The Central Limit Theorem for Linear Statistics of the Sum of Rank One Matrices with Log-Concave Distribution

Anna Lytova

B.I. Verkin Institute for Low Temperature Physics, Kharkiv, Ukraine

July 1, 2013

Joint works with Alain Pajor and Leonid Pastur

General Settings

We consider a sequence of real random $n \times n$ matrices

$$M_n = \sum_{\alpha=1}^m \tau_\alpha \mathbf{y}_\alpha \otimes \mathbf{y}_\alpha$$

- $\bullet \ \tau_{\alpha} > 0 \quad \sigma_{\textit{m}}(\Delta) = \sharp \{\alpha = 1,..,m : \tau_{\alpha} \in \Delta\} / m \to \sigma \text{ weakly as } n \to \infty$
- $\mathbf{y}_{\alpha}=(y_{\alpha 1},..,y_{\alpha n})\in\mathbb{R}^{n}$, $\alpha=1,..,m$ i.i.d. random vectors
- $m = m_n : m_n/n \to c \in (0, \infty), \quad n \to \infty$
- This is analog of settings of paper by Marchenko and Pastur (1967) where vectors uniformly distributed over the unit sphere were considered.
- In statistics there arise such matrices known as the Sample Covariance matrices: $M_n = Y^T D Y$, $Y = (\mathbf{y}_1 \ \mathbf{y}_2 \ ... \ \mathbf{y}_m)^T$, $D = \{\tau_\alpha \delta_{\alpha\beta}\}_{\alpha,\beta=1}^m$, where now all $\{y_{\alpha k}\}_{\alpha,k=1}^{m,n}$ are i.i.d. random variables.
- The same random matrix appears in **asymptotic convex geometry**. Here i.i.d. random points \mathbf{y}_{α} are uniformly distributed over a convex body in \mathbb{R}^{n} .

Some Definitions. Linear Eigenvalue Statistic

Counting Measure of eigenvalues $\{\lambda_k^{(n)}\}_{k=1}^n$ of M_n :

$$\mathcal{N}_n(\Delta) = \sharp \{k = 1, ..., n : \lambda_k^{(n)} \in \Delta\}$$

Normalized Counting Measure (NCM) : $N_n(\Delta) := n^{-1}N_n(\Delta)$.

Linear Eigenvalue Statistic (LES) for a given test-function $\varphi : \mathbb{R} \to \mathbb{R}$ is defined as follows:

$$\mathcal{N}_n[\varphi] := \sum_{i=1}^n \varphi(\lambda_j^{(n)}) = \mathsf{Tr} \varphi(M_n),$$

Stieltjes transform of Counting Measure $\mathcal{N}_n(\Delta)$ of eigenvalues of M_n is a particular case of LES corresponding to $\varphi(\lambda) = (\lambda - z)^{-1}$, $\operatorname{Im} z \neq 0$:

$$\gamma_n(z) := \int \frac{\mathcal{N}_n(d\lambda)}{\lambda - z} = \operatorname{Tr} G(z), \quad \operatorname{Im} z \neq 0,$$

Here $G(z) = (M_n - zI)^{-1}$, Im $z \neq 0$, is the resolvent of M_n .

Convergence of the Normalized Counting Measure

Theorem (A. Marchenko, L. Pastur'67)

If $\{\mathbf{y}_{\alpha}\}_{\alpha=1}^{m}$ are uniformly distributed over the unit sphere of \mathbb{R}^{n} (\mathbb{C}^{n}) then there exists a non-random probability measure N ($N(\mathbb{R}=1)$) s.t. we have convergence in probability

$$\lim_{n\to\infty} N_n(\Delta) = N(\Delta), \quad \forall \Delta \subset \mathbb{R}.$$

The Stieltjes transform of N,

$$f(z) = \int \frac{N(d\lambda)}{\lambda - z}, \quad \text{Im } z \neq 0,$$

is uniquely determined by the functional equation

$$zf(z) = c - 1 - c \int (1 + \tau f(z))^{-1} \sigma(d\tau)$$

considered in the class of functions analytic in $\mathbb{C}\backslash\mathbb{R}$ and such that $\operatorname{Im} z \operatorname{Im} f(z) \geq 0$, $\operatorname{Im} z \neq 0$.

