Mixed volume inequalities on a special class of convex bodies.

Shay Sadovsky
Joint work with Shiri Artstein Avidan and Raman Sanyal

Tel Aviv University
Euler International Mathematical Institute, July 3, 2019

Motivation

A 1-unconditional convex body $K \subset \mathbb{R}^{n}$, associated with a 1 -unconditional norm, i.e.

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{K}=\left\|\left(\pm x_{1}, \ldots, \pm x_{n}\right)\right\|_{K}
$$

is a simpler object than an arbitrary convex body.

Motivation

Mahler's conjecture states that for any centrally symmetric convex body K,

$$
\operatorname{Vol}(K) \operatorname{Vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

The conjecture is known 1-unconditional bodies (J. Saint-Raymond (1980)).

One can give a proof using the following inequality in the positive orthant $O=\left\{x \mid x_{i} \geq 0 \forall i\right\}$, that

This leads us to studying bodies which are convex in the positive orthants.

Motivation

Mahler's conjecture states that for any centrally symmetric convex body K,

$$
\operatorname{Vol}(K) \operatorname{Vol}\left(K^{\circ}\right) \geq \frac{4^{n}}{n!}
$$

The conjecture is known 1-unconditional bodies (J. Saint-Raymond (1980)).

One can give a proof using the following inequality in the positive orthant $O=\left\{x \mid x_{i} \geq 0 \forall i\right\}$, that

$$
\operatorname{Vol}(K \cap O) \operatorname{Vol}\left(K^{\circ} \cap O\right) \geq \frac{1}{n!}
$$

This leads us to studying bodies which are convex in the positive orthants.

Anti-blocking bodies

Definition (Anti-blocking body, Fukerson (1971))

A convex body $K \subset \mathbb{R}_{+}^{n}$ is called anti-blocking if for any
$x=\left(x_{1}, \ldots, x_{n}\right) \in K$, if $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$ is such that $y \leq x$ in the partial order on \mathbb{R}^{n} (i.e. $y_{i} \leq x_{i}$ for all $1 \leq i \leq n$) then $y \in K$.
l.e. it is order convex, containing the origin, and positive.

An important observation - for $K \subset \mathbb{R}^{n}$ anti blocking, and $E=\operatorname{sp}\left\{e_{i}\right\}_{i \in I}$ some coordinate subspace $\left(\mathcal{G}_{n}^{c}\right)$,

$$
K \cap E=P_{E} K
$$

Anti-blocking bodies

Definition (Anti-blocking body, Fulkerson (1971))

A convex body $K \subset \mathbb{R}_{+}^{n}$ is called anti-blocking if for any
$x=\left(x_{1}, \ldots, x_{n}\right) \in K$, if $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{+}^{n}$ is such that $y \leq x$ in the partial order on \mathbb{R}^{n} (i.e. $y_{i} \leq x_{i}$ for all $1 \leq i \leq n$) then $y \in K$.
l.e. it is order convex, containing the origin, and positive.

An important observation - for $K \subset \mathbb{R}^{n}$ anti blocking, and $E=\operatorname{sp}\left\{e_{i}\right\}_{i \in I}$ some coordinate subspace $\left(\mathcal{G}_{n}^{c}\right)$,

$$
K \cap E=P_{E} K
$$

Polarity

We should define an analogue of a polarity operation on this class, as it has 0 on the boundary.

Definition (Polarity for anti-blocking bodies)

Let $K \in \mathbb{R}_{+}^{n}$ be an anti-blocking body. Define

$$
A K:=\left\{x \in \mathbb{R}^{n}: \sup _{y \in K}\langle x, y\rangle \leq 1\right\} .
$$

The definition coincides with usual polarity for the associated 1-unconditional body, and also

Polarity

We should define an analogue of a polarity operation on this class, as it has 0 on the boundary.

Definition (Polarity for anti-blocking bodies)

Let $K \in \mathbb{R}_{+}^{n}$ be an anti-blocking body. Define

$$
A K:=\left\{x \in \mathbb{R}_{+}^{n}: \sup _{y \in K}\langle x, y\rangle \leq 1\right\} .
$$

The definition coincides with usual polarity for the associated 1-unconditional body, and also

Polarity

We should define an analogue of a polarity operation on this class, as it has 0 on the boundary.

