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Abstract

We consider a special random walk of a particle in a

polygon and obtain, as a limit, cut off fractals in the

polygon, which are described in terms of uniform

distributions of probability on the corresponding

fractals. Serpinski triangle is an example. Changing a

parameter of the random walk we obtain in a limit

fractal type distributions with a tight support on the

polygon. Construction for the limit distributions forming

is essentially based on a generalization of the Fibonacci

numbers.
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De�nition of Pure type distribution

A random variable X has a pure type distribution, if exactly one

condition from the following 3 conditions takes place:

1. There erxist �nit or countable set D such that P (X ∈ D) = 1.

2. For every x ∈ IR it holds IP(X = x) = 0, but there exists a Borel D

such that P ((X ∈ D) = 1) with the Lebesgue measure µ(D) = 0.

3. P (X ∈ dx) ≺ µ(dx).

Jessen�Wintner's Theorem on Pure type (1935)

Let X1, X2, . . . � be i.i.d. rv's such that:

1.
∑n

1 Xk → X a.s. as n→∞;

2. For every k ∈ IN there exists a countable set Fk: P (Xk ∈ Fk) = 1.

Then distribution of X has the Pure type.



Polski zloty real data and simulation

Figure: α = 1/2, 3 attractors: 2.0 (prob =0.05), 3.79 (prob =0.42), and 4.05 (prob =0.53)


