# Flowers and Non-linear Constructions in Convex Geometry

#### Vitali Milman

(Part 1: joint work with E. Milman and L. Rotem Part 2: joint work with L. Rotem)

Tel-Aviv University

St. Petersburg, July 2019

#### Part 1

# **Flowers and Reciprocity**

Joint work with Emanuel Milman and Liran Rotem

### Indicatrix of the family of supporting functional

Let  $K \in \mathcal{K}_{\circ}$  be the family of convex, closed sets, with  $0 \in K$ . Let  $K^{\clubsuit}$  be the indicatrix of the family of supporting functions  $\{h_{K}(\theta)\}, \theta \in S^{n-1}$ , i.e. the radial function

$$r_{K^{\clubsuit}}(\theta) = h_{K}(\theta) = \sup\{(\theta, x) \mid x \in K\}.$$

 $K^{\clubsuit}$  is a star body,  $K^{\clubsuit} \supseteq K$  and = K iff  $K = rB_2^n$  (the euclidean ball).



Note a few properties to start with:

- 1.  $K^{\clubsuit}$  uniquely defines K;
- (Pr<sub>E</sub> K)<sup>♣</sup> = K<sup>♣</sup> ∩ E for any subspace E, and ♣ taken inside E;
- 3. For any K and  $T \in \mathcal{K}_{\circ}$

$$(\operatorname{Conv} K \cup T)^{\clubsuit} = K^{\clubsuit} \cup T^{\clubsuit}.$$

Let  $B_x := B(\frac{x}{2}, \frac{|x|}{2})$  be the euclidean ball with  $\frac{x}{2}$  its center and  $\frac{|x|}{2}$  its radius, i.e. the interval [0, x] is the diameter of  $B_x$ . For the interval I = [0, x],  $I^{\clubsuit} = B_x$  (Thales theorem).

(In the next pictures the body K is blue and  $K^{\clubsuit}$  is orange).











#### Flowers

We call a flower

$$A=\bigcup_{\alpha}B_{x_{\alpha}}$$

a union of balls  $B_{x_{\alpha}}$  (i.e. with diameters  $[0, x_{\alpha}]$ ) which is a star body in  $\mathbb{R}^{n}$ .

Let  $\mathcal{F}$  be the family of flowers in  $\mathbb{R}^n$ .

**Fact 1a:** Every indicatrix of  $K \in \mathcal{K}_{\circ}$  is a flower

$$\mathcal{K}^{\clubsuit} = \bigcup \{ B_x \mid x \in \partial \mathcal{K} \} \equiv \bigcup \{ B_x \mid x \in \mathcal{K} \}.$$

Write also for any A-star,

$$A^{\clubsuit} := \bigcup \{B_x \mid x \in A\} \equiv \bigcup \{B_{r_A(\theta)\theta} \mid \theta \in S^{n-1}\}.$$

**Fact 1b:** Every flower *A* is the indicatrix of some  $K \in \mathcal{K}_{\circ}$ :  $\exists K$  s.t.  $K^{\clubsuit} = A$ .

Let A be a flower. Call

$$K = \{x \in A \mid B_x \subset A\} - \text{the core of } A.$$

Then

$$K$$
 is convex and  $K^{\clubsuit} = A$ .  
So  $K = A^{-\clubsuit}$  (the inverse map).  
In particular, if  $A = \bigcup_{x \in \Lambda} B_x$  then  
 $A^{-\clubsuit} = \operatorname{Conv} \Lambda$ .

We will also need a duality relation on a family of star bodies:

For A-star denote  $\Phi(A)$  the star body s.t.  $r_{\Phi(A)} = 1/r_A$  (considered by Moszyńska).

 $\Phi(A)$  is "almost" a pointwise map:

Let  $\mathcal{I}: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$  be  $\mathcal{I}(x) = x/|x|^2$  (i.e.  $\mathcal{I}$  is the spherical inversion).

Then  $\partial \Phi(A) = \mathcal{I}(\partial A)$  (where  $\partial A$  is defined radially) (but  $\mathcal{I}$  maps "interior" of A to the exterior of  $\Phi(A)$  and vice versa).