Definition (Polarity for anti-blocking bodies)

Let $K \in \mathbb{R}_{+}^{n}$ be an anti-blocking body. Define

$$
A K:=\left\{x \in \mathbb{R}_{+}^{n}: \sup _{y \in K}\langle x, y\rangle \leq 1\right\} .
$$

The definition coincides with usual polarity for the associated 1-unconditional body, and also

$$
A K=\left(K+\mathbb{R}_{-}^{n}\right)^{\circ}=K^{\circ} \cap \mathbb{R}_{+}^{n}
$$

Decomposition of Difference

The main important property is the following formula for mixed volumes:
Lemma (Decomposition Lemma for difference of anti-blocking bodies, Chappell, Friedl, Sanyal (2017))
Let $K, T \subset \mathbb{R}_{+}^{n}$ be anti-blocking convex bodies, and let $\lambda \geq 0$, then

$$
K-\lambda T=\bigcup_{E \in \mathcal{G}_{n}^{c}} P_{E} K \times P_{E^{\perp}}(-\lambda T),
$$

and in particular, as this union is disjoint up to measure 0 ,

$$
V(K[j],-T[n-j])=\binom{n}{j}^{-1} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}_{j}\left(P_{E} K\right) \cdot \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} T\right) .
$$

Where

$$
V(K[j], T[n-j])=V(\underbrace{K, \ldots, K}_{j}, \underbrace{T, \ldots, T}_{\square n-j_{刃}}) .
$$

Sketch of proof

The idea of the proof is to note that for each point $x \in K-T$, its positive coordinates are in K and the negative are in $-T$.

Decomposition of convex hull

A similar lemma holds for the convex hull.

Lemma (Decomposition of the convex hull of anti-blocking bodies)

Let $K, T \subset \mathbb{R}_{+}^{n}$ be anti-blocking convex bodies, and let $\lambda>0$, then:

$$
\operatorname{conv}(K,-\lambda T)=\bigcup_{j=0}^{n} \bigcup_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{conv}\left(P_{E} K, P_{E^{\perp}}(-\lambda T)\right)
$$

and in particular, as this union disjoint up to measure 0 ,

$$
\operatorname{Vol}(\operatorname{conv}(K,-\lambda T))=\sum_{j=0}^{n} \lambda^{j} V(K[n-j],-T[j])
$$

Godbersen's conjecture

Rogers and Shephard's inequality (1957) states that for $K \subset \mathbb{R}^{n}$ convex,

$$
\operatorname{Vol}(K-K) \leq\binom{ 2 n}{n} \operatorname{Vol}(K)
$$

Godbersen's conjecture (C. Godbersen (1938)) states that the inequality holds term by term, and that the only maximizers of this mixed volume are simplices.

Theorem (Godbersen holds for anti-blocking bodies)
Let $K \subset \mathbb{R}_{1}^{n}$ a convex anti-blocking body and $1<j<n$, then

with equality if and only if K is an anti-blocking simplex.

Godbersen's conjecture

Rogers and Shephard's inequality (1957) states that for $K \subset \mathbb{R}^{n}$ convex,

$$
\begin{gathered}
\operatorname{Vol}(K-K) \leq\binom{ 2 n}{n} \operatorname{Vol}(K) \\
\sum_{j=1}^{n}\binom{n}{j} V(K[j],-K[n-j]) \leq \sum_{j=1}^{n}\binom{n}{j}^{2} \operatorname{Vol}(K)
\end{gathered}
$$

Godbersen's conjecture (C. Godbersen (1938)) states that the inequality holds term by term, and that the only maximizers of this mixed volume are simplices.
Theorem (Godbersen holds for anti-blocking bodies)
Let $K \subset \mathbb{R}_{+}^{n}$ a convex anti-blocking body and $1 \leq j \leq n$, then

with equality if and only if K is an anti-blocking simplex

Godbersen's conjecture

Rogers and Shephard's inequality (1957) states that for $K \subset \mathbb{R}^{n}$ convex,

$$
\begin{gathered}
\operatorname{Vol}(K-K) \leq\binom{ 2 n}{n} \operatorname{Vol}(K) \\
\sum_{j=1}^{n}\binom{n}{j} V(K[j],-K[n-j]) \leq \sum_{j=1}^{n}\binom{n}{j}^{2} \operatorname{Vol}(K)
\end{gathered}
$$

Godbersen's conjecture (C. Godbersen (1938)) states that the inequality holds term by term, and that the only maximizers of this mixed volume are simplices.