Convergence of the NCM. "Good" Vectors.

Definition. A random real vector $\mathbf{y} = (y_1, ..., y_n)$ is called **isotropic** if $\mathbf{E}\{y_j\} = 0$, $\mathbf{E}\{y_jy_k\} = \delta_{jk}n^{-1}$.

Definition. A random isotropic vector $\mathbf{y} = (y_1, ..., y_n)$ is called **"good"** if for any $n \times n$ complex matrix A_n we have

$$\text{Var}\{(A_n \mathbf{y}, \mathbf{y})\} (= \mathbf{E}\{(A_n \mathbf{y}, \mathbf{y})^2\} - (n^{-1} \text{Tr} A_n)^2) \leq ||A_n||^2 \delta_n, \quad \delta_n = o(1), \ n \to \infty.$$

Theorem (Pajor, Pastur'07).

The Marchenko-Pastur theorem remains valid for $M_n = \sum_{\alpha=1}^m \tau_\alpha \mathbf{y}_\alpha \otimes \mathbf{y}_\alpha$, where $\{\mathbf{y}_\alpha\}_{\alpha=1}^m$ are good vectors.

Theorem (B.Klartag'07). There exist C > 0, $\beta \in (0,1)$ s. t. for any isotropic random vector $\mathbf{y} \in \mathbb{R}^n$ with a log-concave distribution $\mathbf{Var}\{|\mathbf{y}|^2\} \leq C/n^{\beta}$.

Theorem (Pajor, Pastur'07). Random isotropic vectors with log-concave distribution are good.

So for good vectors we have in probability for any bounded continuous φ :

$$\lim_{m,n\to\infty,m/n\to\infty} n^{-1}\mathcal{N}_n[\varphi] = \int \varphi(\lambda) N(d\lambda), \quad (\mathcal{N}_n[\varphi] = \operatorname{Tr}\varphi(M_n))$$

What about the limiting probability law for fluctuations of $\mathcal{N}_n^{\circ}[\varphi] = \mathcal{N}_n[\varphi] - \mathbf{E}\{\mathcal{N}_n[\varphi]\}$?

$$\mathbf{y}_{\alpha}-?: \mathbf{E}\{e^{ix\mathcal{N}_{n}^{\circ}[\varphi]}\}\underset{m,n\to\infty,m/n\to c}{\longrightarrow}?$$

Proposition (M. Shcherbina'11). For any s > 0 and any M_n

$$\operatorname{Var}\{\mathcal{N}_n[\varphi]\} \leq C_s ||\varphi||_s^2 \int_0^\infty dy e^{-y} y^{2s-1} \int_{-\infty}^\infty \operatorname{Var}\{\gamma_n(x+iy)\} dx,$$

where
$$\varphi \in H_s = \{ \psi : ||\psi||_s^2 = \int (1+2|\xi|)^{2s} |\widehat{\psi}(\xi)|^2 d\xi < \infty \}, \ \gamma_n(z) = \text{Tr}G(z).$$

$Var{\gamma_n(z)} \le ?$

- $\mathbf{E}_{\leq \alpha}$ averaging w.r. to $\{\mathbf{y}_1,...,\mathbf{y}_{\alpha}\}$, \mathbf{E}_{α} averaging w.r. to \mathbf{y}_{α} ,
- $(\xi)^{\circ}_{\alpha} = \xi \mathbf{E}_{\alpha}\{\xi\}$ centering w.r. to \mathbf{y}_{α}

According to the standard martingale method

$$\operatorname{Var}\{\gamma_n\} \leq \sum_{\alpha=1}^m \operatorname{E}\{|\operatorname{E}_{\leq \alpha-1}\{\gamma_n\} - \operatorname{E}_{\leq \alpha}\{\gamma_n\}|^2\} \leq \sum_{\alpha=1}^m \operatorname{E}\{|(\gamma_n)_{\alpha}^{\circ}|^2\} \tag{1}$$

