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Problem

Let X1,X2, . . . ,Xn be independent random vectors uniformly distributed
on vertices of the n–dimensional cube [−1, 1]n. What is the probability
that the vectors are linearly dependent?

The problem can be restated in terms of random matrices. Let Bn be an
n × n random matrix with i.i.d ±1 entries. What is the probability that
the matrix is singular:

P{smin(Bn) = 0} =?

smin(Bn) = inf
x∈Sn−1

‖Bnx‖2 — smallest singular value of B (i.e. smallest

eigenvalue of positive semidefinite matrix (BnB
>
n )1/2)
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Motivation from numerical analysis

Let A be an n × n matrix, smax(A) = ‖A‖ = sup
x∈Sn−1

‖Ax‖2 — the largest

singular value of A. The condition number

κ(A) =
smax(A)

smin(A)
.

The condition number serves as measure of loss of precision when solving
systems of linear equations.

Assume we look for solution of a system

Ax = b,

but the coefficient vector b is given with an error δb. Thus, we are solving
the system

Ay = b + δb, where y = x + δx .

We clearly have

‖δx‖2

‖x‖2
=
‖A−1δb‖2

‖A−1b‖2
=
‖A−1δb‖2

‖δb‖2

‖δb‖2

‖b‖2

‖b‖2

‖A−1b‖2
≤ κ(A)

‖δb‖2

‖b‖2
.

A typical coefficient matrix can be modeled as a random matrix with some
distribution (determined by the nature of the specific problem). Then
estimating κ(A), hence smin(A), becomes important.

3



Motivation from numerical analysis

Let A be an n × n matrix, smax(A) = ‖A‖ = sup
x∈Sn−1

‖Ax‖2 — the largest

singular value of A. The condition number

κ(A) =
smax(A)

smin(A)
.

The condition number serves as measure of loss of precision when solving
systems of linear equations. Assume we look for solution of a system

Ax = b,

but the coefficient vector b is given with an error δb. Thus, we are solving
the system

Ay = b + δb, where y = x + δx .

We clearly have

‖δx‖2

‖x‖2
=
‖A−1δb‖2

‖A−1b‖2
=
‖A−1δb‖2

‖δb‖2

‖δb‖2

‖b‖2

‖b‖2

‖A−1b‖2
≤ κ(A)

‖δb‖2

‖b‖2
.

A typical coefficient matrix can be modeled as a random matrix with some
distribution (determined by the nature of the specific problem). Then
estimating κ(A), hence smin(A), becomes important.

3



Motivation from numerical analysis

Let A be an n × n matrix, smax(A) = ‖A‖ = sup
x∈Sn−1

‖Ax‖2 — the largest

singular value of A. The condition number

κ(A) =
smax(A)

smin(A)
.

The condition number serves as measure of loss of precision when solving
systems of linear equations. Assume we look for solution of a system

Ax = b,

but the coefficient vector b is given with an error δb. Thus, we are solving
the system

Ay = b + δb, where y = x + δx .

We clearly have

‖δx‖2

‖x‖2
=
‖A−1δb‖2

‖A−1b‖2
=
‖A−1δb‖2

‖δb‖2

‖δb‖2

‖b‖2

‖b‖2

‖A−1b‖2
≤ κ(A)

‖δb‖2

‖b‖2
.

A typical coefficient matrix can be modeled as a random matrix with some
distribution (determined by the nature of the specific problem). Then
estimating κ(A), hence smin(A), becomes important.

3



Motivation from numerical analysis

Let A be an n × n matrix, smax(A) = ‖A‖ = sup
x∈Sn−1

‖Ax‖2 — the largest

singular value of A. The condition number

κ(A) =
smax(A)

smin(A)
.

The condition number serves as measure of loss of precision when solving
systems of linear equations. Assume we look for solution of a system

Ax = b,

but the coefficient vector b is given with an error δb. Thus, we are solving
the system

Ay = b + δb, where y = x + δx .

We clearly have

‖δx‖2

‖x‖2
=
‖A−1δb‖2

‖A−1b‖2
=
‖A−1δb‖2

‖δb‖2

‖δb‖2

‖b‖2

‖b‖2

‖A−1b‖2
≤ κ(A)

‖δb‖2

‖b‖2
.