Theorem (Godbersen holds for anti-blocking bodies)

Let $K \subset \mathbb{R}_{+}^{n}$ a convex anti-blocking body and $1 \leq j \leq n$, then

$$
V(K[j],-K[n-j]) \leq\binom{ n}{j} \operatorname{Vol}(K)
$$

with equality if and only if K is an anti-blocking simplex.

Godbersen's conjecture

Proof of the first part of the theorem is by an application of the Rogers-Shephard lemma for a product of section and projection.

$$
\begin{aligned}
V(K[j],-K[n-j]) & =\binom{n}{j}^{-1} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}_{j}\left(P_{E} K\right) \cdot \operatorname{Vol}_{n-j}\left(P_{E^{\perp}} K\right) \\
& \leq\binom{ n}{j}^{-1} \sum_{E \in \mathcal{G}_{n, j}^{c}}\binom{n}{j} \operatorname{Vol}(K) \\
& =\binom{n}{j} \operatorname{Vol}(K)
\end{aligned}
$$

A Saint-Raymond type inequality

Theorem (A Saint-Raymond type inequality for Mixed Volumes)

Let

$$
K_{1}, \ldots, K_{j}, T_{1}, \ldots, T_{n-j} \subset \mathbb{R}_{+}^{n}
$$

be anti-blocking bodies. Then,

$$
\begin{aligned}
& V\left(K_{1}, \ldots K_{j},-T_{1}, \cdots-T_{n-j}\right) V\left(A K_{1}, \ldots A K_{j},-A T_{1}, \cdots-A T_{n-j}\right) \\
& \geq \frac{1}{j!(n-j)!}
\end{aligned}
$$

In particular, for $K, T \subset \mathbb{R}_{+}^{n}$ anti-blocking,

$$
V(K[j],-T[n-j]) V(A K[j],-A T[n-j]) \geq \frac{1}{j!(n-j)!}
$$

A Saint-Raymond type inequality

Theorem (A Saint-Raymond type inequality for Mixed Volumes)

Let

$$
K_{1}, \ldots, K_{j}, T_{1}, \ldots, T_{n-j} \subset \mathbb{R}_{+}^{n}
$$

be anti-blocking bodies. Then,

$$
\begin{aligned}
& V\left(K_{1}, \ldots K_{j},-T_{1}, \cdots-T_{n-j}\right) V\left(A K_{1}, \ldots A K_{j},-A T_{1}, \cdots-A T_{n-j}\right) \\
& \geq \frac{1}{j!(n-j)!} .
\end{aligned}
$$

In particular, for $K, T \subset \mathbb{R}_{+}^{n}$ anti-blocking,

$$
V(K[j],-T[n-j]) V(A K[j],-A T[n-j]) \geq \frac{1}{j!(n-j)!} \quad(\star)
$$

A Saint-Raymond type inequality

The theorem follows from

$$
V(K[j],-T[n-j]) V(A K[j],-A T[n-j]) \geq \frac{1}{j!(n-j)!} \quad(\star)
$$

using a repeated Alexandrov-Fenchel inequality.
We prove (\star) using the Decomposition Lemma, applying
Cauchy-Schwarz inequality and finally applying the Saint-Raymond inequality on the projections, i.e. for E a coordinate subspace of dimension

$$
\operatorname{Vol}\left(P_{E} K\right) \operatorname{Vol}\left(P_{E} A K\right) \operatorname{Vol}\left(P_{E^{\perp}} T\right) \operatorname{Vol}\left(P_{E^{\perp}} A T\right) \geq \frac{1}{j!} \frac{1}{(n-j)!}
$$