**Note:** Im  $\Phi \equiv \overline{\operatorname{colm} \mathcal{I}}$ , i.e.  $\Phi(A) = \overline{\mathcal{I}(A)^c}$ .

### Map $\Phi$ and spherical inversion

Well-known facts on  $\mathcal{I}$ :

**Fact 2.** Let  $A \subset \mathbb{R}^n$  be a sphere or a hyperplane.

Then  $\mathcal{I}(A)$  is a hyperplane if  $0 \in A$  and a sphere if  $0 \notin A$ .

So  $\mathcal{I}(\partial B_x)$  is a hyperplane and  $\Phi(B_x)$  a half-space containing 0.

Therefore, for any flower A,  $\Phi(A)$  is a convex body: the intersection of half-spaces containing 0, if

$$A = \bigcup_{x \in T} B_x \Rightarrow \Phi(A) = \bigcap_{x \in T} \Phi(B_x).$$

And another Fact 3: So

i.e.

$$\Phi(\mathbf{K}^{\clubsuit}) = \mathbf{K}^{\circ}.$$

 $\circ \Phi \clubsuit = \mathsf{Id} \quad \mathsf{on} \quad \mathcal{K}_{\circ}.$ 

We have the diagrams:



i.e. \* is a duality on flowers  $\mathcal{F}$ :

if 
$$A = K^{\clubsuit}$$
 then  $A^* = (K^{\circ})^{\clubsuit}$ 

# Reciprocity

For function  $f: S^{n-1} \to [0, \infty]$  define the Alexandrov body  $A[f] = \{ x \in \mathbb{R}^n \mid (x, \theta) \le f(\theta), \ \forall \theta \in S^{n-1} \}.$ Note that if  $h_K(\theta)$  is a supporting function of  $K \in \mathcal{K}_{\circ}$ 

$$A[h_K] = K.$$

We call  $A[1/h_K] = K'$  a reciprocal body. Recall that the polar  $K^\circ$  of K is

$$\mathcal{K}^{\circ} = \{ x \in \mathbb{R}^n \mid (x, y) \le 1, \ \forall y \in \mathcal{K} \}.$$

Easy:  $K' \subseteq K^{\circ}$ ,  $K'' \supseteq K$ , and  $\prime$  reverse order of embedding. It follows that K''' = K', i.e.

**Fact 5.** K' is the duality on the image of this operation [i.e. on the family of reciprocal bodies].

Note:  $K = K' \iff K = B_2^n$  $K^\circ = K' \iff K = B_2^n$ 

In the next pictures: the started "chain" body K is in blue,  $K^{\circ}$  - orange, K' - green and K'' - red.









# Reciprocity

Some properties of the reciprocal operation '.

Theorems.  $\forall K \in \mathcal{K}_{\circ}$ 

1.  $(K^{\clubsuit})^{\circ} = K'$  [we write  $\circ \clubsuit = '$  (in operator-type notation)];

2. Define by D(K) the family of all convex bodies  $\{A\}$  s.t. A' = K. Then:

2a.  $\forall K, D(K)$  is a closed convex subset of  $\mathcal{K}_{\circ}$ ; 2b. If  $D(K) \neq \emptyset$ , then K' is the maximal element in D(K).

13. K is reciprocal (i.e.  $\exists T \in \mathcal{K}_{\circ} \text{ s.t. } T' = K$ ) iff  $K^{\clubsuit}$  is convex.

(So, reciprocal bodies are "more convex", both K and  $K^{\clubsuit}$  are convex.)

Corollary (of 3).  $(\Pr_E K)' = \Pr_E K'$  for K reciprocal.

*Proof.* As  $K^{\clubsuit}$  is convex, then

$$(\mathsf{Pr}_{\mathcal{E}} \, \mathcal{K})' = \left( (\mathsf{Pr}_{\mathcal{E}} \, \mathcal{K})^{\clubsuit} \right)^{\circ} = (\mathcal{K}^{\clubsuit} \cap \mathcal{E})^{\circ} = \mathsf{Pr}_{\mathcal{E}} (\mathcal{K}^{\clubsuit})^{\circ} = \mathsf{Pr}_{\mathcal{E}} \, \mathcal{K}'.$$

#### Relations between operations we have introduced

We discussed 4 operations on Convex/star-bodies

• — polarity 
$$[\circ K \equiv K^\circ];$$

 $\mathbf{A} - \mathsf{taken indicatrix}/\mathsf{flower} \ [\mathbf{A} \mathcal{K} \equiv \mathcal{K}^{\mathbf{A}}];$ 

 $\Phi$  — duality for star-bodies/spherical inversion;

$$\prime$$
 — reciprocity [ $'K \equiv K'$ ];

Let us see how they interplay.

