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Part 1

Flowers and Reciprocity

Joint work with Emanuel Milman and Liran Rotem
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Indicatrix of the family of supporting functional
Let K ∈ K◦ be the family of convex, closed sets, with 0 ∈ K .
Let K♣ be the indicatrix of the family of supporting functions
{hK (θ)}, θ ∈ Sn−1, i.e. the radial function

rK♣(θ) = hK (θ) = sup{(θ, x) | x ∈ K}.
K♣ is a star body, K♣ ⊇ K and = K iff K = rBn

2 (the euclidean
ball).
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Note a few properties to start with:

1. K♣ uniquely defines K ;
2. (PrE K )♣ = K♣ ∩ E for any subspace E , and ♣ taken

inside E ;
3. For any K and T ∈ K◦

(ConvK ∪ T )♣ = K♣ ∪ T♣.

Let Bx := B
( x

2 ,
|x |
2
)
be the euclidean ball with x

2 its center and |x |2
its radius, i.e. the interval [0, x ] is the diameter of Bx . For the
interval I = [0, x ], I♣ = Bx (Thales theorem).

(In the next pictures the body K is blue and K♣ is orange).
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Flowers
We call a flower

A =
⋃
α

Bxα

a union of balls Bxα (i.e. with diameters [0, xα]) which is a star
body in Rn.
Let F be the family of flowers in Rn.
Fact 1a: Every indicatrix of K ∈ K◦ is a flower

K♣ =
⋃
{Bx | x ∈ ∂K} ≡

⋃
{Bx | x ∈ K}.

Write also for any A-star,

A♣ :=
⋃
{Bx | x ∈ A} ≡

⋃
{BrA(θ)θ | θ ∈ Sn−1}.

Fact 1b: Every flower A is the indicatrix of some K ∈ K◦: ∃K s.t.
K♣ = A.
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Let A be a flower. Call

K = {x ∈ A | Bx ⊂ A}— the core of A.

Then
K is convex and K♣ = A.

So K = A−♣ (the inverse map).

In particular, if A =
⋃

x∈Λ
Bx then

A−♣ = Conv Λ.
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Spherical inversion

We will also need a duality relation on a family of star bodies:

For A-star denote Φ(A) the star body s.t. rΦ(A) = 1/rA
(considered by Moszyńska).

Φ(A) is "almost" a pointwise map:

Let I : Rn\{0} → Rn\{0} be I(x) = x/|x |2 (i.e. I is the
spherical inversion).

Then ∂Φ(A) = I(∂A) (where ∂A is defined radially) (but I maps
"interior" of A to the exterior of Φ(A) and vice versa).

Note: ImΦ ≡ coIm I , i.e. Φ(A) = I(A)c .
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Map Φ and spherical inversion
Well-known facts on I :
Fact 2. Let A ⊂ Rn be a sphere or a hyperplane.
Then I(A) is a hyperplane if 0 ∈ A and a sphere if 0 /∈ A.
So I(∂Bx ) is a hyperplane and Φ(Bx ) a half-space containing 0.
Therefore, for any flower A, Φ(A) is a convex body: the
intersection of half-spaces containing 0, if

A =
⋃

x∈T
Bx ⇒ Φ(A) =

⋂
x∈T

Φ(Bx ).

And another
Fact 3: Φ(K♣) = K ◦.
So

K◦
♣→ F Φ→ K◦ (1-1 and onto maps)

K −→ K ◦,

i.e. ◦ Φ ♣ = Id on K◦.
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We have the diagrams:

K◦
♣−→ F Φ−→ K◦

♣−→ F Φ−→ K◦
◦ : K◦ −−−−−−−→

◦=Φ♣
K◦

Id : K◦ −−−−−−−−−−−−−−−→ K◦
F −−−−−−−−−−→

∗=♣Φ
F

∗ : A −−−−−−−−−−→ A∗, 1–1, onto, order reversing

i.e. ∗ is a duality on flowers F :

if A = K♣ then A∗ = (K ◦)♣
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Reciprocity
For function f : Sn−1 → [0,∞] define the Alexandrov body

A[f ] = {x ∈ Rn | (x , θ) ≤ f (θ), ∀ θ ∈ Sn−1}.
Note that if hK (θ) is a supporting function of K ∈ K◦

A[hK ] = K .

