Flowers and Non-linear Constructions in Convex

Geometry

Vitali Milman

(Part 1: joint work with E. Milman and L. Rotem
Part 2: joint work with L. Rotem)
Tel-Aviv University

St. Petersburg, July 2019

Part 1

Flowers and Reciprocity

Joint work with Emanuel Milman and Liran Rotem

Indicatrix of the family of supporting functional

Let $K \in \mathcal{K}$ 。 be the family of convex, closed sets, with $0 \in K$. Let $K^{\boldsymbol{\alpha}}$ be the indicatrix of the family of supporting functions $\left\{h_{K}(\theta)\right\}, \theta \in S^{n-1}$, i.e. the radial function

$$
r_{K^{\boldsymbol{2}}}(\theta)=h_{K}(\theta)=\sup \{(\theta, x) \mid x \in K\} .
$$

$K^{\boldsymbol{*}}$ is a star body, $K^{\boldsymbol{\omega}} \supseteq K$ and $=K$ iff $K=r B_{2}^{n}$ (the euclidean ball).

Note a few properties to start with:

1. $K^{\boldsymbol{\omega}}$ uniquely defines K;
2. $\left(\operatorname{Pr}_{E} K\right)^{\boldsymbol{\omega}}=K^{\boldsymbol{\omega}} \cap E$ for any subspace E, and \& taken inside E;
3. For any K and $T \in \mathcal{K}$ 。

$$
(\text { Conv } K \cup T)^{\boldsymbol{\omega}}=K^{\boldsymbol{\omega}} \cup T^{\boldsymbol{\omega}}
$$

Let $B_{x}:=B\left(\frac{x}{2}, \frac{|x|}{2}\right)$ be the euclidean ball with $\frac{x}{2}$ its center and $\frac{|x|}{2}$ its radius, i.e. the interval $[0, x]$ is the diameter of B_{x}. For the interval $I=[0, x], I^{\boldsymbol{\alpha}}=B_{x}$ (Thales theorem).
(In the next pictures the body K is blue and $K^{\boldsymbol{\alpha}}$ is orange).

Flowers

We call a flower

$$
A=\bigcup_{\alpha} B_{X_{\alpha}}
$$

a union of balls $B_{x_{\alpha}}$ (i.e. with diameters $\left[0, x_{\alpha}\right]$) which is a star body in \mathbb{R}^{n}.

Let \mathcal{F} be the family of flowers in \mathbb{R}^{n}.
Fact 1a: Every indicatrix of $K \in \mathcal{K}_{\circ}$ is a flower

$$
K^{\boldsymbol{\omega}}=\bigcup\left\{B_{x} \mid x \in \partial K\right\} \equiv \bigcup\left\{B_{x} \mid x \in K\right\} .
$$

Write also for any A-star,

$$
A^{\boldsymbol{\omega}}:=\bigcup\left\{B_{x} \mid x \in A\right\} \equiv \bigcup\left\{B_{r_{A}(\theta) \theta} \mid \theta \in S^{n-1}\right\}
$$

Fact $\mathbf{1 b}$: Every flower A is the indicatrix of some $K \in \mathcal{K}_{0}: \exists K$ s.t. $K^{\boldsymbol{\omega}}=A$.

Let A be a flower. Call

$$
K=\left\{x \in A \mid B_{x} \subset A\right\} \text { - the core of } A
$$

Then

$$
K \text { is convex and } K^{\mathbf{2}}=A \text {. }
$$

So $K=A^{-\infty}$ (the inverse map).
In particular, if $A=\bigcup_{x \in \Lambda} B_{x}$ then

$$
A^{-\omega}=\operatorname{Conv} \Lambda .
$$

Spherical inversion

We will also need a duality relation on a family of star bodies:
For A-star denote $\Phi(A)$ the star body s.t. $r_{\Phi(A)}=1 / r_{A}$ (considered by Moszyńska).
$\Phi(A)$ is "almost" a pointwise map:
Let $\mathcal{I}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ be $\mathcal{I}(x)=x /|x|^{2}$ (i.e. \mathcal{I} is the spherical inversion).
Then $\partial \Phi(A)=\mathcal{I}(\partial A)$ (where ∂A is defined radially) (but \mathcal{I} maps "interior" of A to the exterior of $\Phi(A)$ and vice versa).
Note: $\operatorname{Im} \Phi \equiv \overline{\operatorname{colm} \mathcal{I}}$, i.e. $\Phi(A)=\overline{\mathcal{I}(A)^{c}}$.