A Saint-Raymond type inequality

The theorem follows from

$$
V(K[j],-T[n-j]) V(A K[j],-A T[n-j]) \geq \frac{1}{j!(n-j)!} \quad(\star)
$$

using a repeated Alexandrov-Fenchel inequality.
We prove (\star) using the Decomposition Lemma, applying Cauchy-Schwarz inequality and finally applying the Saint-Raymond inequality on the projections, i.e. for E a coordinate subspace of dimension j,

$$
\operatorname{Vol}\left(P_{E} K\right) \operatorname{Vol}\left(P_{E} A K\right) \operatorname{Vol}\left(P_{E^{\perp}} T\right) \operatorname{Vol}\left(P_{E^{\perp}} A T\right) \geq \frac{1}{j!} \frac{1}{(n-j)!}
$$

Nearly Mahler for C-bodies

C-bodies were first introduced in Rogers-Shephard (1958), as a means of associating to a convex body some centrally symmetric convex body.

Definition

Define

$$
C(K, T)=\operatorname{conv}\{K \times\{1\}, T \times\{-1\}\}
$$

and mark $C(K):=C(K,-K)$.
We will next compute the volume product for these bodies.

This class includes the cross-polytope and the cube.,

Nearly Mahler for C-bodies

C-bodies were first introduced in Rogers-Shephard (1958), as a means of associating to a convex body some centrally symmetric convex body.

Definition

Define

$$
C(K, T)=\operatorname{conv}\{K \times\{1\}, T \times\{-1\}\}
$$

and mark $C(K):=C(K,-K)$.
We will next compute the volume product for these bodies.

This class includes the cross-polytope and the cube.

What is the polar of a C-body?

Luckily, $C(K)^{\circ}$ is also a C-body.

Lemma

Let $K, T \subset \mathbb{R}_{+}^{n}$ a convex anti-blocking body and consider as before the body $C(K, T)$ given by

$$
C(K, T)=\operatorname{conv}\{K \times\{1\},-T \times\{-1\}\},
$$

Then one has

$$
C(K, T)^{\circ}=\operatorname{conv}\{-2 A T \times\{1\}, 2 A K \times\{-1\}\} .
$$

What is the polar of a C-body?

Luckily, $C(K)^{\circ}$ is also a C-body.

Lemma

Let $K, T \subset \mathbb{R}_{+}^{n}$ a convex anti-blocking body and consider as before the body $C(K, T)$ given by

$$
C(K, T)=\operatorname{conv}\{K \times\{1\},-T \times\{-1\}\},
$$

Then one has

$$
C(K, T)^{\circ}=\operatorname{conv}\{-2 A T \times\{1\}, 2 A K \times\{-1\}\} .
$$

What is the polar of a C-body?

Luckily, $C(K)^{\circ}$ is also a C-body.

Lemma

Let $K, T \subset \mathbb{R}_{+}^{n}$ a convex anti-blocking body and consider as before the body $C(K, T)$ given by

$$
C(K, T)=\operatorname{conv}\{K \times\{1\},-T \times\{-1\}\}
$$

Then one has

$$
C(K, T)^{\circ}=\operatorname{conv}\{-2 A T \times\{1\}, 2 A K \times\{-1\}\}
$$

The volume of a C－body

$$
C(K)=\operatorname{conv}\{K \times\{1\},-K \times\{-1\}\}
$$

$$
=\bigcup_{s=-1}^{1} \bigcup_{j=0}^{n} \bigcup_{E \in \mathcal{G}_{n, j}^{c}}\left(P_{E}\left(\frac{1+s}{2} K\right) \times P_{E^{\perp}}\left(-\frac{1-s}{2} K\right)\right) \times\{s\}
$$

$$
=\bigcup_{E \in \mathcal{G}_{n}^{c} s=-1} \bigcup^{1}\left(\frac{1+s}{2} P_{E}(K) \times \frac{1-s}{2} P_{E} \pm(-K)\right) \times\{s\}
$$

$$
=\bigcup_{E \in \mathcal{G}_{n}^{c}} C\left(P_{E} K,-P_{E^{\perp}} K\right) .
$$