We call A[1/hK ] = K ′ a reciprocal body. Recall that the polar K ◦
of K is

K ◦ = {x ∈ Rn | (x , y) ≤ 1, ∀ y ∈ K}.
Easy: K ′ ⊆ K ◦, K ′′ ⊇ K , and ′ reverse order of embedding. It
follows that K ′′′ = K ′, i.e.
Fact 5. K ′ is the duality on the image of this operation [i.e. on
the family of reciprocal bodies].
Note: K = K ′ ⇐⇒ K = Bn

2
K ◦ = K ′ ⇐⇒ K = Bn

2

In the next pictures: the started "chain" body K is in blue,
K ◦ – orange, K ′ – green and K ′′ – red. 15 / 49
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Reciprocity
Some properties of the reciprocal operation ′.

Theorems. ∀K ∈ K◦
1. (K♣)◦ = K ′ [we write ◦♣ = ′ (in operator-type notation)];
2. Define by D(K ) the family of all convex bodies {A} s.t.

A′ = K. Then:
2a. ∀K, D(K ) is a closed convex subset of K◦;
2b. If D(K ) 6= ∅, then K ′ is the maximal element in D(K ).

!3. K is reciprocal (i.e. ∃T ∈ K◦ s.t. T ′ = K) iff K♣ is convex.

(So, reciprocal bodies are "more convex", both K and K♣ are
convex.)

Corollary (of 3). (PrE K )′ = PrE K ′ for K reciprocal.

Proof. As K♣ is convex, then

(PrE K )′ =
(
(PrE K )♣

)◦
= (K♣ ∩ E )◦ = PrE (K♣)◦ = PrE K ′.
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Relations between operations we have introduced

We discussed 4 operations on Convex/star-bodies

◦ — polarity [◦K ≡ K ◦];
♣ — taken indicatrix/flower [♣K ≡ K♣];
Φ — duality for star-bodies/spherical inversion;
′ — reciprocity [′K ≡ K ′];

Let us see how they interplay.

Fact 6. On the class of convex bodies K◦

(i) ♣ = Φ ◦ (K♣ = Φ(K ◦)) (correct also for K -star body);
(ii) ♣◦ = Φ ((K ◦)♣ = Φ(K )) (ONLY for convex K );
(iii) ◦♣ = ′ ((K♣)◦ = (K )′);
(iv) Φ♣ = ◦ (K ◦ = Φ(K♣)) (also for star-bodies).
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As a consequence of Fact 6, let us show one direction in Theorem 3:

if K♣ is convex then K is reciprocal, i.e. K ′′ = K .

Indeed, by 6(ii). when K♣ is convex

♣ ◦ ♣ = Φ♣ = ◦ (also by 6(iv)).

Take ◦ from both parts:

◦♣ ◦ ♣K = K ◦◦ = K

and by 6(iii) it follows K ′′ = K . �

Fact 7. From 6(ii) follows that for K ∈ K◦

ΦK − convex⇐⇒ K ◦ is reciprocal.
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More remarkable properties of star-bodies called flowers

F :=
{
A =

⋃
α

Bxα

}
also, equivalently =

{⋃
α

{Bα | 0 ∈ Bα}
}

where Bα are euclidean balls.

1. ♣ and F are a preparational step for different dualities:

Φ♣ K = K ◦ but ◦ ♣K = K ′.

2. Algebraic-geometric properties
(i) For A,B ∈ F also Minkowski sum A+ B ∈ F (associative,

commutative, monotone).
Also, ConvA ∈ F and ConvK♣ = (K ′′)♣.