Map Φ and spherical inversion

Well-known facts on \mathcal{I} :
Fact 2. Let $A \subset \mathbb{R}^{n}$ be a sphere or a hyperplane.
Then $\mathcal{I}(A)$ is a hyperplane if $0 \in A$ and a sphere if $0 \notin A$.
So $\mathcal{I}\left(\partial B_{x}\right)$ is a hyperplane and $\Phi\left(B_{x}\right)$ a half-space containing 0 .
Therefore, for any flower $A, \Phi(A)$ is a convex body: the intersection of half-spaces containing 0 , if

$$
A=\bigcup_{x \in T} B_{x} \Rightarrow \Phi(A)=\bigcap_{x \in T} \Phi\left(B_{x}\right)
$$

And another
Fact 3:

$$
\Phi\left(K^{\mathbf{2}}\right)=K^{\circ} .
$$

So

$$
\begin{aligned}
& \mathcal{K}_{\circ} \stackrel{\boldsymbol{\leftrightarrow}}{\rightarrow} \mathcal{F} \xrightarrow{\Phi} \mathcal{K}_{\circ} \quad \quad(1-1 \text { and onto maps }) \\
& K \longrightarrow K^{\circ}, \\
& \circ \Phi \boldsymbol{\&}=\mathrm{Id} \text { on } \mathcal{K}_{\circ} .
\end{aligned}
$$

i.e.

We have the diagrams:

$$
\begin{aligned}
& \mathcal{K}_{\circ} \xrightarrow{\boldsymbol{\alpha}} \mathcal{F} \xrightarrow{\Phi} \mathcal{K}_{\circ} \xrightarrow{\boldsymbol{\alpha}} \mathcal{F} \xrightarrow{\Phi} \mathcal{K}_{\circ} \\
& \circ: \mathcal{K}_{\circ} \xrightarrow[{ }_{\circ}]{ } \\
& \text { Id : } \mathcal{K}_{\circ} \xrightarrow{\mathcal{H}} \mathcal{K}_{\circ} \\
& \quad \mathcal{F} \xrightarrow[*=\boldsymbol{\alpha} \Phi]{\mathcal{F}} A^{*}, 1-1, \text { onto, order reversing }
\end{aligned}
$$

i.e. $*$ is a duality on flowers \mathcal{F} :

$$
\text { if } A=K^{\boldsymbol{\alpha}} \text { then } A^{*}=\left(K^{\circ}\right)^{\boldsymbol{\alpha}}
$$

Reciprocity

For function $f: S^{n-1} \rightarrow[0, \infty]$ define the Alexandrov body

$$
A[f]=\left\{x \in \mathbb{R}^{n} \mid(x, \theta) \leq f(\theta), \forall \theta \in S^{n-1}\right\}
$$

Note that if $h_{K}(\theta)$ is a supporting function of $K \in \mathcal{K}$ 。

$$
A\left[h_{K}\right]=K
$$

We call $A\left[1 / h_{K}\right]=K^{\prime}$ a reciprocal body. Recall that the polar K° of K is

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \leq 1, \forall y \in K\right\} .
$$

Easy: $K^{\prime} \subseteq K^{\circ}, K^{\prime \prime} \supseteq K$, and $/$ reverse order of embedding. It follows that $K^{\prime \prime \prime}=K^{\prime}$, i.e.
Fact 5. K^{\prime} is the duality on the image of this operation [i.e. on the family of reciprocal bodies].
Note:

$$
\begin{aligned}
& K=K^{\prime} \\
& K^{\circ}=K^{\prime} \Longleftrightarrow K=B_{2}^{n} \\
&
\end{aligned}
$$

In the next pictures: the started "chain" body K is in blue, K° - orange, $K^{\prime}-$ green and $K^{\prime \prime}-$ red.

Reciprocity

Some properties of the reciprocal operation '.
Theorems. $\forall K \in \mathcal{K}$ 。

1. $\left(K^{\boldsymbol{\alpha}}\right)^{\circ}=K^{\prime}$ [we write $\circ \boldsymbol{\mathcal { Q }}=^{\prime}$ (in operator-type notation)];
2. Define by $D(K)$ the family of all convex bodies $\{A\}$ s.t. $A^{\prime}=K$. Then:
2a. $\forall K, D(K)$ is a closed convex subset of \mathcal{K}_{0};
2b. If $D(K) \neq \varnothing$, then K^{\prime} is the maximal element in $D(K)$.
!3. K is reciprocal (i.e. $\exists T \in \mathcal{K}_{\circ}$ s.t. $T^{\prime}=K$) iff $K^{\boldsymbol{\alpha}}$ is convex.
(So, reciprocal bodies are "more convex", both K and $K^{\boldsymbol{\alpha}}$ are convex.)
Corollary (of 3). $\quad\left(\operatorname{Pr}_{E} K\right)^{\prime}=\operatorname{Pr}_{E} K^{\prime}$ for K reciprocal.
Proof. As $K^{\boldsymbol{d}}$ is convex, then

$$
\left(\operatorname{Pr}_{E} K\right)^{\prime}=\left(\left(\operatorname{Pr}_{E} K\right)^{\boldsymbol{\omega}}\right)^{\circ}=\left(K^{\boldsymbol{\omega}} \cap E\right)^{\circ}=\operatorname{Pr}_{E}\left(K^{\boldsymbol{\omega}}\right)^{\circ}=\operatorname{Pr}_{E} K^{\prime} .
$$