Fact 6. On the class of convex bodies  $\mathcal{K}_\circ$ 

(i)  $\mathbf{A} = \Phi \circ$   $(K^{\mathbf{A}} = \Phi(K^{\circ}))$  (correct also for *K*-star body); (ii)  $\mathbf{A} \circ = \Phi$   $((K^{\circ})^{\mathbf{A}} = \Phi(K))$  (ONLY for convex *K*); (iii)  $\circ \mathbf{A} = '$   $((K^{\mathbf{A}})^{\circ} = (K)')$ ; (iv)  $\Phi \mathbf{A} = \circ$   $(K^{\circ} = \Phi(K^{\mathbf{A}}))$  (also for star-bodies). As a consequence of Fact 6, let us show one direction in Theorem 3: if  $K^{\clubsuit}$  is convex then K is reciprocal, i.e. K'' = K. Indeed, by 6(ii). when  $K^{\clubsuit}$  is convex

$$\clubsuit \circ \clubsuit = \Phi \clubsuit = \circ \qquad (also by 6(iv)).$$

Take  $\circ$  from both parts:

$$\circ \clubsuit \circ \clubsuit K = K^{\circ \circ} = K$$

and by 6(iii) it follows K'' = K.

**Fact 7.** From 6(ii) follows that for  $K \in \mathcal{K}_{\circ}$ 

 $\Phi K$  – convex  $\iff K^{\circ}$  is reciprocal.

## More remarkable properties of star-bodies called flowers

$$\mathcal{F} := \Big\{ A = \bigcup_{\alpha} B_{\mathsf{x}_{\alpha}} \Big\} \text{ also, equivalently } = \Big\{ \bigcup_{\alpha} \{ B_{\alpha} \mid 0 \in B_{\alpha} \} \Big\}$$

where  $B_{\alpha}$  are euclidean balls.

1.  $\clubsuit$  and  $\mathcal F$  are a preparational step for different dualities:

$$\Phi \clubsuit K = K^{\circ} \qquad \text{but } \circ \clubsuit K = K'.$$

2. Algebraic-geometric properties

- (i) For A, B ∈ F also Minkowski sum A + B ∈ F (associative, commutative, monotone).
   Also, Conv A ∈ F and Conv K<sup>♣</sup> = (K")<sup>♣</sup>.
- (ii)  $\forall$  subspace  $E \hookrightarrow \mathbb{R}^n$ , if  $A \in \mathcal{F}$ , then  $A \cap E \in \mathcal{F}(E)$  and  $\Pr_E A \in \mathcal{F}(E)$ ;
- !(iii) If  $A_i \in \mathcal{F}$  then also  $\bigcup_i A_i \in \mathcal{F}$ . Let  $A_i = K_i^{\clubsuit}$  (for convex  $K_i$ ). Then  $A_1 \cap A_2 \in \mathcal{F}$  iff  $K_1^{\circ} \cup K_2^{\circ}$  is convex;

Also, for a convex  $K \in \mathcal{K}_{\circ}$ 

$$\mathcal{K}^{\clubsuit, \clubsuit} = \bigcup_{\theta \in S^{n-1}} B_{h_{\mathcal{K}}(\theta)\theta} \qquad \left[ \text{recall } \mathcal{K}^{\clubsuit} = \bigcup_{\theta \in S^{n-1}} B_{r_{\mathcal{K}}(\theta)\theta} \right]$$

· \_\_\_ · \_\_\_ ·

Let  $K_i \in K_{\circ}$ ,  $\lambda_i \geq 0$ . Consider

$$P = \sum_{i} \lambda_i K_i \in \mathcal{K}_{\circ}.$$

By Minkowski theorem, Vol P is homogeneous polynomial in  $\{\lambda_i\}$ .