(ii) ∀ subspace E ↪→ Rn, if A ∈ F , then A∩ E ∈ F (E ) and
PrE A ∈ F (E );

!(iii) If Ai ∈ F then also
⋃

i Ai ∈ F . Let Ai = K♣i (for convex Ki ).
Then A1 ∩ A2 ∈ F iff K ◦1 ∪K ◦2 is convex;
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Also, for a convex K ∈ K◦

K♣,♣ =
⋃

θ∈Sn−1

BhK (θ)θ

[
recall K♣ =

⋃
θ∈Sn−1

BrK (θ)θ

]

— · — · — · — · — ·

Let Ki ∈ K◦, λi ≥ 0. Consider

P = ∑
i

λiKi ∈ K◦.

By Minkowski theorem, VolP is homogeneous polynomial in {λi}.
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3. Also VolP♣ is a homogeneous polynomial in {λi} with
coefficients which we will call ♣-mixed volumes of {Ki}.
For these numbers all corresponding relations are elliptic (not
hyperbolic) and exactly the same kind as in the "dual mixed
volume" theory of Lutwak. Say, Brunn-Minkowski type
♣-inequality is for A and B in K◦

|(A+ B)♣|1/n ≤ |A♣|1/n + |B♣|1/n,

and elliptic type ♣-Alexandrov-Fenchel inequality

V♣(A1,A2, . . . ,An)
2 ≤ V♣(A1,A1,A3, . . . ,An) ·V♣(A2,A2,A3 · · ·An)

where Ai ∈ K◦ and

V♣(A1, . . . ,An) = |Bn
2 |
∫

Sn−1
hA1(θ) · . . . · hAn(θ)dµ(θ),

hAi (θ) is the supporting functional of Ai .
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Kubota formulas for ♣-mixed volumes

Let W♣,i (K ) = V♣(K , . . . ,K︸ ︷︷ ︸
(n− i)-times

,Bn
2 , . . . ,Bn

2︸ ︷︷ ︸
i-times

).

Then for every 1 ≤ i ≤ n

W♣,n−i (K ) =
ωn
ωi

∫
Gn,i

∣∣(ProjE K )♣
∣∣dµ(E )

(ωi is the volume of the euclidean ball B i
2). Also(

|K |
ωn

)1/n
≤
(
W1(K )

ωn

)1/n−1
≤ · · · ≤ Wn−1(K )

ωn
=

W♣,n−1(K )

ωn

≤
(
W♣,n−2(K )

ωn

)1/2
≤ · · · ≤

(
W♣,1(K )

ωn

)1/n−1
≤
(
|K♣|
ωn

)1/n

.
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New summations on K◦ and F

Summation on flowers implies strange summations on K◦ and also
another one on F .

Let A,B ∈ F . Then A+ B ∈ F .

Let K ,T ∈ K◦ s.t. A = K♣ and B = T♣.

Let C := A+ B = P♣, P ∈ K◦.

Define K ⊕
♣

T = P (the "club" sum). This sum is commutative,

associative, monotone and {0} is its unit element. However !
K ⊕
♣

K ⊃ 2K but not in general =.
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Consider now the subset R ↪→ K◦ of reciprocal bodies. Then, for
T ,K ∈ R, T♣,K♣ are convex and T♣ +K♣ is also convex.

This means that P = K ⊕
♣

T is reciprocal.

So,there is a summation on R!

Note, Minkowski sum does not preserve reciprocity.

Also, in this case
K ⊕
♣

K = 2K .

(Sum is 1-homogeneous.)
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More on reciprocal bodies R

We add: If K and T ∈ R, then

K ∩ T ∈ R.

Also note: if K = −K , K ∈ R, then ∃ r , R > 0, s.t.

B(0, r ) ⊆ K ⊆ B(0,R) and R/r ≤ 2.