Relations between operations we have introduced

We discussed 4 operations on Convex/star-bodies

- - polarity $\left[0 K \equiv K^{\circ}\right]$;
\& - taken indicatrix/flower $\left[\boldsymbol{\rho} K \equiv K^{\boldsymbol{\omega}}\right]$;
Φ - duality for star-bodies/spherical inversion;
ノ - reciprocity $\left[{ }^{\prime} K \equiv K^{\prime}\right]$;
Let us see how they interplay.
Fact 6. On the class of convex bodies \mathcal{K} 。
(i) $\boldsymbol{\AA}=\Phi \circ \quad\left(K^{\boldsymbol{\alpha}}=\Phi\left(K^{\circ}\right)\right)($ correct also for K-star body $)$;
(ii) $\boldsymbol{\&} \circ=\Phi \quad\left(\left(K^{\circ}\right)^{\boldsymbol{\omega}}=\Phi(K)\right)$ (ONLY for convex $\left.K\right)$;
(iii) $\circ \boldsymbol{\rho}={ }^{\prime} \quad\left(\left(K^{\boldsymbol{\alpha}}\right)^{\circ}=(K)^{\prime}\right)$;
(iv) $\Phi \boldsymbol{\AA}=0 \quad\left(K^{\circ}=\Phi\left(K^{\boldsymbol{\alpha}}\right)\right)$ (also for star-bodies).

As a consequence of Fact 6 , let us show one direction in Theorem 3: if $K^{\boldsymbol{\alpha}}$ is convex then K is reciprocal, i.e. $K^{\prime \prime}=K$. Indeed, by 6(ii). when $K^{\boldsymbol{2}}$ is convex

$$
\boldsymbol{\&} \circ \boldsymbol{\&}=\Phi \boldsymbol{Q}=0 \quad \text { (also by } 6(\text { iv })) .
$$

Take \circ from both parts:

$$
\circ \boldsymbol{\circ} \circ \boldsymbol{\circ} K=K^{\circ \circ}=K
$$

and by 6 (iii) it follows $K^{\prime \prime}=K$.
Fact 7. From 6(ii) follows that for $K \in \mathcal{K}$ 。

$$
\Phi K-\text { convex } \Longleftrightarrow K^{\circ} \text { is reciprocal. }
$$

More remarkable properties of star-bodies called flowers

$$
\mathcal{F}:=\left\{A=\bigcup_{\alpha} B_{x_{\alpha}}\right\} \text { also, equivalently }=\left\{\bigcup_{\alpha}\left\{B_{\alpha} \mid 0 \in B_{\alpha}\right\}\right\}
$$

where B_{α} are euclidean balls.

1. \& and \mathcal{F} are a preparational step for different dualities:

$$
\Phi \& K=K^{\circ} \quad \text { but } \circ \& K=K^{\prime} .
$$

2. Algebraic-geometric properties
(i) For $A, B \in \mathcal{F}$ also Minkowski sum $A+B \in \mathcal{F}$ (associative, commutative, monotone).
Also, Conv $A \in \mathcal{F}$ and Conv $K^{\boldsymbol{\alpha}}=\left(K^{\prime \prime}\right)^{\boldsymbol{\omega}}$.
(ii) \forall subspace $E \hookrightarrow \mathbb{R}^{n}$, if $A \in \mathcal{F}$, then $A \cap E \in \mathcal{F}(E)$ and $\operatorname{Pr}_{E} A \in \mathcal{F}(E)$;
!(iii) If $A_{i} \in \mathcal{F}$ then also $\bigcup_{i} A_{i} \in \mathcal{F}$. Let $A_{i}=K_{i}^{\boldsymbol{\omega}}$ (for convex K_{i}).
Then $A_{1} \cap A_{2} \in \mathcal{F}$ iff $K_{1}^{\circ} \cup K_{2}^{\circ}$ is convex;