A typical coefficient matrix can be modeled as a random matrix with some
distribution (determined by the nature of the specific problem). Then
estimating κ(A), hence smin(A), becomes important.

3



History

In the 1940-es–1950-es, the condition number of random matrices was
studied by von Neumann and Goldstine using numerical simulations. In
particular, they conjectured that, for an n × n random matrix Gn with
i.i.d standard normal entries, the condition number κ(Gn) = O(n) with
probability close to one.

The limiting distribution of the condition number, and the smallest singular
value, of Gaussian random matrices was only computed on 1980-es by
Edelman, using a formula for the joint distribution of its singular values.
Edelman proved that

P
{
smin(Gn) ≤ tn−1/2

}
= 1− exp

(
− t2/2− t

)
+ o(1), t > 0.

So, typically smin(Gn) is of order n−1/2. There are various arguments which
show that smax(Gn) = (2 + o(1))

√
n with high probability.

Corresponding results for non-Gaussian random matrices were obtained
much later. Even the problem of showing P{A is singular} = on(1) for a
discrete random matrix A with i.i.d entries is not trivial.
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History (continued)

In 1960-es, Komlós showed that for n× n random matrix Bn with i.i.d ±1
entries,

P{Bn is singular} = o(1).

The estimate was greatly improved about 30 years later by Kahn, Komlós
and Szemerédi (1995), who showed that

P{Bn is singular} ≤ 0.999n,

i.e. the singularity probability is exponentially small in dimension.

The trivial bound

P{Bn is singular} ≥ P{Two rows/columns of Bn are equal up to a sign}

implies that
P{Bn is singular} ≥ (1− o(1))n221−n.

It is natural to expect that equality of two rows or columns is the main
contribution to singularity which leads to
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History (continued)

Strong conjecture

P{Bn is singular} = (1 + o(1))n221−n.

Weak conjecture

P{Bn is singular} =
(1

2
+ o(1)

)n
.

Both conjectures are folklore and have been restated many times in the
literature. On can distinguish two existing approaches to these problems.

The first one is a development of the argument of Kahn–Komlós–Szemerédi,
and is based on the notion of combinatorial dimension and on replacing
the original distribution of the entries with a “lazy” one. This approach is
designed to work for discrete distributions.

The second is based on decomposition of the Euclidean sphere and spe-
cial covering arguments and gives small ball probability estimates for the
smallest singular value for much broader class of random matrices.
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and is based on the notion of combinatorial dimension and on replacing
the original distribution of the entries with a “lazy” one. This approach is
designed to work for discrete distributions.

The second is based on decomposition of the Euclidean sphere and spe-
cial covering arguments and gives small ball probability estimates for the
smallest singular value for much broader class of random matrices.

6



History (continued)

Strong conjecture

P{Bn is singular} = (1 + o(1))n221−n.

Weak conjecture

P{Bn is singular} =
(1

2
+ o(1)

)n
.

Both conjectures are folklore and have been restated many times in the
literature. On can distinguish two existing approaches to these problems.

The first one is a development of the argument of Kahn–Komlós–Szemerédi,
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History: argument of Kahn–Komlós–Szemerédi

The argument described below is a development of the original Kahn–
Komlós–Szemerédi due to Tao and Vu.

Let Bn be the n × n Bernoulli (±1) random matrix. The argument of
Kahn, Komlós and Szemerédi of proving P{Bn is singular} ≤ 0.999n starts
by writing

P{Bn is singular} ≤ 2o(n)P{X1,X2, . . . ,Xn span a hyperplane},

where X1,X2, . . . ,Xn are columns of Bn.

For any d ∈ 1
nN, let Ωd be the

set of all hyperplanes V such that

2−εd/n−ε/n
2

≤ P{X1 ∈ V } ≤ 2−εd/n (V is of combinatorial dimension d).