Also Vol P\* is a homogeneous polynomial in {λ<sub>i</sub>} with coefficients which we will call -mixed volumes of {K<sub>i</sub>}. For these numbers all corresponding relations are *elliptic* (not *hyperbolic*) and exactly the same kind as in the "dual mixed volume" theory of Lutwak. Say, Brunn-Minkowski type -inequality is for A and B in K<sub>o</sub>

$$|(A+B)^{\clubsuit}|^{1/n} \le |A^{\clubsuit}|^{1/n} + |B^{\clubsuit}|^{1/n},$$

and elliptic type &-Alexandrov-Fenchel inequality

$$V_{\clubsuit}(A_1, A_2, \ldots, A_n)^2 \leq V_{\clubsuit}(A_1, A_1, A_3, \ldots, A_n) \cdot V_{\clubsuit}(A_2, A_2, A_3 \cdots A_n)$$

where  $A_i \in \mathcal{K}_\circ$  and

$$V_{\clubsuit}(A_1,\ldots,A_n)=|B_2^n|\int_{S^{n-1}}h_{A_1}(\theta)\cdot\ldots\cdot h_{A_n}(\theta)d\mu(\theta),$$

 $h_{A_i}(\theta)$  is the supporting functional of  $A_i$ .

#### Kubota formulas for *A*-mixed volumes

Let 
$$W_{\clubsuit,i}(K) = V_{\clubsuit}(\underbrace{K, \dots, K}_{(n-i)-\text{times}}, \underbrace{B_2^n, \dots, B_2^n}_{i-\text{times}}).$$

Then for every  $1 \le i \le n$ 

$$W_{\clubsuit,n-i}(K) = \frac{\omega_n}{\omega_i} \int_{G_{n,i}} \left| (\operatorname{Proj}_E K)^{\clubsuit} \right| d\mu(E)$$

 $(\omega_i \text{ is the volume of the euclidean ball } B_2^i)$ . Also

$$\left(\frac{|K|}{\omega_n}\right)^{1/n} \leq \left(\frac{W_1(K)}{\omega_n}\right)^{1/n-1} \leq \cdots \leq \frac{W_{n-1}(K)}{\omega_n} = \frac{W_{\clubsuit,n-1}(K)}{\omega_n}$$
$$\leq \left(\frac{W_{\clubsuit,n-2}(K)}{\omega_n}\right)^{1/2} \leq \cdots \leq \left(\frac{W_{\clubsuit,1}(K)}{\omega_n}\right)^{1/n-1} \leq \left(\frac{|K^{\clubsuit}|}{\omega_n}\right)^{1/n}.$$

Summation on flowers implies strange summations on  $\mathcal{K}_\circ$  and also another one on  $\mathcal{F}.$ 

Let  $A, B \in \mathcal{F}$ . Then  $A + B \in \mathcal{F}$ . Let  $K, T \in \mathcal{K}_{\circ}$  s.t.  $A = \mathcal{K}^{\clubsuit}$  and  $B = T^{\clubsuit}$ . Let  $C := A + B = P^{\clubsuit}, P \in \mathcal{K}_{\circ}$ . Define  $\mathcal{K} \oplus T = P$  (the "club" sum). This sum is commutative,  $\clubsuit$  associative, monotone and  $\{0\}$  is its unit element. However !  $\mathcal{K} \oplus \mathcal{K} \supset 2\mathcal{K}$  but not in general =. Consider now the subset  $\mathcal{R} \hookrightarrow \mathcal{K}_{\circ}$  of reciprocal bodies. Then, for  $T, K \in \mathcal{R}, T^{\clubsuit}, K^{\clubsuit}$  are convex and  $T^{\clubsuit} + K^{\clubsuit}$  is also convex.

This means that  $P = K \oplus T$  is reciprocal.

So,there is a summation on  $\mathcal{R}!$ 

Note, Minkowski sum does not preserve reciprocity.

Also, in this case

$$K \oplus K = 2K.$$

(Sum is 1-homogeneous.)

We add: If K and  $T \in \mathcal{R}$ , then

 $K \cap T \in \mathcal{R}$ .

Also note: if K = -K,  $K \in \mathcal{R}$ , then  $\exists r, R > 0$ , s.t.

 $B(0, r) \subseteq K \subseteq B(0, R)$  and  $R/r \leq 2$ .

However, for non-origin-symmetric bodies, the smallest R/r may be any large even in dim 2.