Also, for a convex $K \in \mathcal{K}$ 。

$$
K^{\boldsymbol{\omega}, \boldsymbol{\mu}}=\bigcup_{\theta \in S^{n-1}} B_{h_{K}(\theta) \theta} \quad\left[\text { recall } K^{\boldsymbol{\omega}}=\bigcup_{\theta \in S^{n-1}} B_{r_{K}(\theta) \theta}\right]
$$

Let $K_{i} \in K_{\circ}, \lambda_{i} \geq 0$. Consider

$$
P=\sum_{i} \lambda_{i} K_{i} \in \mathcal{K}_{\circ} .
$$

By Minkowski theorem, Vol P is homogeneous polynomial in $\left\{\lambda_{i}\right\}$.
3. Also Vol $P^{\boldsymbol{d}}$ is a homogeneous polynomial in $\left\{\lambda_{i}\right\}$ with coefficients which we will call \&-mixed volumes of $\left\{K_{i}\right\}$. For these numbers all corresponding relations are elliptic (not hyperbolic) and exactly the same kind as in the "dual mixed volume" theory of Lutwak. Say, Brunn-Minkowski type
Q-inequality is for A and B in \mathcal{K} 。

$$
\left|(A+B)^{\boldsymbol{\omega}}\right|^{1 / n} \leq\left|A^{\boldsymbol{\omega}}\right|^{1 / n}+\left|B^{\boldsymbol{\omega}}\right|^{1 / n},
$$

and elliptic type -Alexandrov-Fenchel inequality
$V_{\boldsymbol{*}}\left(A_{1}, A_{2}, \ldots, A_{n}\right)^{2} \leq V_{\boldsymbol{*}}\left(A_{1}, A_{1}, A_{3}, \ldots, A_{n}\right) \cdot V_{\boldsymbol{k}}\left(A_{2}, A_{2}, A_{3} \cdots A_{n}\right)$
where $A_{i} \in \mathcal{K}_{\circ}$ and

$$
V_{\boldsymbol{k}}\left(A_{1}, \ldots, A_{n}\right)=\left|B_{2}^{n}\right| \int_{S^{n-1}} h_{A_{1}}(\theta) \cdot \ldots \cdot h_{A_{n}}(\theta) d \mu(\theta)
$$

$h_{A_{i}}(\theta)$ is the supporting functional of A_{i}.

Kubota formulas for s-mixed volumes

Let $W_{\boldsymbol{a}, i}(K)=V_{\boldsymbol{a}}(\underbrace{K, \ldots, K}_{(n-i) \text {-times }}, \underbrace{B_{2}^{n}, \ldots, B_{2}^{n}}_{i \text {-times }})$.
Then for every $1 \leq i \leq n$

$$
W_{\boldsymbol{a}, n-i}(K)=\frac{\omega_{n}}{\omega_{i}} \int_{G_{n, i}}\left|\left(\operatorname{Proj}_{E} K\right)^{\boldsymbol{\omega}}\right| d \mu(E)
$$

(ω_{i} is the volume of the euclidean ball B_{2}^{i}). Also

$$
\begin{aligned}
& \left(\frac{|K|}{\omega_{n}}\right)^{1 / n} \leq\left(\frac{W_{1}(K)}{\omega_{n}}\right)^{1 / n-1} \leq \cdots \leq \frac{W_{n-1}(K)}{\omega_{n}}=\frac{W_{\phi, n-1}(K)}{\omega_{n}} \\
\leq & \left(\frac{W_{\phi, n-2}(K)}{\omega_{n}}\right)^{1 / 2} \leq \cdots \leq\left(\frac{W_{\boldsymbol{\&}, 1}(K)}{\omega_{n}}\right)^{1 / n-1} \leq\left(\frac{\left|K^{\boldsymbol{\phi}}\right|}{\omega_{n}}\right)^{1 / n}
\end{aligned}
$$

New summations on \mathcal{K} 。 and \mathcal{F}

Summation on flowers implies strange summations on \mathcal{K}_{\circ} and also another one on \mathcal{F}.

Let $A, B \in \mathcal{F}$. Then $A+B \in \mathcal{F}$.
Let $K, T \in \mathcal{K}_{\circ}$ s.t. $A=K^{\boldsymbol{\alpha}}$ and $B=T^{\boldsymbol{\omega}}$.
Let $C:=A+B=P^{\boldsymbol{\omega}}, P \in \mathcal{K}_{0}$.
Define $K \underset{\text { a }}{\oplus} T=P$ (the "club" sum). This sum is commutative, associative, monotone and $\{0\}$ is its unit element. However! $K \underset{\sim}{\oplus} K \supset 2 K$ but not in general $=$.