To prove the estimate for P{Bn is singular}, it is enough to verify that∑
V∈Ωd

P{X1,X2, . . . ,Xn span V } ≤ 2−εn+o(n)

for all 1 ≤ d ≤ n. Here, ε > 0 is a small constant.
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History: argument of Kahn–Komlós–Szemerédi

A crucial point of the argument is to estimate P{X1,X2, . . . ,Xn span V }
in terms of P{Y1,Y2, . . . ,Yn span V } for some special collection of ran-
dom vectors Y1,Y2, . . . ,Yn. Assume for a moment that there are random
vectors Y1,Y2, . . . ,Yn such that for any hyperplane V ∈ Ωd we have

P{X1,X2, . . . ,Xn span V } ≤ 0.99n P{Y1,Y2, . . . ,Yn span V }.

Then the trivial identity∑
V∈Ωd

P{Y1,Y2, . . . ,Yn span V } ≤ 1

would imply ∑
V∈Ωd

P{X1,X2, . . . ,Xn span V } ≤ 0.99n.

It turns out that if we replace Xi with vectors Ỹi of “lazy” variables taking
values {−1, 0, 1} then for any hyperplane V we have

P{X1 ∈ V } ≤ 2−ε
′
P{Ỹi ∈ V }.

Then Ỹ1, . . . , Ỹn can act as “approximately” as vectors Y1, . . . ,Yn in the
above reasoning (the actual argument is somewhat more complicated).
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Then Ỹ1, . . . , Ỹn can act as “approximately” as vectors Y1, . . . ,Yn in the
above reasoning (the actual argument is somewhat more complicated).

8



History: argument of Kahn–Komlós–Szemerédi
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History: argument of Kahn–Komlós–Szemerédi

The original approach of Kahn–Komlós–Szemerédi was later improved by
Tao and Vu who showed that

P{Bn is singular} ≤
(3

4
+ o(1)

)n
.

Further improvement was obtained by Bourgain–Vu–Wood about 10 years
ago. Following the established strategy, with some important optimizations
of the argument, they showed that

P{Bn is singular} ≤
( 1√

2
+ o(1)

)n
,

and also obtained asymptotically optimal estimates for some special models
of discrete random matrices. In particular, they showed that for n×n matrix
Mn with i.i.d three-valued entries taking values +1 and −1 with probability
1/4 and zero with probability a half,

P{Mn is singular} =
(1

2
+ o(1)

)n
.
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History: quantitative argument of Tao–Vu

It is hard to extract any quantitative information about the smallest singu-
lar value of square random matrices from the theorem of Kahn–Komlós–
Szemerédi and its refinements. An important step in this direction was
made independently by Tao–Vu and Rudelson.

Tao and Vu (2007) estimated the smallest singular value of discrete random
matrices by studying arithmetic structure of “potential” almost null vectors
of the matrix. In particular, their result implies that for any K > 0 there
is L > 0 depending only on K such that for all sufficiently large n

P{smin(Bn) ≤ n−L} ≤ n−K .

The proof is based on a theorem which asserts that any fixed integer vector
v = (v1, . . . , vn) with sup

r∈R
P
{∑

i bivi = r
}
≥ n−R , almost all coordinates

of v are contained in a generalized arithmetic progression with some special
properties. This allows to essentially bound the probability P{smin(Bn) ≤
n−L} by a sum of probabilities of the form P{‖Bnv‖2 ≤ n−L

′′} for some
special set of integer vectors v .
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Approach of Rudelson and Vershynin

The famous result of Rudelson–Vershynin (2008) strengthens the theorem
of Kahn–Komlós–Szemerédi simultaneously in two directions: by providing
strong quantitative estimates on smin and by taking a much broader class
of distributions.

Let An be n×n random matrix with i.i.d entries of zero mean, unit variance
and with bounded subgaussian moment. Then for any t > 0

P{smin(An) ≤ t/
√
n} ≤ Ct + cn,

where C > 0 and c ∈ (0, 1) may only depend on the subgaussian moment.

The argument of Rudelson and Vershynin is based on three key compo-
nents:

Compressible and incompressible vectors;

Reduction to structural properties of random normals;

The notion of the Least Common Denominator, and an extension of
the classical Erdős–Littlewood–Offord lemma.
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Rudelson–Vershynin: compressible/incompressible vectors

A vector x ∈ Sn−1 is called (δ, ρ)–compressible if the Euclidean distance
to the set of δn–sparse vectors is at most ρ. For example, the unit vector
(0.5, 0.8, 0.2, 0.2, 0.1,−0.1,−0.1) ∈ S6 is (4/7,

√
0.03)–compressible.