**Example.** Let  $\mathcal{E}$  be an ellipsoid (in  $\mathbb{R}^2$ ) and 0 is a focus of  $\mathcal{E}$ . Then

- (i)  $\mathcal{E}^{\clubsuit}$  = euclidean ball B,  $0 \in B$ .
- (ii)  ${\mathcal E}$  is reciprocal and  ${\mathcal E}'$  is an ellipsoid.
- (iii) Let B be a euclidean ball,  $0 \in B$ . Then B is a flower (of some ellipsoid) and  $B^{\circ}$  is reciprocal. If 0 is not the center B then B is not reciprocal.

#### Fact 8.

(i) If K and T are reciprocal then (K° + T°)° is also reciprocal.
(ii) If K and T are star-bodies, such that Φ(K) and Φ(T) are convex, then Φ(K + T) is also convex.



Convexity property and arithmetic-harmonic means inequality for operations  $\circ$ , \*, **4**,  $\Phi$ , I.

Below K, T are in  $\mathcal{K}_{\circ}$  and A,  $B \in \mathcal{F}$ :

$$\circ: \ \left(\frac{K+T}{2}\right)^{\circ} \subseteq \frac{K^{\circ}+T^{\circ}}{2} \text{ and } \frac{K+T}{2} \supseteq \left(\frac{K^{\circ}+T^{\circ}}{2}\right)^{\circ}, \text{ Firey}$$

The same convexity and arithmetic-harmonic means ineqalities are correct for:

\* (for A and B);  $\Phi$  (for K and T; and also for A and B)

': for  ${\sf K}$  and  ${\sf T}$  reciprocal and flower summation  $\oplus$ 

**\clubsuit**: convexity property is correct for *K* and *T*.

# Proof of the Characterization Theorem

#### Lemma

Let K be any convex body  $0 \in K$ . Consider the subset

 $\operatorname{Inn}_{\mathcal{S}} \mathcal{K} := \mathcal{T} = \bigcup \big\{ B(x, |x|) \text{ and } B(x, |x|) \subset \mathcal{K} \big\} = \bigcup_{\alpha} \{ B(\alpha) \subset \mathcal{K} | 0 \in B(\alpha) \}$ 

(spherical inner hull)(so any such ball passes through 0 and is in K). Then T is a convex subset of K. Moreover, T is the largest  $A \subset K$  s.t.  $\Phi(A)$  is convex.

(Surprising! But that said – easy.)

Note that  $T = \Phi \circ \circ \Phi K := \Phi \operatorname{Conv} \Phi K$ .

(Formal checking:  $\Phi \partial B(x, |x|)$  is a hyperplane outside  $\Phi K$ .)

Actually T is the maximal convex subset of K s.t.

 $\Phi T$  is convex.

Using this lemma let us prove Theorem 3.

Proof.

We want to show that  $K'' = K \Rightarrow K^{\clubsuit}$  convex. This means  $K'' := \circ \clubsuit \circ \clubsuit K = K$ .

$$(act by \clubsuit) \Rightarrow \clubsuit \circ \clubsuit \circ \clubsuit \circ \bigstar K = \clubsuit K$$
$$(use \clubsuit = \Phi \circ) \clubsuit \circ \Phi \circ \circ \Phi \circ K = \clubsuit K$$
$$\clubsuit \circ [\Phi \circ \circ \Phi] \circ K = \clubsuit K$$

and  $\clubsuit\circ=\Phi$  on convex sets, but, by the lemma,  $\Phi\circ\circ\Phi(\circ {\cal K})$  convex,

$$\Phi\Phi\circ\circ\Phi\circ K=\clubsuit K\Rightarrow\circ\circ\Phi\circ K=\clubsuit K$$

which means  $Conv(\clubsuit K) = \clubsuit K$  (recall  $\Phi \circ = \clubsuit$ ).

The above proof is not intuitive.

Let us see some intuition behind on one example.

Let  $A \in D(T)$ , i.e. A' = T. Also  $T' \in D(T)$ . Recall T' is a maximal set in  $D(T) : A \subset T'$ . If  $A \neq T'$ , then it is not reciprocal (because otherwise A = A'' = T').

So, if  $K^{\clubsuit}$  is not convex we would like to find another body  $K_1$  s.t.  $K \subsetneq K_1$  but Conv  $K_1^{\clubsuit} = \text{Conv } K^{\clubsuit}$  and then  $K'_1 = K'$ , i.e. K is not reciprocal.

