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Concentration of measure A prototypical example

Gaussian concentration

Theorem (Sudakov-Tsirel’son ’74, Borell ’75)

Let f be a Lipschitz map, i.e. |f (x)− f (y)| ≤ L‖x − y‖2, x , y ∈ Rn. Then, for
the standard Gaussian random vector G ,

P (f (G ) < med(f )− tL) ≤ Φ(−t) ≤ 1

2
exp

(
−t2/2

)
, t > 0. (1)

In particular,

P(|f (G )−med(f )| > tL) ≤ exp(−t2/2), t > 0. (2)

The probabilistic oscillations (fluctuations) are controlled by the metric
oscillations (Lipschitz constant). That is Var[f (G )] ≤ L2.

Sharp for linear functionals.

Consequence of the isoperimetric principle. “isoperimetry + continuity”.
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Concentration of measure Sub-optimality issues

Application to `p norms

For f being a norm we obtain:

P (|f (G )−m| ≥ tm) ≤ exp(−ct2k), t > 0, k ≡ k(f ) := (m/L)2.

In the large deviation regime the latter is optimal, that is

P(f (G ) ≥ (1 + t)m) ≥ ce−Ct
2k , t > 1.

Let’s focus on the small deviation regime:

The `p norm for 1 ≤ p ≤ 2: f (x) = ‖x‖p := (
∑n

i=1 |xi |p)1/p. Optimal.

The `q norm for 2 < q ≤ ∞. Sub-optimal.

Lip(‖ · ‖q) = 1, but Var(‖G‖q) = on(1). E.g. Var(‖G‖4) � n−1/2.

For improving the variance we may employ the Poincaré inequality:

Var[f (G )] ≤ E‖∇f (G )‖22≤ Lip(f )2.

Indeed; we have
E‖∇‖G‖4‖22 � n−1/2.

P. Valettas (University of Missouri) Concentration and Convexity St. Petersburg, July 2, 2019 3 / 11



Concentration of measure Sub-optimality issues

Application to `p norms

For f being a norm we obtain:

P (|f (G )−m| ≥ tm) ≤ exp(−ct2k), t > 0, k ≡ k(f ) := (m/L)2.

In the large deviation regime the latter is optimal, that is

P(f (G ) ≥ (1 + t)m) ≥ ce−Ct
2k , t > 1.

Let’s focus on the small deviation regime:

The `p norm for 1 ≤ p ≤ 2: f (x) = ‖x‖p := (
∑n

i=1 |xi |p)1/p. Optimal.

The `q norm for 2 < q ≤ ∞. Sub-optimal.

Lip(‖ · ‖q) = 1, but Var(‖G‖q) = on(1). E.g. Var(‖G‖4) � n−1/2.

For improving the variance we may employ the Poincaré inequality:

Var[f (G )] ≤ E‖∇f (G )‖22≤ Lip(f )2.

Indeed; we have
E‖∇‖G‖4‖22 � n−1/2.

P. Valettas (University of Missouri) Concentration and Convexity St. Petersburg, July 2, 2019 3 / 11



Concentration of measure Sub-optimality issues

Application to `p norms

For f being a norm we obtain:

P (|f (G )−m| ≥ tm) ≤ exp(−ct2k), t > 0, k ≡ k(f ) := (m/L)2.

In the large deviation regime the latter is optimal, that is

P(f (G ) ≥ (1 + t)m) ≥ ce−Ct
2k , t > 1.

Let’s focus on the small deviation regime:

The `p norm for 1 ≤ p ≤ 2: f (x) = ‖x‖p := (
∑n

i=1 |xi |p)1/p. Optimal.

The `q norm for 2 < q ≤ ∞. Sub-optimal.

Lip(‖ · ‖q) = 1, but Var(‖G‖q) = on(1). E.g. Var(‖G‖4) � n−1/2.

For improving the variance we may employ the Poincaré inequality:
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Concentration of measure Superconcentration

The `∞ norm: f (x) = ‖x‖∞. Sub-optimal.

‖∇‖G‖∞‖2 = 1 a.s. However, we have

Var(‖G‖∞) � (log n)−1 � E‖∇‖G‖∞‖22.

This is a typical example of superconcentration. Following Chatterjee,
superconcentration occurs when the classical methods fail to capture the sharp
estimates.

Definition (Chatterjee)

A smooth function f on Rn is said to be εn-superconcentrated if

Var[f (G )] ≤ εnE‖∇f (G )‖22.

Inadequacy of the classical concentration in direct-problem solving
Q.1.Under what conditions is the classical concentration inequality tight?
Q.2. What assumptions ensure sharper concentration bounds?
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Concentration in presence of convexity Tightness

An anticoncentration inequality

If (2) is optimal, then Var[f (G )] & L2 (necessary condition).
It turns out that for convex, Lipschitz maps it is also a sufficient condition.

Theorem (V. ’17)

Let α ∈ (0, 1) and let f be a convex and Lipschitz map with Var[f (G )] ≥ αL2.
Then, for all t > 0 we have

P(|f (G )−m| ≥ tL) ≥ ce−Ct
2

,

where c ,C > 0 depend solely on α > 0.

The Gaussian convexity is used in a crucial way. Ehrhard’s work on Gaussian
rearrangements (’84): f ∗(s) = inf{t : Φ−1 ◦ P(f (G ) ≤ t) ≥ s}.