The remaining vectors are called (δ, ρ)–incompressible.

We have

P{smin(An) ≤ t/
√
n} ≤ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Compn(δ, ρ)

}
+ P

{
‖Anx‖2 ≤ t/
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Rudelson–Vershynin: reduction to random normals

It is not difficult to show that incompressible vectors are flat. This means
that every unit vector which has a considerable distance to the set of δn–
sparse vectors, must have a proportional to n number of components of
absolute value ≈ 1/

√
n. This observation, together with a special averag-

ing argument, implies

P
{
‖Anx‖2 ≤ t/

√
n for some x ∈ Incompn(δ, ρ)

}
≤ 1

δ
P
{
|〈coln(An),Yn〉| ≤ t/ρ}

}
,

where Yn is the random unit vector orthogonal to the first n − 1 columns
of An.

The Lévy concentration function of a random variable ξ is defined as

L(ξ, s) := sup
r∈R

P
{
|ξ − r | ≤ s

}
, s ≥ 0.

Then, in view of the above, the theorem of Rudelson–Vershynin is implied
by the estimate

PYn

{
Lcoln(An)

(
〈coln(An),Yn〉, s

)
≤ Cs, s ≥ e−c

′n
}
≥ 1− e−c

′n.
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Rudelson–Vershynin: The Least Common Denominator

The least common denominator of a unit vector x is defined as

LCD(x) := inf
{
θ > 0 : dist(θx ,Zn) < min(c1‖θx‖2, c2

√
n)
}
,

where c1, c2 > 0 are two small constants. The least common denominator
characterizes “unstructuredness” of the vector.

The key element of the
Rudelson–Vershynin argument is the relation between the least common
denominator and properties of the random sums. If a1, . . . , an are i.i.d
random variables of unit variance then

L
( n∑

i=1

aixi , t
)
≤ Ct + Ce−c

′n for all t ≥ 1

LCD(x)
.

Then the main theorem for smin(An) follows by proving that for the random
unit normal Yn,

PYn

{
LCD(Yn) ≥ ec

′n
}
≥ 1− e−c

′n.

This result is proved using an elaborate covering argument, by ruling out
the possibility that the least common denominator is subexponential.
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Summary of earlier results

Let Bn be the n × n Bernoulli random matrix with i.i.d ±1 entries.

The result of Rudelson–Vershynin implies the estimate

P{smin(Bn) ≤ t/
√
n} ≤ Ct + cn, t > 0,

for some constants C > 0, c ∈ (0, 1). In particular, Bn is non-singular
with probability at least 1− cn.

The argument of Kahn–Komlós–Szemerédi and its development by
Tao–Vu and Bourgain–Vu–Wood provides stronger singularity proba-
bility estimates:

P{Bn is singular} ≤
( 1√

2
+ o(1)

)n
,

although the method does not seem to imply strong small ball prob-
ability estimates for smin(Bn).
The folklore conjecture in the field is that

P{Bn is singular} =
(1

2
+ o(1)

)n
,

that is, considerable contribution to the matrix singularity comes from
the event that two rows or columns of the matrix are equal.
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Theorem

Theorem (T.’18)

Let Bn be an n × n random matrix with i.i.d ±1 entries. Then for any
ε > 0 there is C > 0 depending only on ε such that

P
{
smin(Bn) ≤ t/

√
n
}
≤ Ct + C

(
1/2 + ε

)n
, t > 0.

In particular,

P
{
Bn is singular

}
=
(1

2
+ on(1)

)n
.

16



Proof: preliminary reductions

Repeating an argument of Rudelson–Vershynin, we get

P
{
smin(Bn) ≤ t/

√
n
}

≤ P
{
‖Bnx‖2 ≤ t/

√
n for some x ∈ Compn(δ, ρ)

}
+

1

δ
P
{
|〈coln(Bn),Yn〉| ≤ t/ρ

}
≤
(1

2
+ ε
)n

+ C P
{
|〈coln(Bn),Yn〉| ≤ Ct

}
,

Hence, to prove the theorem, it is enough to show that with probability
PYn at least 1− (1/2 + ε)n we have

Lcoln(Bn)

(
〈coln(Bn),Yn〉, t

)
≤ Ct for all t ≥

(1

2
+ ε
)n
.