The volume of a C-body

$$
\begin{aligned}
C(K) & =\operatorname{conv}\{K \times\{1\},-K \times\{-1\}\} \\
& =\bigcup_{s=-1}^{1}\left(\frac{1+s}{2} K-\frac{1-s}{2} K\right) \times\{s\}
\end{aligned}
$$

$=\bigcup_{s=-1}^{1} \bigcup_{j=0}^{n} \bigcup_{E \in G_{n, j}^{c}}\left(P_{E}\left(\frac{1+s}{2} K\right) \times P_{E \pm}\left(-\frac{1-s}{2} K\right)\right) \times\{s\}$

$$
=\bigcup_{E^{C} \mathcal{C}} C\left(P_{E} K,-P_{E^{\perp}} K\right) .
$$

The volume of a C-body

$$
\begin{aligned}
C(K) & =\operatorname{conv}\{K \times\{1\},-K \times\{-1\}\} \\
& =\bigcup_{s=-1}^{1}\left(\frac{1+s}{2} K-\frac{1-s}{2} K\right) \times\{s\} \\
& =\bigcup_{s=-1}^{1} \bigcup_{j=0}^{n} \bigcup_{E \in \mathcal{G}_{n, j}^{c}}\left(P_{E}\left(\frac{1+s}{2} K\right) \times P_{E^{\perp}}\left(-\frac{1-s}{2} K\right)\right) \times\{s\} \\
& =\bigcup_{E \in \mathcal{G}_{n}^{c} s=-1} \bigcup^{1}\left(\frac{1+s}{2} P_{E}(K) \times \frac{1-s}{2} P_{E}(-K)\right) \times\{s\} \\
& =\bigcup^{2} C\left(P_{E} K,-P_{E \perp} K\right) .
\end{aligned}
$$

The volume of a C-body

$$
\begin{aligned}
C(K) & =\operatorname{conv}\{K \times\{1\},-K \times\{-1\}\} \\
& =\bigcup_{s=-1}^{1}\left(\frac{1+s}{2} K-\frac{1-s}{2} K\right) \times\{s\} \\
& =\bigcup_{s=-1}^{1} \bigcup_{j=0}^{n} \bigcup_{E \in \mathcal{G}_{n, j}^{c}}\left(P_{E}\left(\frac{1+s}{2} K\right) \times P_{E^{\perp}}\left(-\frac{1-s}{2} K\right)\right) \times\{s\} \\
& =\bigcup_{E \in \mathcal{G}_{n}^{c}} \bigcup_{s=-1}^{1}\left(\frac{1+s}{2} P_{E}(K) \times \frac{1-s}{2} P_{E^{\perp}}(-K)\right) \times\{s\}
\end{aligned}
$$

The volume of a C-body

$$
\begin{aligned}
C(K) & =\operatorname{conv}\{K \times\{1\},-K \times\{-1\}\} \\
& =\bigcup_{s=-1}^{1}\left(\frac{1+s}{2} K-\frac{1-s}{2} K\right) \times\{s\} \\
& =\bigcup_{s=-1}^{1} \bigcup_{j=0}^{n} \bigcup_{E \in \mathcal{G}_{n, j}^{c}}\left(P_{E}\left(\frac{1+s}{2} K\right) \times P_{E^{\perp}}\left(-\frac{1-s}{2} K\right)\right) \times\{s\} \\
& =\bigcup_{E \in \mathcal{G}_{n}^{c}} \bigcup_{s=-1}^{1}\left(\frac{1+s}{2} P_{E}(K) \times \frac{1-s}{2} P_{E^{\perp}}(-K)\right) \times\{s\} \\
& =\bigcup_{E \in \mathcal{G}_{n}^{c}} C\left(P_{E} K,-P_{E^{\perp}} K\right) .
\end{aligned}
$$

The volume of a C-body - cont.