Consider now the subset $\mathcal{R} \hookrightarrow \mathcal{K}$ 。of reciprocal bodies. Then, for $T, K \in \mathcal{R}, T^{\boldsymbol{\alpha}}, K^{\boldsymbol{\alpha}}$ are convex and $T^{\boldsymbol{\alpha}}+K^{\boldsymbol{\alpha}}$ is also convex.

This means that $P=K \underset{\substack{0}}{\oplus} T$ is reciprocal.
So,there is a summation on \mathcal{R} !
Note, Minkowski sum does not preserve reciprocity.
Also, in this case

$$
K \underset{\sim}{\oplus} K=2 K .
$$

(Sum is 1-homogeneous.)

More on reciprocal bodies \mathcal{R}

We add: If K and $T \in \mathcal{R}$, then

$$
K \cap T \in \mathcal{R}
$$

Also note: if $K=-K, K \in \mathcal{R}$, then $\exists r, R>0$, s.t.

$$
B(0, r) \subseteq K \subseteq B(0, R) \quad \text { and } \quad R / r \leq 2
$$

However, for non-origin-symmetric bodies, the smallest R / r may be any large even in $\operatorname{dim} 2$.

Example. Let \mathcal{E} be an ellipsoid (in \mathbb{R}^{2}) and 0 is a focus of \mathcal{E}. Then
(i) $\mathcal{E}^{\boldsymbol{\alpha}}=$ euclidean ball $B, 0 \in B$.
(ii) \mathcal{E} is reciprocal and \mathcal{E}^{\prime} is an ellipsoid.
(iii) Let B be a euclidean ball, $0 \in B$. Then B is a flower (of some ellipsoid) and B° is reciprocal. If 0 is not the center B then B is not reciprocal.

Fact 8.
(i) If K and T are reciprocal then $\left(K^{\circ}+T^{\circ}\right)^{\circ}$ is also reciprocal.
(ii) If K and T are star-bodies, such that $\Phi(K)$ and $\Phi(T)$ are convex, then $\Phi(K+T)$ is also convex.

Convexity property and arithmetic-harmonic means inequality for operations $\circ, *, \boldsymbol{\&}, \Phi, 1$.

Below K, T are in \mathcal{K} 。 and $A, B \in \mathcal{F}$:
० : $\left(\frac{K+T}{2}\right)^{\circ} \subseteq \frac{K^{\circ}+T^{\circ}}{2}$ and $\frac{K+T}{2} \supseteq\left(\frac{K^{\circ}+T^{\circ}}{2}\right)^{\circ}$, Firey
The same convexity and arithmetic-harmonic means ineqalities are correct for:

* (for A and $B) ; \quad \Phi($ for K and T; and also for A and B)
': for K and T reciprocal and flower summation
\&: convexity property is correct for K and T.

Proof of the Characterization Theorem

Lemma

Let K be any convex body $0 \in K$. Consider the subset
$\operatorname{Inn}_{S} K:=T=\bigcup\{B(x,|x|)$ and $B(x,|x|) \subset K\}=\bigcup_{\alpha}\{B(\alpha) \subset K \mid 0 \in B(\alpha)\}$
(spherical inner hull)(so any such ball passes through 0 and is in K). Then T is a convex subset of K. Moreover, T is the largest $A \subset K$ s.t. $\Phi(A)$ is convex.
(Surprising! But that said - easy.)
Note that $T=\Phi \circ \circ \Phi K:=\Phi$ Conv ΦK.
(Formal checking: $\Phi \partial B(x,|x|)$ is a hyperplane outside ΦK.)
Actually T is the maximal convex subset of K s.t.

$$
\Phi T \text { is convex. }
$$

Using this lemma let us prove Theorem 3.

Proof.

We want to show that $K^{\prime \prime}=K \Rightarrow K^{\text {d }}$ convex. This means $K^{\prime \prime}:=0 \boldsymbol{\&} \circ K=K$.

$$
\begin{aligned}
& \text { (act by }) \Rightarrow \boldsymbol{\infty} \circ \boldsymbol{\infty} \circ \boldsymbol{\infty} K=\boldsymbol{\infty} K \\
& \text { (use } \boldsymbol{\&}=\Phi \circ \text {) } \boldsymbol{\infty} \circ \Phi \circ \circ \Phi \circ K=\boldsymbol{\&} K \\
& \boldsymbol{\&} \circ[\Phi \circ \circ \Phi] \circ K=\boldsymbol{\&} K
\end{aligned}
$$

and $\boldsymbol{\%} \circ=\Phi$ on convex sets, but, by the lemma, $\Phi \circ \circ \Phi(\circ K)$ convex,

$$
\Phi \Phi \circ \circ \Phi \circ K=\boldsymbol{\AA} K \Rightarrow \circ \circ \Phi \circ K=\boldsymbol{\phi} K
$$

which means $\operatorname{Conv}(\boldsymbol{\rho} K)=\boldsymbol{\&} K($ recall $\Phi \circ=\boldsymbol{\&})$.