However, for non-origin-symmetric bodies, the smallest R/r may
be any large even in dim 2.
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Example. Let E be an ellipsoid (in R2) and 0 is a focus of E .
Then

(i) E♣ = euclidean ball B, 0 ∈ B.
(ii) E is reciprocal and E ′ is an ellipsoid.
(iii) Let B be a euclidean ball, 0 ∈ B. Then B is a flower (of some

ellipsoid) and B◦ is reciprocal. If 0 is not the center B then B
is not reciprocal.

Fact 8.

(i) If K and T are reciprocal then (K ◦ + T ◦)◦ is also reciprocal.
(ii) If K and T are star-bodies, such that Φ(K ) and Φ(T ) are

convex, then Φ(K + T ) is also convex.
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Convexity property and arithmetic-harmonic means
inequality for operations ◦, ∗,♣,Φ, ′.

Below K ,T are in K◦ and A,B ∈ F :

◦ :
(
K + T

2

)◦
⊆ K ◦ + T ◦

2 and K + T
2 ⊇

(
K ◦ + T ◦

2

)◦
, Firey

The same convexity and arithmetic-harmonic means ineqalities are
correct for:

∗ (for A and B); Φ (for K and T ; and also for A and B)

′: for K and T reciprocal and flower summation ⊕
♣

♣: convexity property is correct for K and T .
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Proof of the Characterization Theorem

Lemma
Let K be any convex body 0 ∈ K. Consider the subset

InnS K := T=
⋃{

B(x , |x |) andB(x , |x |)⊂K
}
=
⋃
α

{B(α)⊂K |0∈B(α)}

(spherical inner hull)(so any such ball passes through 0 and is
in K). Then T is a convex subset of K. Moreover, T is the largest
A ⊂ K s.t. Φ(A) is convex.

(Surprising! But that said – easy.)

Note that T = Φ ◦ ◦ΦK := ΦConv ΦK .
(Formal checking: Φ ∂B(x , |x |) is a hyperplane outside ΦK .)
Actually T is the maximal convex subset of K s.t.

ΦT is convex.
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Using this lemma let us prove Theorem 3.

Proof.
We want to show that K ′′ = K ⇒ K♣ convex. This means
K ′′ := ◦♣ ◦ ♣K = K .

(act by ♣) ⇒ ♣ ◦ ♣ ◦ ♣K = ♣K
(use ♣ = Φ ◦) ♣ ◦Φ ◦ ◦Φ ◦K = ♣K

♣ ◦ [Φ ◦ ◦Φ] ◦K = ♣K

and ♣◦ = Φ on convex sets, but, by the lemma, Φ ◦ ◦Φ(◦K )
convex,

ΦΦ ◦ ◦Φ ◦K = ♣K ⇒ ◦ ◦ Φ ◦K = ♣K

which means Conv(♣K ) = ♣K (recall Φ ◦ = ♣).
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The above proof is not intuitive.

Let us see some intuition behind on one example.

Let A ∈ D(T ), i.e. A′ = T . Also T ′ ∈ D(T ). Recall T ′ is a
maximal set in D(T ) : A ⊂ T ′. If A 6= T ′, then it is not reciprocal
(because otherwise A = A′′ = T ′).

So, if K♣ is not convex we would like to find another body K1 s.t.
K ( K1 but ConvK♣1 = ConvK♣ and then K ′1 = K ′, i.e. K is not
reciprocal.

Example: Our K is an ellipsoid E and K1 = Conv(E ∪ I), I is a
special interval (see picture).

We use Fact 2:

[Conv(K ∪ T )]♣ = K♣ ∪ T♣

This fact and example demonstrate how lack of convexity of K♣ is
used to prove that K is not reciprocal.
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Additions

Proof of the Lemma. Let Bi = Bi (xi , |xi |) ⊆ K , i = 1, 2.

Let ai ∈ Bi . We should show that ∀ λ, 0 < λ < 1, ∃ a ball B ⊆ K
from our family of balls and λai + (1− λ)a2 ∈ B.

We will prove that ∀ z ∈ Conv(B1,B2) := A, ∃ such a ball
B ⊂ A(⊆ K ) and z ∈ B.