What we got is disjoint up to measure zero, so have

$$
\begin{aligned}
\operatorname{Vol}(C(K)) & =\sum_{j=0}^{n} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}\left(C\left(P_{E} K,-P_{E^{\perp}} K\right)\right) \\
& =\sum_{j=0}^{n} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}\left(P_{E} K\right) \operatorname{Vol}\left(P_{E^{\perp}} K\right) \frac{2}{(n+1)\binom{n}{j}} \\
& =\frac{2}{(n+1)} \sum_{j=0}^{n} V(K[j],-K[n-j]) \\
& =\frac{2}{(n+1)} \operatorname{Vol}(\operatorname{conv}(K,-K))
\end{aligned}
$$

The last equality is by the Decomposition Lemma for convex hull

The volume of a C-body - cont.

What we got is disjoint up to measure zero, so have

$$
\begin{aligned}
\operatorname{Vol}(C(K)) & =\sum_{j=0}^{n} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}\left(C\left(P_{E} K,-P_{E^{\perp}} K\right)\right) \\
& =\sum_{j=0}^{n} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}\left(P_{E} K\right) \operatorname{Vol}\left(P_{E^{\perp}} K\right) \frac{2}{(n+1)\binom{n}{j}} \\
& =\frac{2}{(n+1)} \sum_{j=0}^{n} V(K[j],-K[n-j]) \\
& =\frac{2}{(n+1)} \operatorname{Vol}(\operatorname{conv}(K,-K))
\end{aligned}
$$

The last equality is by the Decomposition Lemma for convex hull

The volume of a C-body - cont.

What we got is disjoint up to measure zero, so have

$$
\begin{aligned}
\operatorname{Vol}(C(K)) & =\sum_{j=0}^{n} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}\left(C\left(P_{E} K,-P_{E^{\perp}} K\right)\right) \\
& =\sum_{j=0}^{n} \sum_{E \in \mathcal{G}_{n, j}^{c}} \operatorname{Vol}\left(P_{E} K\right) \operatorname{Vol}\left(P_{E^{\perp}} K\right) \frac{2}{(n+1)\binom{n}{j}} \\
& =\frac{2}{(n+1)} \sum_{j=0}^{n} V(K[j],-K[n-j]) \\
& =\frac{2}{(n+1)} \operatorname{Vol}(\operatorname{conv}(K,-K)) .
\end{aligned}
$$

The last equality is by the Decomposition Lemma for convex hull

Mahler's Conjecture for C-bodies

Using the previous computations on $C(K)$ and $C(K)^{\circ}=C(-2 A K)$, Mahler's conjecture for these bodies is equivalent to the following:

Conjecture

For an anti-blocking $K \subset \mathbb{R}_{+}^{n}$ we have that

$$
\operatorname{Vol}(\operatorname{conv}(K,-K)) \operatorname{Vol}(\operatorname{conv}(A K,-A K)) \geq 2^{n} \frac{n+1}{n!}
$$

Proposition

For an anti-blocking $K \subset \mathbb{R}_{+}^{n}$ we have that

Mahler's Conjecture for C-bodies

Using the previous computations on $C(K)$ and $C(K)^{\circ}=C(-2 A K)$, Mahler's conjecture for these bodies is equivalent to the following:

Conjecture

For an anti-blocking $K \subset \mathbb{R}_{+}^{n}$ we have that

$$
\operatorname{Vol}(\operatorname{conv}(K,-K)) \operatorname{Vol}(\operatorname{conv}(A K,-A K)) \geq 2^{n} \frac{n+1}{n!}
$$

Proposition

For an anti-blocking $K \subset \mathbb{R}_{+}^{n}$ we have that

$$
\operatorname{Vol}(\operatorname{conv}(K,-K)) \operatorname{Vol}(\operatorname{conv}(A K,-A K)) \geq \frac{1}{n!}\left(\sum_{j=0}^{n}\binom{n}{j}^{1 / 2}\right)^{2} \approx \frac{2^{n} \sqrt{2 \pi n}}{n!} .
$$