Denote $M_n^{\alpha} = M_n|_{\tau_{\alpha}=0}$, $G^{\alpha}(z) = (M_n^{\alpha} - zI_n)^{-1}$, $\gamma_n^{\alpha}(z) = \text{Tr } G^{\alpha}$. It follows from the rank-one perturbation formula that

$$\gamma_n - \gamma_n^{\alpha} = \frac{-\tau_{\alpha}(G^{\alpha 2} \mathbf{y}_{\alpha}, \mathbf{y}_{\alpha})}{1 + \tau_{\alpha}(G^{\alpha} \mathbf{y}_{\alpha}, \mathbf{y}_{\alpha})}$$
(2)

Note that $\mathbf{E}\{(G^{\alpha}\mathbf{y}_{\alpha},\mathbf{y}_{\alpha})\}=n^{-1}\mathbf{E}\{\operatorname{Tr}G^{\alpha}(z)\}\rightarrow f(z)!$

After subtracting γ_n^{α} in the r.h.s. of (1) one can get with the help of (2):

$$\operatorname{Var}\{\gamma_n\} \leq \frac{4}{|\operatorname{Im} z|^2} \sum_{\alpha=1}^m \tau_\alpha^2 \operatorname{E}\left\{ \frac{\operatorname{\textbf{E}}_\alpha\{|(G^\alpha \mathbf{y}_\alpha, \mathbf{y}_\alpha)_\alpha^\circ|^2\}}{|\operatorname{\textbf{E}}_\alpha\{1 + \tau_\alpha(G^\alpha \mathbf{y}_\alpha, \mathbf{y}_\alpha)\}|^2} \right\}$$

July 1, 2013

$Var{\gamma_n(z)} \le ?$

We have for isotropic vectors with log-concave distribution

$$\mathbf{E}_{\alpha}\{|(G^{\alpha}\mathbf{y}_{\alpha},\mathbf{y}_{\alpha})_{\alpha}^{\circ}|^{2}\} \leq |\operatorname{Im} z|^{-2}n^{-\beta}, \quad \beta < 1$$

Let us denote

$$m_{\sigma}^{p} = \int_{0}^{\infty} \tau^{p} d\sigma(\tau)$$

So if $m_{\sigma}^2 < \infty$ and $\{\mathbf{y}_{\alpha}\}_{\alpha=1}^m$ are isotropic with log-concave distribution then there exists constant C = C(z) such that

$$\operatorname{Var}\{\gamma_n(z)\} \leq Cn^{1-\beta}$$
.

Note that for Sample Covariance Matrices we have

$$Var\{\gamma_n(z)\} \leq C$$

We see that to get this bound in general case it is not enough for vectors to be just good.

◆□ → ◆圖 → ◆臺 → ◆臺 → □

$$Var\{\gamma_n(z)\} = O(1), \quad n \to \infty$$

Definition The joint density of $\mathbf{y} \in \mathbb{R}^n$ is **unconditional** if the random vector $(y_1, ..., y_n)$ has the same distribution as $(\pm y_1, ..., \pm y_n)$ for any choice of signs.

Theorem (B.Klartag'08) There exists a positive universal constant $C \leq 16$ s. t.

$$\operatorname{Var}\{|\mathbf{y}|^2\} \leq C/n$$

for any random $\mathbf{y} \in \mathbb{R}^n$ with a log-concave unconditional distribution and $\mathbf{E}\{y_i^2\}=1/n$.

It follows from the theorem by B.Klartag that for random vectors $\mathbf{y} \in \mathbb{R}^n$ with a log-concave unconditional distribution and $\mathbf{E}\{y_i^2\} = 1/n$ we have

$$Var\{(A_ny,y)\} = O(1/n), \quad n \to \infty$$

for any A_n , $||A_n|| = 1$. For such vectors

$$\operatorname{Var}\{\gamma_n(z)\} \leq C|z||\operatorname{Im} z|^{-4}.$$

$Var\{\mathcal{N}_n[\varphi]\} \leq C_s||\varphi||_{5/2+\varepsilon}^2$

Recall that

$$\begin{aligned} & \operatorname{Var}\{\mathcal{N}_n[\varphi]\} \leq C_s ||\varphi||_s^2 \int_0^\infty dy \mathrm{e}^{-y} y^{2s-1} \int_{-\infty}^\infty \operatorname{Var}\{\gamma_n(x+iy)\} dx, \\ & \operatorname{Var}\{\gamma_n\} \leq \frac{4}{|\operatorname{Im} z|^2} \sum_{\alpha=1}^m \tau_\alpha^2 \mathbf{E} \left\{ \frac{\mathbf{E}_\alpha \{|(G^\alpha \mathbf{y}_\alpha, \mathbf{y}_\alpha)_\alpha^\circ|^2\}}{|\mathbf{E}_\alpha \{1 + \tau_\alpha (G^\alpha \mathbf{y}_\alpha, \mathbf{y}_\alpha)\}|^2} \right\} \end{aligned}$$

