Limits of special random walks in polygons and a class of stochastic fractals

Oleg Rusakov Saint-Petersburg State University

05.07.2019

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

WE CONSIDER A SPECIAL RANDOM WALK OF A PARTICLE IN A POLYGON AND OBTAIN, AS A LIMIT, CUT OFF FRACTALS IN THE POLYGON, WHICH ARE DESCRIBED IN TERMS OF UNIFORM DISTRIBUTIONS OF PROBABILITY ON THE CORRESPONDING FRACTALS. SERPINSKI TRIANGLE IS AN EXAMPLE. CHANGING A PARAMETER OF THE BANDOM WALK WE OBTAIN IN A LIMIT FRACTAL TYPE DISTRIBUTIONS WITH A TIGHT SUPPORT ON THE POLYGON. CONSTRUCTION FOR THE LIMIT DISTRIBUTIONS FORMING IS ESSENTIALLY BASED ON A GENERALIZATION OF THE FIBONACCI NUMBERS.

Refs

[1] A.Jessen and A.Wintner (1935), Distribution functions and the Riemann zeta function, Trans.Amer.Math.Soc., 38, pp.48-88.

[2] P.Erdos (1939), On a family of symmetric Bernoully convolutions, Amer.J.Math., 61, pp. 974-975.

[3] P.Erdos (1940), On the smoothness properties of Bernoully convolutions, Amer.J.Math.,
62, pp. 180-186.

[4] Breiman (1968), Probability.

[5] B.Solomyak (1995), On the random series $\pm\lambda^i$ (an Erdos problem), Ann. Math.,242, pp.611-625.

[6] Y.Peres and B.Solomyak (1996), Absolute continuity of Bernoully convolutions, a simple proof, Math.Res.Lett.,3,pp.231-239.

[7] Y.Peres and B.Solomyak (1998), Self-similar measures and intersections of Cantor sets, Trans.Amer.Math.Soc., 350, pp.4065-4087.

[8] Persi Diaconis and David Freedman (1999), Iterated Random Functions, SIAM Review,

Vol. 41, No. 1, pp. 45-76.

[9] A.N. Shiryaev (1999), Essentials of Stochastic Finance, World Scientific Publishing Co.

[10] Niclas Carlsson (2005), Some Notes On Topological Recurrence, Elect. Comm. in Probab.

10, 82-93.

Definition of Pure type distribution

A random variable X has a pure type distribution, if exactly one condition from the following 3 conditions takes place:

1. There erxist finit or countable set D such that $P(X \in D) = 1$.

2. For every $x \in \mathbb{R}$ it holds $\mathbb{P}(X = x) = 0$, but there exists a Borel D such that $P((X \in D) = 1)$ with the Lebesgue measure $\mu(D) = 0$. 3. $P(X \in dx) \prec \mu(dx)$.

Jessen-Wintner's Theorem on Pure type (1935)

Let X_1, X_2, \ldots — be i.i.d. rv's such that:

1. $\sum_{1}^{n} X_k \to X$ a.s. as $n \to \infty$;

2. For every $k \in \mathbb{N}$ there exists a countable set F_k : $P(X_k \in F_k) = 1$.

Then distribution of X has the Pure type.

Polski zloty real data and simulation

Figure: $\alpha = 1/2$, 3 attractors: 2.0 (prob =0.05), 3.79 (prob =0.42), and 4.05 (prob =0.53)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