Here, Yn is the unit vector orthogonal to the first n − 1 columns of Bn,
and L(ξ, t) = sup

r
P{|ξ − r | ≤ t}.

In other words, we need to show that the normal vector Yn is typically “very
unstructured”, so that its scalar product with the column coln(Bn) behaves
as a random variable with a bounded density up to the scale

(
1
2 + ε

)n
.
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Proof: discretization

Fix a large constant L > 0, take some N �
(
2− ε

)n
and define a set of

unit vectors

QN :=
{
x : sup

{
t ∈ [0, 1] : L

(
〈coln(Bn), x〉, t

)
> Lt

}
∈
[ 1

2N
,

1

N

]}
.

Then the proof of the main result amounts to showing that

P{Yn ∈ QN} ≤
(1

2
+ ε
)n
.

It can be shown that on the event {Yn ∈ QN} the vector Yn can be
approximated by a vector Y ∈

(
1
NZ
)n

such that

(distance to Yn) ‖Yn − Y‖∞ ≤ 1
N ;

(anti-concentration) P
{∣∣∑n

i=1 biYi

∣∣ ≤ t
}
≤ C Lt for all t ≥ 1/N;

(concentration) L
(∑n

i=1 biYi , 1/N
)
≥ c L

(∑n
i=1 bi (Yn)i , 1/N

)
;

(distance to the column span) ‖B>1..n−1Y‖2 ≤ Cn/N.

Here, B1..n−1 is the first n − 1 columns of Bn.

How the vector Y is constructed:

18



Proof: discretization

Fix a large constant L > 0, take some N �
(
2− ε

)n
and define a set of

unit vectors

QN :=
{
x : sup

{
t ∈ [0, 1] : L

(
〈coln(Bn), x〉, t

)
> Lt

}
∈
[ 1

2N
,

1

N

]}
.

Then the proof of the main result amounts to showing that

P{Yn ∈ QN} ≤
(1

2
+ ε
)n
.

It can be shown that on the event {Yn ∈ QN} the vector Yn can be
approximated by a vector Y ∈

(
1
NZ
)n

such that

(distance to Yn) ‖Yn − Y‖∞ ≤ 1
N ;

(anti-concentration) P
{∣∣∑n

i=1 biYi

∣∣ ≤ t
}
≤ C Lt for all t ≥ 1/N;

(concentration) L
(∑n

i=1 biYi , 1/N
)
≥ c L

(∑n
i=1 bi (Yn)i , 1/N

)
;

(distance to the column span) ‖B>1..n−1Y‖2 ≤ Cn/N.

Here, B1..n−1 is the first n − 1 columns of Bn.

How the vector Y is constructed:

18



Proof: discretization

Fix a large constant L > 0, take some N �
(
2− ε

)n
and define a set of

unit vectors

QN :=
{
x : sup

{
t ∈ [0, 1] : L

(
〈coln(Bn), x〉, t

)
> Lt

}
∈
[ 1

2N
,

1

N

]}
.

Then the proof of the main result amounts to showing that

P{Yn ∈ QN} ≤
(1

2
+ ε
)n
.

It can be shown that on the event {Yn ∈ QN} the vector Yn can be
approximated by a vector Y ∈

(
1
NZ
)n

such that

(distance to Yn) ‖Yn − Y‖∞ ≤ 1
N ;

(anti-concentration) P
{∣∣∑n

i=1 biYi

∣∣ ≤ t
}
≤ C Lt for all t ≥ 1/N;

(concentration) L
(∑n

i=1 biYi , 1/N
)
≥ c L

(∑n
i=1 bi (Yn)i , 1/N

)
;

(distance to the column span) ‖B>1..n−1Y‖2 ≤ Cn/N.

Here, B1..n−1 is the first n − 1 columns of Bn.

How the vector Y is constructed:

18



Proof: discretization

Fix a large constant L > 0, take some N �
(
2− ε

)n
and define a set of

unit vectors

QN :=
{
x : sup

{
t ∈ [0, 1] : L

(
〈coln(Bn), x〉, t

)
> Lt

}
∈
[ 1

2N
,

1

N

]}
.