For vectors with unconditional distribution we have:

$$\mathbf{E}\{y_{j}y_{k}y_{p}y_{q}\} = a_{2,2}(\delta_{jk}\delta_{pq} + \delta_{jp}\delta_{kq} + \delta_{jq}\delta_{kp}) + \kappa_{4}\delta_{jk}\delta_{jp}\delta_{jq}, \quad \kappa_{4} = a_{4} - 3a_{2,2}.$$
 where $a_{2,2} = a_{2,2}(n) := \mathbf{E}\{y_{j}^{2}y_{k}^{2}\}, \ a_{4} = a_{4}(n) := \mathbf{E}\{y_{j}^{4}\}.$ Hence

$$\mathbf{E}_{\alpha}\{|(G^{\alpha}\mathbf{y}_{\alpha},\mathbf{y}_{\alpha})_{\alpha}^{\circ}|^{2}\}=(a_{2,2}-n^{-2})|\mathrm{Tr}G^{\alpha}|^{2}+2a_{2,2}\mathrm{Tr}|G^{\alpha}|^{2}+\kappa_{4}\sum_{j=1}^{n}|G_{jj}^{\alpha}|^{2}.$$

If
$$(a_{2,2}-n^{-2})=O(n^{-3})$$
 and $\kappa_4=O(n^{-2})$, then
$$\mathbf{E}_{\alpha}\{|(G^{\alpha}\mathbf{y}_{\alpha},\mathbf{y}_{\alpha})_{\alpha}^{\circ}|^2\}\leq Cn^{-2}\mathrm{Tr}|G^{\alpha}|^2.$$

$\operatorname{Var}\{\mathcal{N}_n[\varphi]\} \leq C_s ||\varphi||_{5/2+\varepsilon}^2$

Lemma. Let $\mathbf{y}_{\alpha} \in \mathbb{R}^n$, $\alpha = 1, ..., m$ be i.i.d. random vectors satisfying

- (i) the joint distribution of \mathbf{y}_{α} is log-concave and unconditional,
- (ii) $\mathbf{E}\{y_i^2\} = 1/n, j = 1,..,n,$
- (iii) $a_{2,2} := \mathbf{E}\{y_j^2 y_k^2\} = n^{-2} + O(n^{-3}), \forall j \neq k,$ $a_4 := \mathbf{E}\{y_j^4\} = O(n^{-2}).$

Then

$$\operatorname{Var}\{\gamma_n(x+iy)\} \le \frac{C}{ny^4} \sum_{\alpha=1}^m \tau_\alpha^4 \mathbf{E}\{n^{-1} \operatorname{Tr}|G^\alpha(x+iy)|^2\}. \tag{3}$$

Theorem

If i.i.d. vectors $\mathbf{y}_{\alpha} \in \mathbb{R}^n$, $\alpha = 1,..,m$ satisfy (i) – (iii), $\varphi \in H_{5/2+\varepsilon}$, $\varepsilon > 0$, and $m_{\sigma}^4 < \infty$ then

$$\operatorname{Var}\{\mathcal{N}_n[\varphi]\} \leq C||\varphi||_{5/2+\varepsilon}^2, \quad \forall \varepsilon > 0.$$

Approximation Procedure

For any $\varphi \in H_s$ put

$$\varphi_{\eta} = \varphi * P_{\eta}, \quad P_{\eta} = \frac{1}{\pi} \frac{\eta}{x^2 + \eta^2}.$$