**Example:** Our K is an ellipsoid E and  $K_1 = \text{Conv}(E \cup I)$ , I is a special interval (see picture).

We use Fact 2:

$$[\mathsf{Conv}(\mathsf{K}\cup\mathsf{T})]^{\clubsuit}=\mathsf{K}^{\clubsuit}\cup\mathsf{T}^{\clubsuit}$$

This fact and example demonstrate how lack of convexity of  $K^{\clubsuit}$  is used to prove that K is not reciprocal.



## Additions

Proof of the Lemma. Let  $B_i = B_i(x_i, |x_i|) \subseteq K$ , i = 1, 2.

Let  $a_i \in B_i$ . We should show that  $\forall \lambda$ ,  $0 < \lambda < 1$ ,  $\exists$  a ball  $B \subseteq K$  from our family of balls and  $\lambda a_i + (1 - \lambda)a_2 \in B$ .

We will prove that  $\forall z \in \text{Conv}(B_1, B_2) := A$ ,  $\exists$  such a ball  $B \subset A(\subseteq K)$  and  $z \in B$ .

Set 
$$A = \bigcup_{\lambda \in [0,1]} \{ (1-\lambda)B_1 + \lambda B_2 \}$$
$$= \bigcup_{\lambda} B((1-\lambda)x_1 + \lambda x_2, (1-\lambda)|x_1| + \lambda |x_2|)$$

Then  $\exists \lambda$  and  $z \in B((1-\lambda)x_1 + \lambda x_2, (1-\lambda)|x_1| + \lambda |x_2|) = B^1$ , and  $0 \in B^1$  ball. Then  $\exists$  a ball  $\widetilde{B}$  inside this ball  $B^1(\subseteq K)$  s.t.  $0 \in \partial \widetilde{B}, z \in \widetilde{B}$ .

# Part 2

### Applications of the Language of Flowers for Non-linear Constructions in Convex Geometry

Joint work with Liran Rotem

We will now use flowers to construct different functions of convex bodies.

Actually, we will discuss the power function.

Consider a flower  $F = \bigcup B_x$ ; let  $x = r_{\theta}\theta$ ,  $\theta \in S^{n-1}$ ,  $r_{\theta} \ge 0$ . Let  $K = F^{-\clubsuit}$  (i.e.  $K^{\clubsuit} = F$ ). We call representation  $F = \bigcup B_x$  is canonical if  $x \in \partial K \ \forall x \ (\partial K \text{ is a radial boundary: } \lambda x \in K \text{ for } \lambda < 1 \text{ and } \lambda x \notin K \text{ for } \lambda > 1$ ).

Then  $\forall \theta \exists ! x = r_{\theta} \theta$  in the set  $\{B_x\}$ .

Let 
$$f(t) \ge 0$$
 for  $t \ge 0$ ,  $f(0) = 0$ .

Define 
$$f(F) := \bigcup B_{f(r_{\theta})\theta}$$
 is a flower.  
Note  $\Phi(\bigcup B_{f(r_{\theta})\theta}) = A[1/f(r_{K})]$ .  
Then for  $K = F^{-\clubsuit}$  (the core of  $F$ ) define

$$f(K) = f(F)^{-\clubsuit}$$
, i.e.  $f(K) = (A[1/f(r_K)])^{\circ}$ .

This is a *naïve* definition. (However, it may also be useful for new geometric inequalities.)

**The problem:** If  $f_i$ , i = 1, 2, are two such functions, then typically

$$(f_1 \circ f_2)(K) \neq f_1(f_2(K)).$$

We should correct it to build  ${\cal K}^\lambda$  ,  $0\leq\lambda\leq 1$  , which satisfy the semigroup property.

This is possible:

Theorem (Milman–Rotem). There are maps  $F \mapsto F^{\lambda}$  on the class of flowers satisfy:

1. If  $F_1 \subseteq F_2$  then  $F_1^{\lambda} \subseteq F_2^{\lambda}$ . 2.  $(cF)^{\lambda} = c^{\lambda}F^{\lambda}$ . 3.  $(F^{\lambda})^{\mu} = F^{\lambda\mu}$ .