The above proof is not intuitive.
Let us see some intuition behind on one example.
Let $A \in D(T)$, i.e. $A^{\prime}=T$. Also $T^{\prime} \in D(T)$. Recall T^{\prime} is a
maximal set in $D(T): A \subset T^{\prime}$. If $A \neq T^{\prime}$, then it is not reciprocal (because otherwise $A=A^{\prime \prime}=T^{\prime}$).
So, if $K^{\boldsymbol{\alpha}}$ is not convex we would like to find another body K_{1} s.t. $K \subsetneq K_{1}$ but Conv $K_{1}^{\boldsymbol{\omega}}=$ Conv $K^{\boldsymbol{\alpha}}$ and then $K_{1}^{\prime}=K^{\prime}$, i.e. K is not reciprocal.

Example: Our K is an ellipsoid E and $K_{1}=\operatorname{Conv}(E \cup I), I$ is a special interval (see picture).

We use Fact 2 :

$$
[\operatorname{Conv}(K \cup T)]^{\boldsymbol{\omega}}=K^{\boldsymbol{\omega}} \cup T^{\boldsymbol{\alpha}}
$$

This fact and example demonstrate how lack of convexity of $K^{\boldsymbol{\alpha}}$ is used to prove that K is not reciprocal.

Additions

Proof of the Lemma. Let $B_{i}=B_{i}\left(x_{i},\left|x_{i}\right|\right) \subseteq K, i=1,2$.
Let $a_{i} \in B_{i}$. We should show that $\forall \lambda, 0<\lambda<1, \exists$ a ball $B \subseteq K$ from our family of balls and $\lambda a_{i}+(1-\lambda) a_{2} \in B$.

We will prove that $\forall z \in \operatorname{Conv}\left(B_{1}, B_{2}\right):=A, \exists$ such a ball $B \subset A(\subseteq K)$ and $z \in B$.

Set $\quad A=\bigcup_{\lambda \in[0,1]}\left\{(1-\lambda) B_{1}+\lambda B_{2}\right\}$

$$
=\bigcup_{\lambda} B\left((1-\lambda) x_{1}+\lambda x_{2},(1-\lambda)\left|x_{1}\right|+\lambda\left|x_{2}\right|\right)
$$

Then $\exists \lambda$ and $z \in B\left((1-\lambda) x_{1}+\lambda x_{2},(1-\lambda)\left|x_{1}\right|+\lambda\left|x_{2}\right|\right)=B^{1}$, and $0 \in B^{1}$ ball. Then \exists a ball \widetilde{B} inside this ball $B^{1}(\subseteq K)$ s.t. $0 \in \partial \widetilde{B}, z \in \widetilde{B}$.

Part 2

Applications of the Language of Flowers for Non-linear Constructions in Convex Geometry

Joint work with Liran Rotem

We will now use flowers to construct different functions of convex bodies.

Actually, we will discuss the power function.

Consider a flower $F=\bigcup B_{x}$; let $x=r_{\theta} \theta, \theta \in S^{n-1}, r_{\theta} \geq 0$. Let $K=F^{-\boldsymbol{\alpha}}$ (i.e. $K^{\boldsymbol{d}}=F$). We call representation $F=\bigcup B_{x}$ is canonical if $x \in \partial K \forall x(\partial K$ is a radial boundary: $\lambda x \in K$ for $\lambda<1$ and $\lambda x \notin K$ for $\lambda>1)$.
Then $\forall \theta \exists!x=r_{\theta} \theta$ in the set $\left\{B_{x}\right\}$.
Let $f(t) \geq 0$ for $t \geq 0, f(0)=0$.
Define $f(F):=\bigcup B_{f\left(r_{\theta}\right) \theta}$ is a flower.
Note $\Phi\left(\cup B_{f\left(r_{\theta}\right) \theta}\right)=A\left[1 / f\left(r_{K}\right)\right]$.
Then for $K=F^{-\infty}$ (the core of F) define

$$
f(K)=f(F)^{-\infty, \text { i.e. } f(K)=\left(A\left[1 / f\left(r_{K}\right)\right]\right)^{\circ} . . . ~}
$$

This is a naïve definition. (However, it may also be useful for new geometric inequalities.)

The problem: If $f_{i}, i=1,2$, are two such functions, then typically

$$
\left(f_{1} \circ f_{2}\right)(K) \neq f_{1}\left(f_{2}(K)\right)
$$

We should correct it to build $K^{\lambda}, 0 \leq \lambda \leq 1$, which satisfy the semigroup property.