Set A =
⋃

λ∈[0,1]

{
(1− λ)B1 + λB2

}
=
⋃
λ

B
(
(1− λ)x1 + λx2, (1− λ)|x1|+ λ|x2|

)
Then ∃ λ and z ∈ B((1− λ)x1 + λx2, (1− λ)|x1|+ λ|x2|) = B1,
and 0 ∈ B1 ball. Then ∃ a ball B̃ inside this ball B1(⊆ K ) s.t.
0 ∈ ∂B̃, z ∈ B̃.
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Part 2

Applications of the Language of Flowers
for Non-linear Constructions in Convex

Geometry

Joint work with Liran Rotem

We will now use flowers to construct different functions of convex
bodies.

Actually, we will discuss the power function.
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Consider a flower F =
⋃
Bx ; let x = rθθ, θ ∈ Sn−1, rθ ≥ 0.

Let K = F−♣ (i.e. K♣ = F ). We call representation F =
⋃
Bx is

canonical if x ∈ ∂K ∀ x (∂K is a radial boundary: λx ∈ K for
λ < 1 and λx 6∈ K for λ > 1).

Then ∀θ ∃!x = rθθ in the set {Bx}.

Let f (t) ≥ 0 for t ≥ 0, f (0) = 0.

Define f (F ) :=
⋃
Bf (rθ)θ is a flower.

Note Φ(
⋃
Bf (rθ)θ) = A[1/f (rK )].

Then for K = F−♣ (the core of F ) define

f (K ) = f (F )−♣, i.e. f (K ) = (A[1/f (rK )])◦.

This is a naïve definition. (However, it may also be useful for new
geometric inequalities.)
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The problem: If fi , i = 1, 2, are two such functions, then typically

(f1 ◦ f2)(K ) 6= f1(f2(K )).

We should correct it to build Kλ, 0 ≤ λ ≤ 1, which satisfy the
semigroup property.

This is possible:
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Theorem (Milman–Rotem). There are maps F 7→ F λ on the
class of flowers satisfy:

1. If F1 ⊆ F2 then F λ
1 ⊆ F λ

2 .
2. (cF )λ = cλF λ.
3. (F λ)µ = F λµ.

And for the convex bodies from K◦ we have built a power map s.t.
the above 3 conditions are satisfied.

Recently, we (jointly with Rotem) constructed maps with much
stronger properties. (The construction of the theorem above
corresponds to the so-called h-power case, we considered earlier.)

Actually, there is a function "power" defined on all convex bodies
s.t. K = −K and satisfies all properties of the power function tα,
but for |α| ≤ 1.
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Theorem (Milman–Rotem).

There is a map K → K α, 0 < α < 1, such that

1. ∀ 0 < α < 1, K ⊂ T ⇒ K α ⊆ T α;
2. ∀ 0 < α < 1, ∀K ∀ λ > 0⇒ (λK )α = λαK α;
3. ∀ 0 < α, β < 1, ∀K,

(K α)β = K αβ;

4. (K α)◦ = (K ◦)α.
5. ∀ ellipsoids E , ∀ 0 < α < 1, Eα agrees with its natural

definition.

Because the interpretation of K ◦ is "K−1", we define the power
function K α for any −1 ≤ α ≤ 1.

Moreover, we are also able to construct a "geometric mean" for any
two convex bodies containing 0 in the interior, and actually also
"weighted" geometric means which are connected to the powers.
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Weighted geometric means Gλ(K ,T )

Define for numbers a, b > 0,

a#λ b = a1−λ · bλ.

Check a#µ(a#λ b) = a#λµb.
For an ellipsoid E we define a positive definite operator u, s.t.
hE (x) =

√
(uEx , x), and we define Eλ by uE λ = (uE )

λ.
Define the λ-geometric mean of two positive definite matrices X
and Y (introduced by Pusz–Woronowich (1975))

X #λ Y = X 1/2(X−1/2YX−1/2)λX 1/2.

