5.

@ However, the cost of such estimate is that the isomorphism constants
&p, Bp Might be worse.
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@ Assume that there exists a monotone function 6(n) such that for each
p-convex set we need at least nf(n) symm. to approach a Euclidean
ball up to constants ap, Bp.

@ Choose A =1 — ﬁ and apply QS theorem to obtain subspaces
F C E and an ellipsoid & :
E C Proje(K)NF C vp(6(n) log 29(n))%_15.

@ Choose a basis in E* and apply Gl Symm. in E' to obtain the

following:
£ C K'NF C v,(0(n)log20(n))s L&

@ Symmetrize £’ to a ball. Then, there exists A1 s.t.

MDy N F C KO F C 9p(8(n)log20(n))s *A1Dy N F
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@ By the first estimate, there exist Cpnlog(y,0(n)) Steiner symm (in
F) applied to K” result in K s.t.

SapyDyNF CKNF C6BDaNF.

o Additionally, there exist Wr:ﬁe(e(’;)) < nsymm. (in F*) applied to K

result in K7 s.t.
pep,Dy N FE C KN FY C uBaDaNFE.

@ Combining the above we get that K is isomorphic to D, with some
new constants a,, B,

@ Applying the first estimate to K; we obtain a new set K, as desired,
after Cpnlog i—,” + Cpnlog(,0(n)) + n symmetrizations. This
P
contradicts the fact that 8(n) is unbounded.
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