This is possible:

Theorem (Milman-Rotem). There are maps $F \mapsto F^{\lambda}$ on the class of flowers satisfy:

1. If $F_{1} \subseteq F_{2}$ then $F_{1}^{\lambda} \subseteq F_{2}^{\lambda}$.
2. $(c F)^{\lambda}=c^{\lambda} F^{\lambda}$.
3. $\left(F^{\lambda}\right)^{\mu}=F^{\lambda \mu}$.

And for the convex bodies from \mathcal{K}_{\circ} we have built a power map s.t. the above 3 conditions are satisfied.

Recently, we (jointly with Rotem) constructed maps with much stronger properties. (The construction of the theorem above corresponds to the so-called h-power case, we considered earlier.)

Actually, there is a function "power" defined on all convex bodies s.t. $K=-K$ and satisfies all properties of the power function t^{α}, but for $|\alpha| \leq 1$.

Theorem (Milman-Rotem).

There is a map $K \rightarrow K^{\alpha}, 0<\alpha<1$, such that

1. $\forall 0<\alpha<1, K \subset T \Rightarrow K^{\alpha} \subseteq T^{\alpha}$;
2. $\forall 0<\alpha<1, \forall K \forall \lambda>0 \Rightarrow(\lambda K)^{\alpha}=\lambda^{\alpha} K^{\alpha}$;
3. $\forall 0<\alpha, \beta<1, \forall K$,

$$
\left(K^{\alpha}\right)^{\beta}=K^{\alpha \beta} ;
$$

4. $\left(K^{\alpha}\right)^{\circ}=\left(K^{\circ}\right)^{\alpha}$.
5. \forall ellipsoids $\mathcal{E}, \forall 0<\alpha<1, \mathcal{E}^{\alpha}$ agrees with its natural definition.

Because the interpretation of K° is " $K^{-1 "}$, we define the power function K^{α} for any $-1 \leq \alpha \leq 1$.

Moreover, we are also able to construct a "geometric mean" for any two convex bodies containing 0 in the interior, and actually also "weighted" geometric means which are connected to the powers.

Weighted geometric means $G_{\lambda}(K, T)$

Define for numbers $a, b>0$,

$$
a \#_{\lambda} b=a^{1-\lambda} \cdot b^{\lambda}
$$

Check $a \#_{\mu}\left(a \#_{\lambda} b\right)=a \#_{\lambda \mu} b$.
For an ellipsoid E we define a positive definite operator u, s.t. $h_{E}(x)=\sqrt{\left(u_{E} x, x\right)}$, and we define E^{λ} by $u_{E^{\lambda}}=\left(u_{E}\right)^{\lambda}$.
Define the λ-geometric mean of two positive definite matrices X and Y (introduced by Pusz-Woronowich (1975))

$$
X \#_{\lambda} Y=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{\lambda} X^{1 / 2}
$$

Note, if $X Y=Y X$ then this is $X^{1-\lambda} Y^{\lambda}$.
For ellipsoids E_{1}, E_{2} we set $G_{\lambda}\left(E_{1}, E_{2}\right)=E_{3}$ if $u_{E_{3}}=u_{E_{1}} \#_{\lambda} u_{E_{2}}$.
Note that

$$
G_{\mu}\left(E_{1}, G_{\lambda}\left(E_{1}, E_{2}\right)\right)=G_{\lambda \mu}\left(E_{1}, E_{2}\right)
$$

Theorem (Milman-Rotem).

There is a family of maps $G_{\lambda}(K, T), 0 \leq \lambda \leq 1$, defined on any pair K and T of centrally-symmetric convex bodies which satisfies the following properties:

1. $G_{\lambda}(K, K)=K$.
2. If $K_{1} \subseteq T_{1}$ and $K_{2} \subseteq T_{2}$ then $G_{\lambda}\left(K_{1}, K_{2}\right) \subseteq G_{\lambda}\left(T_{1}, T_{2}\right)$.
3. $G_{\lambda}(\alpha K, \beta T)=\alpha^{1-\lambda} \beta^{\lambda} G_{\lambda}(K, T)$ for all $\alpha, \beta>0$.
4. G_{λ} is a continuous function of K, T and λ with respect to the Hausdorff metric on \mathcal{K}_{s}^{n}.
5. G_{λ} satisfies the harmonic mean - geometric mean arithmetic mean inequality

$$
\left((1-\lambda) K^{\circ}+\lambda T^{\circ}\right)^{\circ} \subseteq G_{\lambda}(K, T) \subseteq(1-\lambda) K+\lambda T
$$

6. $G_{\lambda}(K, T)^{\circ}=G_{\lambda}\left(K^{\circ}, T^{\circ}\right)$.
7. $G_{\lambda}(u K, u T)=u\left(G_{\lambda}(K, T)\right)$ for all invertible linear maps u.
8. $G_{\lambda}\left(K, G_{\mu}(K, T)\right)=G_{\lambda \mu}(K, T)$.
9. $G_{\lambda}\left(B_{2}^{n}, K\right)=K^{\lambda}$, where the power K^{λ} was defined in the theorem above.
10. For ellipsoids E and F the mean $G_{\lambda}(E, F)$ agrees with the one defined above.