Elements from the proof

We use Cauchy-Schwartz and our Saint-Raymond type inequality:

$$
V(K[j],-K[n-j]) V(A K[j],-A K[n-j]) \geq \frac{1}{j!(n-j)!} .
$$

We get

Elements from the proof

We use Cauchy-Schwartz and our Saint-Raymond type inequality:

$$
V(K[j],-K[n-j]) V(A K[j],-A K[n-j]) \geq \frac{1}{j!(n-j)!} .
$$

We get

$$
\begin{aligned}
& \operatorname{Vol}(\operatorname{conv}(K,-K)) \operatorname{Vol}(\operatorname{conv}(A K,-A K)) \\
& =\left(\sum_{j=0}^{n} V(K[j],-K[n-j])\right)\left(\sum_{j=0}^{n} V(A K[j],-A K[n-j])\right) \\
& \geq\left(\sum_{j=0}^{n}(V(K[j],-K[n-j]) V(A K[j],-A K[n-j]))^{1 / 2}\right)^{2} \\
& \geq \frac{1}{n!}\left(\sum_{j=0}^{n}\binom{n}{j}^{1 / 2}\right)^{2} \approx \frac{2^{n} \sqrt{2 \pi n}}{n!} .
\end{aligned}
$$

A lower bound for mixed volume of difference

Recall the lower (trivial) bound on the volume of a difference body

$$
2^{n} \operatorname{Vol}(K) \leq \operatorname{Vol}(K-K)
$$

For anti-blocking bodies, a stronger fact is true:
Corollary
Let $K, T \subset \mathbb{R}_{+}^{n}$ anti-blocking bodies, then

$$
\operatorname{Vol}(K+T) \leq \operatorname{Vol}(K-T)
$$

This is a result of the Reveres Kleitman inequality (Bollobás, Leader, Radcliffe (1989)), which states that for an order-convex set $L \subset \mathbb{R}^{n}$

$$
\operatorname{Vol}\left((L-L) \cap \mathbb{R}_{+}^{n} \leq \operatorname{Vol}(L)\right.
$$

We would like to show that the inequality holds term by term.

A lower bound for mixed volume of difference

Recall the lower (trivial) bound on the volume of a difference body

$$
2^{n} \operatorname{Vol}(K) \leq \operatorname{Vol}(K-K)
$$

For anti-blocking bodies, a stronger fact is true:

Corollary

Let $K, T \subset \mathbb{R}_{+}^{n}$ anti-blocking bodies, then

$$
\operatorname{Vol}(K+T) \leq \operatorname{Vol}(K-T)
$$

This is a result of the Reveres Kleitman inequality (Bollobás, Leader, Radcliffe (1989)), which states that for an order-convex set $L \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
& \qquad \operatorname{Vol}\left((L-L) \cap \mathbb{R}_{+}^{n} \leq \operatorname{Vol}(L)\right. \\
& \text { We would like to show that the inequality holds term by term. }
\end{aligned}
$$

A lower bound for mixed volume of difference

Recall the lower (trivial) bound on the volume of a difference body

$$
2^{n} \operatorname{Vol}(K) \leq \operatorname{Vol}(K-K)
$$

For anti-blocking bodies, a stronger fact is true:

Corollary

Let $K, T \subset \mathbb{R}_{+}^{n}$ anti-blocking bodies, then

$$
\operatorname{Vol}(K+T) \leq \operatorname{Vol}(K-T)
$$

This is a result of the Reveres Kleitman inequality (Bollobás, Leader, Radcliffe (1989)), which states that for an order-convex set $L \subset \mathbb{R}^{n}$,

$$
\operatorname{Vol}\left((L-L) \cap \mathbb{R}_{+}^{n} \leq \operatorname{Vol}(L)\right.
$$

We would like to show that the inequality holds term by term.

A lower bound for mixed volume of difference

The mixed volume of two anti-blocking bodies depends on whether they are in the same orthant.

Theorem

Given two anti-blocking bodies, $K, T \in \mathbb{R}_{+}^{n}$,

$$
V(K[j], T[n-j]) \leq V(K[j],-T[n-j]) .
$$

The proof is achieved via a shadow system of Steiner symmetrizations for the right hand side.

Thank you for listening.

