Playing polygonal billiards with gaussian functions

Omer Friedland

Sorbonne Université
Euler International Mathematical Institute, 3 July 2019
with Henrik Ueberschär

Quantum billiards

- The quantum billiard is given by the Schrödinger equation with Dirichlet
 boundary conditions.

$$
\begin{aligned}
& (\Delta+\lambda) \psi_{\lambda}=0,\left.\quad \psi_{\lambda}\right|_{D}=0 \\
& \text { where } \lambda=\frac{2 E}{\hbar^{2}}
\end{aligned}
$$

Classical dynamics \leftrightarrow quantum dynamics?

- How are the eigenfunctions distributed as $\lambda \rightarrow \infty$?

- In 2004 Bogomolny and Schmit conjectured that the eigenfunctions of the Laplacian on rational polygonal billiards ought to become localized along a finite number of vectors in momentum space (\mathbb{S}^{1}), as the eigenvalue (in other words, the energy) tends to infinity.
- Quantum limits = accumulation points of $\left\{d m_{\lambda}\right\}$

Rational polygons

- Simplest example: a square
- One may lift a billiard flow on a square to a geodesic flow on a torus

Rational polygons

- More interesting: take a triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}$ and $\frac{3 \pi}{8}$
- We may unfold the billiard flow to the geodesic flow on a translation surface

Rational polygons

- More interesting: take a triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}$ and $\frac{3 \pi}{8}$
- We may unfold the billiard flow to the geodesic flow on a translation surface

Rational polygons

- More interesting: take a triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}$ and $\frac{3 \pi}{8}$
- We may unfold the billiard flow to the geodesic flow on a translation surface

Rational polygons

- More interesting: take a triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}$ and $\frac{3 \pi}{8}$
- We may unfold the billiard flow to the geodesic flow on a translation surface

Rational polygons

- More interesting: take a triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}$ and $\frac{3 \pi}{8}$
- We may unfold the billiard flow to the geodesic flow on a translation surface

Translation surfaces and flat surfaces

- By gluing parallel edges we obtain a flat surface of genus 2 with a conical singularity of angle 6π

Translation surfaces and flat surfaces

- Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite collection of polygons (not necessarily convex) in the euclidean plane
- A translation surface is the space obtained by edge identification
- That is, if $\left\{s_{1}, \ldots, s_{m}\right\}$ is the collection of all edges in \mathcal{P}, then for any s_{i} there exists s_{j} parallel, of the same length and of opposite orientation
- For any rational polygon P there exists the corresponding finite translation surface Q which depends only on the dihedral group of P

Straight line on translation surfaces and flat surfaces

- Any straight line flow on Q can be locally identified as a straight line in the euclidean plane (as a flat surface)
- How far can it go? As long as it does not meet any singular point

Theorem (Zemljakov-Katok '75)
For any given time t there exists a direction η_{0} so that the flow starting at x_{0} at direction η_{0} will not meet any singular point up to time t.

Construction of quasimodes on polygons

- Goal: construct approximate eigenfunctions (i.e. quasimodes) Ψ_{λ} of the Laplacian on P in the sense that

$$
\frac{\left\|(\Delta+\lambda) \Psi_{\lambda}\right\|_{L^{2}(P)}}{\left\|\Psi_{\lambda}\right\|_{L^{2}(P)}}=O\left(\lambda^{\delta}\right)
$$

for some $\delta<\frac{1}{2}$

- Main idea: Take an initial state ψ_{0} which is localized in position and momentum

Average over the evolved state:

$$
\Psi_{\lambda}=\int_{\mathbb{R}} H(t) e^{i \lambda t} U_{t} \psi_{0} d t
$$

where $U_{t}=e^{i t \Delta}, H \in C_{c}^{\infty}(\mathbb{R})$ with supp $H=[-T, T]$ and T is a time-scale that depends on λ

Example: the plane

- Take an initial state

$$
\phi_{0}(x)=\sqrt{\frac{\pi}{\hbar}} \gamma\left(\frac{x-x_{0}}{\hbar^{1 / 2}}\right) e^{\frac{i \eta_{0} \cdot x}{\hbar}}
$$

where \hbar is a small parameter, $\eta_{0} \in S^{1}$ and $\gamma(x)=\frac{1}{2 \pi} e^{-|x|^{2} / 2}$

- The state ϕ_{0} is localized in position near x_{0} on a sclae $\hbar^{1 / 2}$ and in momentum near η_{0} / \hbar on a scale $\hbar^{-1 / 2}$
- Most of the mass of the evolved state $U_{t} \phi_{0}$ stays inside a ball which is evolved by the classical flow in direction η_{0}

Quasimodes on translation surfaces

- Recall that a translation surface Q looks locally like the euclidean plane (as long as we keep a "safety" distance from the conical singularities)
- Choose an initial state

$$
\psi_{0}(x)=\chi\left(\frac{\left|x-x_{0}\right|}{\hbar^{1 / 2-\epsilon}}\right) \phi_{0}(x)
$$

where $\chi \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$is a suitable cutoff function

- Almost all of the mass of the Wigner distribution associated with ψ_{0} lies inside the set $\Omega_{0}=B\left(x_{0}, \hbar^{1 / 2-\epsilon}\right) \times B\left(\eta_{0}, \hbar^{1 / 2-\epsilon}\right)$

Dynamical assumptions

- Given $T \leq \hbar^{3 / 4+\epsilon}$, there exists a direction $\eta_{0} \in S^{1}$ such that $g_{t} \Omega_{0}$ does not self-intersect on the surface Q and avoids conical singularities
- We obtain the bound

$$
\frac{\left\|(\Delta+\lambda) \Psi_{\lambda}\right\|_{L^{2}(Q)}}{\left\|\Psi_{\lambda}\right\|_{L^{2}(Q)}}=O\left(\frac{1}{T}\right)=O_{\epsilon}\left(\lambda^{3 / 8+\epsilon}\right)
$$

if we take $T=\hbar^{3 / 4+\epsilon}$ and recall $\hbar=\lambda^{-1 / 2}$

The main result for translation surfaces

Theorem
Let $\xi_{0} \in \mathbb{S}$. Then for any $\epsilon>0$ there exists a continuous family of quasimodes $\left\{\Psi_{\lambda}\right\}_{\lambda>0}$ for the Laplacian on Q of spectral width $O\left(\lambda^{3 / 8+\epsilon}\right)$ so that

$$
d \mu_{\Psi_{\lambda}}(\xi) \xrightarrow{w *} \delta\left(\xi-\xi_{0}\right), \quad \text { as } \lambda \rightarrow \infty .
$$

The main result for rational polygons

- Any rational polygon P may be unfolded to a translation surface Q under the action of the dihedral group D of P
- Given a quasimode Ψ_{λ} on Q, we may construct a quasimode on P by the method of images,

$$
\Psi_{\lambda}^{P}(x)=\sum_{g \in D} \Psi_{\lambda}(g x)
$$

Corollary

Let $\xi_{0} \in \mathbb{S}$. Then for any $\epsilon>0$ there exists a continuous family of quasimodes $\left\{\Psi_{\lambda}^{P}\right\}_{\lambda>0}$ for the Neumann Laplacian on P of spectral width $O\left(\lambda^{3 / 8+\epsilon}\right)$ so that

$$
d \mu_{\Psi_{\lambda}^{P}}(\xi) \xrightarrow{w *} \frac{1}{|D|} \sum_{g \in D} \delta\left(\xi-g \xi_{0}\right), \quad \text { as } \lambda \rightarrow \infty
$$

where D is the dihedral group of P.