Then

$$\lim_{\eta \downarrow 0} ||\varphi - \varphi_{\eta}||_{\mathfrak{s}} = 0.$$

We have for the characteristic function:

$$\begin{split} \mathbf{E}\{e^{i \varkappa \mathcal{N}_n^{\circ}[\varphi]}\} &= \mathbf{E}\{e^{i \varkappa \mathcal{N}_n^{\circ}[\varphi]} - e^{i \varkappa \mathcal{N}_n^{\circ}[\varphi_{\eta}]}\} + \mathbf{E}\{e^{i \varkappa \mathcal{N}_n^{\circ}[\varphi_{\eta}]}\}, \\ |\mathbf{E}\{e^{i \varkappa \mathcal{N}_n^{\circ}[\varphi]} - e^{i \varkappa \mathcal{N}_n^{\circ}[\varphi_{\eta}]}\}| &\leq |\mathbf{x}| \mathbf{Var}\{\mathcal{N}_n[\varphi - \varphi_{\eta}]\}^{1/2} \leq |\mathbf{x}| ||\varphi - \varphi_{\eta}||_{\mathfrak{s}}. \end{split}$$

Hence uniformly in $|x| \leq C$:

$$\lim_{n\to\infty} \mathbf{E}\{e^{i \varkappa \mathcal{N}_n^\circ[\varphi]}\} = \lim_{\eta\downarrow 0} \lim_{n\to\infty} \mathbf{E}\{e^{i \varkappa \mathcal{N}_n^\circ[\varphi_\eta]}\}.$$

Besides

$$\mathcal{N}_{\it n}[arphi_{\it \eta}] = rac{1}{\pi} \int arphi(\mu) \, {
m Im} \, \gamma_{\it n}(\mu + i \eta) d\mu.$$

Very Good Vectors. Covariance of Traces of Resolvent

Definition. A random vector $\mathbf{y} = (y_1, ..., y_n)$ is called **very good** if

- (i) the joint distribution of **y** is log-concave and unconditional,
- (ii) $\mathbf{E}\{y_i^2\} = 1/n, j = 1,..,n,$

(iii)
$$a_{2,2} := \mathbf{E}\{y_j^2 y_k^2\} = n^{-2} + an^{-3} + o(n^{-3}),$$

 $\kappa_4 := \mathbf{E}\{y_j^4\} - 3a_{2,2} = bn^{-2} + o(n^{-2}),$

(iv)
$$\mathbf{E}\{|(A_n\mathbf{y},\mathbf{y})^{\circ}|^4\} = o(n^{-1}), \quad \forall A_n, ||A_n|| \leq 1$$

It follows from (iii) that

$$\mathbf{E}\{|(A_n\mathbf{y},\mathbf{y})^{\circ}|^2\} = an^{-3}|\mathrm{Tr}A_n|^2 + 2n^{-2}\mathrm{Tr}A_n\overline{A_n} + bn^{-2}\sum_{j=1}^n A_{njj}\overline{A_{njj}} + O(n^{-2}).$$

Theorem

Let $\{\mathbf y_\alpha\}_{\alpha=1}^m$ be very good random vectors, and $m_\sigma^4<\infty$. Then

$$\begin{split} & \lim_{m,n \to \infty, m/n \to c} \mathbf{E}\{\gamma_n(z_1)\gamma_n(z_2)^0\} \\ & = \frac{\partial^2}{\partial z_1 \partial z_2} \bigg(-(a+b)f(z_1)f(z_2) + 2\ln\frac{f(z_1) - f(z_2)}{z_1 - z_2} \bigg) =: C(z_1, z_2), \end{split}$$

where
$$zf(z) = c - 1 - c \int (1 + \tau f(z))^{-1} \sigma(d\tau)$$
.

Theorem (CLT)

Let

- $\{\mathbf{y}_{\alpha}\}_{\alpha=1}^{m}$ be very good random vectors,
- $m_{\sigma}^4 < \infty$,
- $\varphi \in H_{5/2+\varepsilon}$, $\varepsilon > 0$.