An improved Poincaré inequality due to Bobkov and Houdré (’99).

P. Valettas (University of Missouri) Concentration and Convexity St. Petersburg, July 2, 2019 5 / 11



Concentration in presence of convexity Tightness

An anticoncentration inequality

If (2) is optimal, then Var[f (G )] & L2 (necessary condition).

It turns out that for convex, Lipschitz maps it is also a sufficient condition.

Theorem (V. ’17)

Let α ∈ (0, 1) and let f be a convex and Lipschitz map with Var[f (G )] ≥ αL2.
Then, for all t > 0 we have

P(|f (G )−m| ≥ tL) ≥ ce−Ct
2

,

where c ,C > 0 depend solely on α > 0.

The Gaussian convexity is used in a crucial way. Ehrhard’s work on Gaussian
rearrangements (’84): f ∗(s) = inf{t : Φ−1 ◦ P(f (G ) ≤ t) ≥ s}.
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Concentration in presence of convexity Convexity implies skewness

Theorem (V. ’17)

Let f be a convex map. Then, for the standard Gaussian vector G we have

P(f (G ) ≤ m − t) ≤ P(f (G ) ≥ m + t), t > 0.

The r.v. Z = f (G ) is skew to the left. Hence, convex functions concentrate
more below the mean.

Upper deviation estimate suffices to obtain two-sided results.

Proof uses “Gaussian convexity”: Ehrhard’s inequality (1983). For any A,B
convex sets in Rn and 0 < λ < 1 one has

Φ−1 ◦ γn((1− λ)A + λB) ≥ (1− λ)Φ−1 ◦ γn(A) + λΦ−1 ◦ γn(B)
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Concentration in presence of convexity Improved estimates

“Isoperimetry + Convexity”

Theorem (Bobkov-Götze ’99, Samson ’03)

Let f be a convex map and let µ be a Borel probability measure on Rn which
satisfies a transportation cost inequality with constant A > 0 (e.g. γn does with
A = 1), i.e. W2(µ, ν) ≤

√
2AD(ν||µ) for any probability measure ν. Then, for

any convex map f one has for all t > 0,

µ(x : f (x) ≤ Eµf − t
√
Eµ‖∇f ‖22) ≤ e−t

2/A. (3)

Improves upon (1), since E‖∇f ‖22 ≤ Lip(f )2.

An observation. For a smooth function f with ∇2f � −aI , one has

µ(x : f (x) ≤ m − t
√
Eµ‖∇f ‖22 − at2) ≤ αµ(t), t > 0,

In particular, for smooth f with ‖∇2f ‖op ≤ K , we obtain Hanson-Wright
type bounds:

µ(|f −m| ≥ t
√
Eµ‖∇f ‖22 + t2K ) ≤ 2αµ(t).
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Concentration in presence of convexity New types of concentration

“Convexity + Convexity”

Theorem (Paouris, V., ’16)

Let f be a convex function on Rn with f ∈ L2(γn). Then, we have

P
(
f (G )−med(f ) ≤ −t

√
Var[f (G )]

)
≤ Φ

(
− t√

2π

)
≤ e−ct

2

t > 0, (4)

where G is the standard Gaussian vector.

The function is not necessarily Lipschitz.

This is a much stronger inequality, inside the class of convex (Lipschitz)
functions, since we may have Var[f (G )]�E‖∇f (G )‖22� L2. Takes into
account the superconcentration.

New type of concentration, which is not explained by isoperimetry: It
exploits the convexity properties of the distribution.

Similar estimates for any log-concave probability measure µ on Rn and any
convex map f .
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Concentration in presence of convexity New types of concentration

A (sketch) proof of (4) (with worse constant).

Let f be convex map and let F (t) = P(f (G ) ≤ t). Ehrhard’s ineq. implies
that t 7→ Φ−1 ◦ F (t) is concave.

If m is a median of f , then concavity yields

Φ−1 ◦ F (m − t) ≤ Φ−1 ◦ F (m)− t(Φ−1 ◦ F )′(m) = −t(Φ−1 ◦ F )′(m).

We may compute (Φ−1 ◦ F )′(m) =
√

2πF ′(m).

A lower bound for F ′(m):

Note that F is log-concave, hence for any δ > 0 (choose later) we may write

F ′(m) = F (m)(log F )′(m) = 1
2 (log F )′(m)

≥ log F (m + δ)− log F (m)

2δ
= . . .

=
1

2δ
log (1 + 2P(m ≤ f (G ) ≤ m + δ))

≥ 1

2δ
P(m ≤ f ≤ m + δ).
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Concentration in presence of convexity New types of concentration

Proof (cont’d)

Therefore, we obtain

F ′(m) ≥ 1

2δ

[
1

2
− P(f ≥ m + δ)

]
≥ 1

2δ

(
1

2
− ‖f −m‖L1

δ

)
.

To conclude, choose δ = 4‖f −m‖L1 .

Finally, we obtain

Φ−1 ◦ F (m − t) ≤ − t
√

2π

32‖f −m‖L1

=⇒ F (m − t) ≤ Φ

(
− ct

‖f −m‖L1

)
.
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The end

Thank you for your attention!
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