Note, if XY = YX then this is X 1−λY λ.
For ellipsoids E1,E2 we set Gλ(E1,E2) = E3 if uE3 = uE1 #λ uE2 .
Note that

Gµ(E1,Gλ(E1,E2)) = Gλµ(E1,E2).
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Theorem (Milman–Rotem).

There is a family of maps Gλ(K ,T ), 0 ≤ λ ≤ 1, defined on any
pair K and T of centrally-symmetric convex bodies which satisfies
the following properties:

1. Gλ(K ,K ) = K.
2. If K1 ⊆ T1 and K2 ⊆ T2 then Gλ(K1,K2) ⊆ Gλ(T1,T2).
3. Gλ(αK , βT ) = α1−λβλGλ(K ,T ) for all α, β > 0.
4. Gλ is a continuous function of K, T and λ with respect to

the Hausdorff metric on Kn
s .

5. Gλ satisfies the harmonic mean – geometric mean –
arithmetic mean inequality

((1− λ)K ◦ + λT ◦)◦ ⊆ Gλ(K ,T ) ⊆ (1− λ)K + λT .
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6. Gλ(K ,T )◦ = Gλ(K ◦,T ◦).
7. Gλ(uK , uT ) = u(Gλ(K ,T )) for all invertible linear maps u.
8. Gλ(K ,Gµ(K ,T )) = Gλµ(K ,T ).
9. Gλ(Bn

2 ,K ) = Kλ, where the power Kλ was defined in the
theorem above.

10. For ellipsoids E and F the mean Gλ(E ,F ) agrees with the
one defined above.

This convex body Gλ(K ,T ) we call λ-geometric mean of K and T .
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Return to a general construction f (K ).

Consider a function f (θ, r ) ≥ 0 for θ ∈ Sn−1, r ≥ 0.

Let F =
⋃
Br(θ)θ. Then

f (F ) :=
⋃
θ

Bf (θ,r(θ))θ; Note Φ(f (F )) = A[1/f (θ, r (θ))].

Similarly, for K = F−♣, define

f (K ) := f (F )−♣ = f (K♣)−♣.

Then f (K ) = (A[1/f (θ, r (θ))])◦
We use this to define composition of two convex bodies T and K .
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First, for flowers

F1 =
⋃

Br1(θ)θ and F2 =
⋃

Br2(θ)θ (in canonical presentation),

define F1 ◦ F2 := ρF1(F2) where ρF1 is a 1-homogeneous function
built by the radial function ρ1(θ) of F1, i.e. ρF1(θ, r ) = ρ1(θ) · r .

This means
F1 ◦ F2 =

⋃
Bρ1(θ)·r2(θ)θ.

Now let F1 = T♣ and F2 = K♣.

Then r2(θ) = rK (θ), the radial function of K , and ρ1(θ) = hT (θ).
So we define

T ◦K :=
(⋃

BhT (θ)·rK (θ)θ

)−♣
.

Note T ◦ T ◦ = Bn
2 and (T ◦K )◦ = A

[ 1
hT ·rK

]
.
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This may also be seen as

T ◦K = hT (K ) ≡ [hT (K♣)]−♣

We have, connected with T , another function rT , the radial
function of T , and we may define a different composition

T �K := rT (K ) = [rT (K♣)]−♣.

This is [⋃
BrT (θ)·rK (θ)θ

]−♣
.

So T �K is a commutative "product".

If T = Bn
2 then both compositions preserve K , i.e. the identical

map on K◦.
Problem. Find bodies T s.t. the Brunn-Minkowski type inequality

|T ◦ (K1 +K2)|1/n ≥ |T ◦K1|1/n + |T ◦K2|1/n

is correct (for any of 2 compositions h or r)?
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Let us rewrite T �K in an explicit form.

Define T ·K to be the star body with the radial function

rT ·K = rT (θ) · rK (θ).

Then T �K = Conv(T ·K ).

In the same notation we may use A · B for flowers.

Then
T ◦K = Conv(T♣ ·K ),

because the radial function of T♣ is hT (θ).
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