And for the convex bodies from  $\mathcal{K}_\circ$  we have built a power map s.t. the above 3 conditions are satisfied.

Recently, we (jointly with Rotem) constructed maps with much stronger properties. (The construction of the theorem above corresponds to the so-called *h*-power case, we considered earlier.)

Actually, there is a function "power" defined on all convex bodies s.t. K = -K and satisfies all properties of the power function  $t^{\alpha}$ , but for  $|\alpha| \leq 1$ .

#### Theorem (Milman–Rotem).

There is a map  $K \to K^{\alpha}$ ,  $0 < \alpha < 1$ , such that 1.  $\forall 0 < \alpha < 1$ ,  $K \subset T \Rightarrow K^{\alpha} \subseteq T^{\alpha}$ ; 2.  $\forall 0 < \alpha < 1$ ,  $\forall K \forall \lambda > 0 \Rightarrow (\lambda K)^{\alpha} = \lambda^{\alpha} K^{\alpha}$ ; 3.  $\forall 0 < \alpha, \beta < 1, \forall K$ ,

$$(\mathbf{K}^{\alpha})^{\beta} = \mathbf{K}^{\alpha\beta};$$

$$4. \ (K^{\alpha})^{\circ} = (K^{\circ})^{\alpha}.$$

5.  $\forall$  ellipsoids  $\mathcal{E}$ ,  $\forall 0 < \alpha < 1$ ,  $\mathcal{E}^{\alpha}$  agrees with its natural definition.

Because the interpretation of  $K^{\circ}$  is " $K^{-1}$ ", we define the power function  $K^{\alpha}$  for any  $-1 \leq \alpha \leq 1$ .

Moreover, we are also able to construct a "geometric mean" for any two convex bodies containing 0 in the interior, and actually also "weighted" geometric means which are connected to the powers.

# Weighted geometric means $G_{\lambda}(K, T)$

Define for numbers a, b > 0,

$$a \#_{\lambda} b = a^{1-\lambda} \cdot b^{\lambda}.$$

Check  $a \#_{\mu}(a \#_{\lambda} b) = a \#_{\lambda \mu} b$ .

For an ellipsoid E we define a positive definite operator u, s.t.  $h_E(x) = \sqrt{(u_E x, x)}$ , and we define  $E^{\lambda}$  by  $u_{E^{\lambda}} = (u_E)^{\lambda}$ .

Define the  $\lambda$ -geometric mean of two positive definite matrices X and Y (introduced by Pusz–Woronowich (1975))

$$X \#_{\lambda} Y = X^{1/2} (X^{-1/2} Y X^{-1/2})^{\lambda} X^{1/2}$$

Note, if XY = YX then this is  $X^{1-\lambda}Y^{\lambda}$ .

For ellipsoids  $E_1$ ,  $E_2$  we set  $G_\lambda(E_1, E_2) = E_3$  if  $u_{E_3} = u_{E_1} \#_\lambda u_{E_2}$ . Note that

$$G_{\mu}(E_1, G_{\lambda}(E_1, E_2)) = G_{\lambda\mu}(E_1, E_2).$$

#### Theorem (Milman–Rotem).

There is a family of maps  $G_{\lambda}(K, T)$ ,  $0 \le \lambda \le 1$ , defined on any pair K and T of centrally-symmetric convex bodies which satisfies the following properties:

- 1.  $G_{\lambda}(K, K) = K$ .
- 2. If  $K_1 \subseteq T_1$  and  $K_2 \subseteq T_2$  then  $G_{\lambda}(K_1, K_2) \subseteq G_{\lambda}(T_1, T_2)$ .
- 3.  $G_{\lambda}(\alpha K, \beta T) = \alpha^{1-\lambda} \beta^{\lambda} G_{\lambda}(K, T)$  for all  $\alpha, \beta > 0$ .
- 4.  $G_{\lambda}$  is a continuous function of K, T and  $\lambda$  with respect to the Hausdorff metric on  $\mathcal{K}_s^n$ .
- 5.  $G_{\lambda}$  satisfies the harmonic mean geometric mean arithmetic mean inequality

$$((1-\lambda)K^{\circ}+\lambda T^{\circ})^{\circ} \subseteq G_{\lambda}(K,T) \subseteq (1-\lambda)K+\lambda T.$$