Then $\mathcal{N}_n^{\circ}[\varphi] = \mathcal{N}_n[\varphi] - \mathbf{E}\{\mathcal{N}_n[\varphi]\}$ converges in distribution to the Gaussian random variable with zero mean and the variance

$$V[\varphi] = \lim_{\eta \downarrow 0} \frac{1}{2\pi^2} \int \varphi(\mu) d\mu \int \varphi(\lambda) d\lambda \operatorname{Re} \left[C(z_{\mu}, \overline{z_{\lambda}}) - C(z_{\mu}, z_{\lambda}) \right],$$

where $z_{\lambda} = \lambda + \eta$, $z_{\mu} = \mu + \eta$,

$$C(z_1, z_2) = \frac{\partial^2}{\partial z_1 \partial z_2} \left(-(a+b)f(z_1)f(z_2) + 2\ln\frac{f(z_1) - f(z_2)}{z_1 - z_2} \right),$$

$$zf(z) = c - 1 - c \int (1 + \tau f(z))^{-1} \sigma(d\tau)$$

July 1, 2013 14 / 16

Examples of Good Vectors. 1. Vectors with i.i.d. components

Definition. A random vector $\mathbf{y} = (y_1, ..., y_n)$ is called **very good** if

- (i) the joint distribution of \mathbf{y} is log-concave and unconditional,
- (ii) $\mathbf{E}\{y_i^2\} = 1/n, j = 1,..,n,$
- (iii) $a_{2,2} := \mathbf{E}\{y_j^2 y_k^2\} = n^{-2} + an^{-3} + o(n^{-3}),$ $\kappa_4 := \mathbf{E}\{y_j^4\} - 3a_{2,2} = bn^{-2} + o(n^{-2}),$
- (iv) $\mathbf{E}\{|(A_n\mathbf{y},\mathbf{y})^{\circ}|^4\} = o(n^{-1}), \quad \forall A_n, ||A_n|| \leq 1$

$$\mathbf{y} = n^{-1/2}\mathbf{x}$$
: $\{x_j\}_{j=1}^n$ are i.i.d., $\mathbf{E}\{x_j\} = 0$, $\mathbf{E}\{x_j^2\} = 1$, $\mathbf{E}\{x_j^8\} < \infty$.

- $\mathbf{E}\{y_i\} = 0$, $\mathbf{E}\{y_iy_k\} = \delta_{ik}n^{-1}$,
- $a_{2,2} = n^{-2}$, (a = 0),
- $\kappa_4 = -2n^{-2}$, (b = -2),
- $E\{|(A_ny,y)^{\circ}|^4\} \leq C||A_n||^4n^{-2},$

If $\mathbf{E}\{x_j^{4+\varepsilon}\}=m_{4+\varepsilon}<\infty$, then we have for truncated $\tilde{y}_j=y_jI_{|y_j|\leq C}$:

$$\mathbf{E}\{|(A_n\widetilde{\mathbf{y}},\widetilde{\mathbf{y}})^{\circ}|^4\} \leq C||A_n||^4 n^{-(1+\varepsilon/2)}.$$

Vectors Uniformly Distributed over I_p^n -Ball

Let \mathbf{x} be uniformly distributed over $B_p^n = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_p = (\sum |x_j|^p)^{1/p} \le 1\}$, According to \mathbf{F} . Barthe, \mathbf{O} . Guedon, \mathbf{S} . Mendelson, and \mathbf{A} . Naor

$$\begin{split} \mathbf{E}_{B_p^n}\{f\} :&= \frac{1}{|B_p^n|} \int_{B_p^n} f dx \\ &= \frac{1}{(2\Gamma(1+1/p))^n} \int_0^\infty dz e^{-z} \int_{\mathbb{R}^n} d\mathbf{x} e^{-||\mathbf{x}||_p^p} f(\mathbf{x}(||\mathbf{x}||_p^p + z)^{-1/p}). \end{split}$$

This formula allows to calculate moments of x and get after renormalization:

$$\mathbf{y} = \left(\frac{1}{n} \frac{B(1/p, 2/p)}{B(n/p+1, 2/p)}\right)^{1/2} \mathbf{x}$$

is such that as $n \to \infty$

- $\mathbf{E}\{y_i\} = 0$, $\mathbf{E}\{y_iy_k\} = \delta_{ik}n^{-1}$,
- $a_{2,2} = n^{-2} + an^{-3} + O(n^{-4}),$
- $\kappa_4 = bn^{-2} + O(n^{-3}),$
- $E\{|(A_ny,y)^\circ|^4\} \le C||A_n||^4n^{-2}$

where

$$a = -\frac{8}{p}, \quad b = \frac{\Gamma(1/p)\Gamma(5/p)}{\Gamma(3/p)^2} - 3.$$

July 1, 2013 16 / 16