Topics in Milman's problem

Topics in Milman's problem
Ning Zhang

Introduction
Ning Zhang*
a joint work with Han Huang

Asymptotic Geometric Analysis IV
Milman's
problem for
polytopes
Milman's
problem for
convex body
containing a
unit ball
EIMI, St. Petersburg
Current work

$$
\text { July 1, } 2019
$$

[^0]
Outline

Topics in Milman's problem

Ning Zhang

Introduction \begin{tabular}{c}
$\substack{\text { Introduction } \\
\text { Milman's } \\
\text { probem for } \\
\text { polytopes }}$

Miliman's
problem for
convex boy
containg a
unit ball

Milman's problem for polytopes

Current work
\end{tabular}

Current work

Milman's problem

Topics in
Milman's
problem
Ning Zhang

Introduction
Milman's
problem for
polytopes
Milman's
problem for
convex body
containing a
unit ball
Current work

Milman's problem

Milman's problem

Theorem (Florentin and Dan, 19+)
Let K and L be convex bodies in \mathbb{R}^{n} containing a unit ball. If $K+L=K^{\circ}+L^{\circ}$, then $K=L^{\circ}$.

Milman's

Milman's problem for polytopes

Topics in
Milman's problem

Ning Zhang

Theorem (Huang and Zh., 19+)
Let K and L be convex polytopes in \mathbb{R}^{n}. If $K+L^{\circ}=K^{\circ}+L$, then $K=L$.

Introduction
Milman's
problem for polytopes

Milman's
problem for convex body
containing a unit ball

Idea of proof

Ning Zhang

- For the set $\left\{\theta \in S^{n}: \rho_{K}(\theta)>\rho_{L}(\theta)\right\}$, consider the Gauss map $F_{L}(\theta)$, where

$$
h_{K}\left(F_{L}(\theta)\right)>h_{L}\left(F_{L}(\theta)\right)>\rho_{L}\left(F_{L}(\theta)\right)>\rho_{K}\left(F_{L}(\theta)\right)
$$

- For the set $\left\{\theta \in S^{n}: \rho_{L}(\theta)>\rho_{K}(\theta)\right\}$, consider the Gauss map $F_{K}(\theta)$, where

$$
h_{L}\left(F_{K}(\theta)\right)>h_{K}\left(F_{K}(\theta)\right)>\rho_{K}\left(F_{K}(\theta)\right)>\rho_{L}\left(F_{K}(\theta)\right)
$$

Idea of proof

Ning Zhang

- Pick one simple connected open set Θ_{0} of $\left\{\rho_{K}(\theta)>\rho_{L}(\theta)\right\}$ and set

$$
\Theta_{i+1}=F_{K}\left(F_{L}\left(\Theta_{i}\right)\right) .
$$

- It is not so hard to prove $\Theta_{i} \cap \Theta_{j}=\emptyset$.
- So $\left\{\rho_{K}(\theta)>\rho_{L}(\theta)\right\}$ should have infinity seperate parts.

Milman's problem for convex body containing a unit ball

Theorem (Huang and Zh., 19+)

Let K and L be convex bodies in \mathbb{R}^{n} containing a unit ball. If $K+L^{\circ}=K^{\circ}+L$, then $K=L$.

Introduction
Milman's
problem for
polytopes
Milman's
problem for convex body containing a unit ball

Current work

Idea of proof

Milman's problem

Ning Zhang

- Pick one point $\theta_{0} \in\left\{\rho_{K}(\theta)>\rho_{L}(\theta)\right\}$ and set

$$
\theta_{i+1}=F_{K}\left(F_{L}\left(\theta_{i}\right)\right)
$$

This sequence convergences to point θ where

$$
\rho_{K}(\theta)=h_{K}(\theta)=\rho_{L}(\theta)=h_{L}(\theta)
$$

- At this point, it is clear $D^{2}\left(h_{K}(\theta)\right)=D^{2}\left(h_{L}(\theta)\right)$, which means F_{K} and F_{L} convergence to this point asymptoticly.
- Consider the projection of difference between supporting points of K and L, which is never vanishing.

Current work

Topics in
Milman's problem

Ning Zhang

Introduction
Milman's
problem for
polytopes
Theorem (Huang and Zh., 19+)
There exist two distinct convex bodies K and L with
$K+L^{\circ}=K^{\circ}+L$.
Milman's
problem for
convex body
containing a
unit ball
Current work

Idea of proof

Milman's problem

Ning Zhang

- Take the elliptic E with $\frac{x^{2}}{a^{2}}+a^{2} y^{2}=1(a>1)$.
- Pick one point $\theta_{0} \in E$ and set $\theta_{i+1}=F_{K}\left(F_{L}\left(\theta_{i}\right)\right)$ and $\Theta_{i+1}=\left[\theta_{i}, \theta_{i+1}\right]$.
- Set $\rho_{K}(\theta)=\rho_{E}(\theta)+\epsilon f_{1}$ in Θ_{1}, where $f_{1}^{\prime}\left(\theta_{0}\right)=f_{1}^{\prime}\left(\theta_{1}\right)=0$.
- When θ_{i} close to $\left(0, \frac{1}{a}\right),\left|\rho_{K}-\rho_{L}\right| \leq c \frac{1}{a^{i}}$ and
$\left|\rho_{K}^{\prime}-\rho_{L}^{\prime}\right| \leq c \frac{1}{a^{i}}$, hence
$\left|\left(\rho_{K}^{2}+2\left(\rho_{K}^{\prime}\right)^{2}-\rho_{K} \rho_{K}^{\prime \prime}\right)-\left(\rho_{L}^{2}+2\left(\rho_{L}^{\prime}\right)^{2}-\rho_{L} \rho_{L}^{\prime \prime}\right)\right| \leq c \frac{1}{a^{2 i}}$

Milman's
problem for
polytopes
Milman's
problem for
convex body
containing a

Topics in
Milman's
problem
Ning Zhang

Thank You!

Introduction
Milman's
problem for
polytopes
Milman's
problem for
convex body
containing a
unit ball
Current work

[^0]: * Email: nzhang2@hust.edu.cn

 Dept of Maths and Stats, Huazhong University of Science and Technology, Wuhan, China, 430074.