6. 
$$G_{\lambda}(K, T)^{\circ} = G_{\lambda}(K^{\circ}, T^{\circ}).$$

- 7.  $G_{\lambda}(uK, uT) = u(G_{\lambda}(K, T))$  for all invertible linear maps u.
- 8.  $G_{\lambda}(K, G_{\mu}(K, T)) = G_{\lambda\mu}(K, T).$
- 9.  $G_{\lambda}(B_2^n, K) = K^{\lambda}$ , where the power  $K^{\lambda}$  was defined in the theorem above.
- 10. For ellipsoids E and F the mean  $G_{\lambda}(E, F)$  agrees with the one defined above.

This convex body  $G_{\lambda}(K, T)$  we call  $\lambda$ -geometric mean of K and T.

Return to a general construction f(K).

Consider a function  $f(\theta, r) \ge 0$  for  $\theta \in S^{n-1}$ ,  $r \ge 0$ .

Let  $F = \bigcup B_{r(\theta)\theta}$ . Then

$$f(F) := \bigcup_{\theta} B_{f(\theta, r(\theta))\theta}; \text{ Note } \Phi(f(F)) = A[1/f(\theta, r(\theta))].$$

Similarly, for  $K = F^{-\clubsuit}$ , define

$$f(K) := f(F)^{-\clubsuit} = f(K^{\clubsuit})^{-\clubsuit}$$

Then  $f(K) = (A[1/f(\theta, r(\theta))])^{\circ}$ We use this to define *composition* of two convex bodies T and K. First, for flowers

 $F_1 = igcup B_{r_1( heta) heta}$  and  $F_2 = igcup B_{r_2( heta) heta}$  (in canonical presentation),

define  $F_1 \circ F_2 := \rho_{F_1}(F_2)$  where  $\rho_{F_1}$  is a 1-homogeneous function built by the radial function  $\rho_1(\theta)$  of  $F_1$ , i.e.  $\rho_{F_1}(\theta, r) = \rho_1(\theta) \cdot r$ . This means

$$F_1 \circ F_2 = \bigcup B_{\rho_1(\theta) \cdot r_2(\theta)\theta}.$$

Now let  $F_1 = T^{\clubsuit}$  and  $F_2 = K^{\clubsuit}$ .

Then  $r_2(\theta) = r_K(\theta)$ , the radial function of K, and  $\rho_1(\theta) = h_T(\theta)$ . So we define

$$T \circ K := \left(\bigcup B_{h_T(\theta) \cdot r_K(\theta)\theta}\right)^{-\clubsuit}$$

Note  $T \circ T^{\circ} = B_2^n$  and  $(T \circ K)^{\circ} = A\left[\frac{1}{h_T \cdot r_K}\right]$ .

This may also be seen as

$$T \circ K = h_T(K) \equiv [h_T(K^{\clubsuit})]^{-\clubsuit}$$

We have, connected with T, another function  $r_T$ , the radial function of T, and we may define a different composition

$$T \circ K := r_T(K) = [r_T(K^{\clubsuit})]^{-\clubsuit}.$$

This is

$$\left[\bigcup B_{r_{\mathcal{T}}(\theta)\cdot r_{\mathcal{K}}(\theta)\theta}\right]^{-\clubsuit}.$$

So  $T \circ K$  is a commutative "product".

If  $T = B_2^n$  then both compositions preserve K, i.e. the identical map on  $\mathcal{K}_{\circ}$ .

**Problem.** Find bodies T s.t. the Brunn-Minkowski type inequality

$$|T \circ (K_1 + K_2)|^{1/n} \ge |T \circ K_1|^{1/n} + |T \circ K_2|^{1/n}$$

is correct (for any of 2 compositions h or r)?

Let us rewrite  $T \circ K$  in an explicit form.

Define  $T \cdot K$  to be the star body with the radial function

$$r_{T\cdot K} = r_T(\theta) \cdot r_K(\theta).$$

Then  $T \circ K = \text{Conv}(T \cdot K)$ .

In the same notation we may use  $A \cdot B$  for flowers.

Then

$$T \circ K = \operatorname{Conv}(T^{\clubsuit} \cdot K),$$

because the radial function of  $T^{\clubsuit}$  is  $h_T(\theta)$ .