This convex body $G_{\lambda}(K, T)$ we call λ-geometric mean of K and T.

Return to a general construction $f(K)$.
Consider a function $f(\theta, r) \geq 0$ for $\theta \in S^{n-1}, r \geq 0$.
Let $F=\bigcup B_{r(\theta) \theta}$. Then

$$
f(F):=\bigcup_{\theta} B_{f(\theta, r(\theta)) \theta} ; \quad \text { Note } \Phi(f(F))=A[1 / f(\theta, r(\theta))]
$$

Similarly, for $K=F^{-\infty}$, define

$$
f(K):=f(F)^{-\boldsymbol{\omega}}=f\left(K^{\boldsymbol{\omega}}\right)^{-\boldsymbol{\omega}} .
$$

Then $f(K)=(A[1 / f(\theta, r(\theta))])^{\circ}$
We use this to define composition of two convex bodies T and K.

First, for flowers
$F_{1}=\bigcup B_{r_{1}(\theta) \theta} \quad$ and $\quad F_{2}=\bigcup B_{r_{2}(\theta) \theta} \quad$ (in canonical presentation), define $F_{1} \circ F_{2}:=\rho_{F_{1}}\left(F_{2}\right)$ where $\rho_{F_{1}}$ is a 1-homogeneous function built by the radial function $\rho_{1}(\theta)$ of F_{1}, i.e. $\rho_{F_{1}}(\theta, r)=\rho_{1}(\theta) \cdot r$.

This means

$$
F_{1} \circ F_{2}=\bigcup B_{\rho_{1}(\theta) \cdot r_{2}(\theta) \theta} .
$$

Now let $F_{1}=T^{\boldsymbol{\alpha}}$ and $F_{2}=K^{\boldsymbol{\alpha}}$.
Then $r_{2}(\theta)=r_{K}(\theta)$, the radial function of K, and $\rho_{1}(\theta)=h_{T}(\theta)$. So we define

$$
T \circ K:=\left(\bigcup B_{h_{T}(\theta) \cdot r_{K}(\theta) \theta}\right)^{-\boldsymbol{\psi}} .
$$

Note $T \circ T^{\circ}=B_{2}^{n}$ and $(T \circ K)^{\circ}=A\left[\frac{1}{h_{T} \cdot r_{K}}\right]$.

This may also be seen as

$$
T \circ K=h_{T}(K) \equiv\left[h_{T}\left(K^{\boldsymbol{\omega}}\right)\right]^{-\boldsymbol{\alpha}}
$$

We have, connected with T, another function r_{T}, the radial function of T, and we may define a different composition

$$
T \odot K:=r_{T}(K)=\left[r_{T}\left(K^{\boldsymbol{\omega}}\right)\right]^{-\boldsymbol{\omega}} .
$$

This is

$$
\left[\bigcup B_{r_{T}(\theta) \cdot r_{K}(\theta) \theta}\right]^{-\boldsymbol{\phi}} .
$$

So $T \odot K$ is a commutative "product".
If $T=B_{2}^{n}$ then both compositions preserve K, i.e. the identical map on \mathcal{K}_{0}.

Problem. Find bodies T s.t. the Brunn-Minkowski type inequality

$$
\left|T \circ\left(K_{1}+K_{2}\right)\right|^{1 / n} \geq\left|T \circ K_{1}\right|^{1 / n}+\left|T \circ K_{2}\right|^{1 / n}
$$

is correct (for any of 2 compositions h or r)?

Let us rewrite $T \odot K$ in an explicit form.
Define $T \cdot K$ to be the star body with the radial function

$$
r_{T \cdot K}=r_{T}(\theta) \cdot r_{K}(\theta)
$$

Then $T \odot K=\operatorname{Conv}(T \cdot K)$.
In the same notation we may use $A \cdot B$ for flowers.
Then

$$
T \circ K=\operatorname{Conv}\left(T^{\mathbf{4}} \cdot K\right),
$$

because the radial function of $T^{\boldsymbol{\alpha}}$ is $h_{T}(\theta)$.