Then the proof of the main result amounts to showing that

P{Yn ∈ QN} ≤
(1

2
+ ε
)n
.

It can be shown that on the event {Yn ∈ QN} the vector Yn can be
approximated by a vector Y ∈

(
1
NZ
)n

such that

(distance to Yn) ‖Yn − Y‖∞ ≤ 1
N ;

(anti-concentration) P
{∣∣∑n

i=1 biYi

∣∣ ≤ t
}
≤ C Lt for all t ≥ 1/N;

(concentration) L
(∑n

i=1 biYi , 1/N
)
≥ c L

(∑n
i=1 bi (Yn)i , 1/N

)
;

(distance to the column span) ‖B>1..n−1Y‖2 ≤ Cn/N.

Here, B1..n−1 is the first n − 1 columns of Bn.

How the vector Y is constructed:

18



Proof: discretization

Fix a large constant L > 0, take some N �
(
2− ε

)n
and define a set of

unit vectors

QN :=
{
x : sup

{
t ∈ [0, 1] : L

(
〈coln(Bn), x〉, t

)
> Lt

}
∈
[ 1

2N
,

1

N

]}
.

Then the proof of the main result amounts to showing that

P{Yn ∈ QN} ≤
(1

2
+ ε
)n
.

It can be shown that on the event {Yn ∈ QN} the vector Yn can be
approximated by a vector Y ∈

(
1
NZ
)n

such that

(distance to Yn) ‖Yn − Y‖∞ ≤ 1
N ;

(anti-concentration) P
{∣∣∑n

i=1 biYi

∣∣ ≤ t
}
≤ C Lt for all t ≥ 1/N;

(concentration) L
(∑n

i=1 biYi , 1/N
)
≥ c L

(∑n
i=1 bi (Yn)i , 1/N

)
;

(distance to the column span) ‖B>1..n−1Y‖2 ≤ Cn/N.

Here, B1..n−1 is the first n − 1 columns of Bn.

How the vector Y is constructed:

18



Discretization (continued)

The procedure is called “random rounding” in the literature. It was used
by

Alon–Klartag, Klartag–Livshyts, and, more recently,

Livshyts (2018) when estimating smin for inhomogeneous random ma-
trices.

The use of the random rounding in the Bernoulli setting is inspired by these
papers.

To construct the approximation Y of the vector Yn, satisfying the condi-
tions mentioned above, we replace each component (Yn)i with a random
variable Yi distributed on the set

{
bN(Yn)ic/N, bN(Yn)ic/N + 1/N

}
, and

such that EYiYi = (Yn)i . Then with high probability Y satisfies the needed
properties.

Thus, for each “bad” realization of the normal Yn we can construct an
appropriate discrete approximation Y. Next:
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Competition of net cardinality and the small ball probability

Our goal is to show that P{Yn ∈ QN} ≤
(

1
2 + ε

)n
, where

QN =
{
x : sup

{
t ∈ [0, 1] : L

(
〈coln(Bn), x〉, t

)
> Lt

}
∈
[ 1

2N
,

1

N

]}
(and N �

(
2− ε

)n
).

For each “bad” realization Yn ∈ QN , we constructed corresponding ap-
proximation Y. The set of all these approximations N ⊂

(
1
NZ
)n

. Then
we get

P{Yn ∈ QN} ≤ |N | sup
y∈N

P
{
‖B>1..n−1y‖2 ≤ Cn/N

}
≤ |N | (C̃n/N)n.

The estimate is satisfactory as long as |N | � (C̃n/N)−n. So, cardinality
of the discretization N must be relatively small. The estimate for the car-
dinality is the main element of the proof, and is based on double counting:
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Cardinality of the net

Theorem (Double Counting)

Let δ ∈ (0, 1], M ≥ 1. There exist LB = LB(δ) > 0 depending only on δ
(and not on M) with the following property. Take a large n, and
1 ≤ N ≤ (2− ε)n, and let

A := {−2N, . . . ,−N − 1,N + 1, . . . , 2N}δn × {−N,−N + 1, . . . ,N}n−δn.

Further, assume that a random vector (ξ1, . . . , ξn) is uniform on A. Then

P
{

2−n sup
λ∈R

∑
(vj )nj=1∈{−1,1}n

1[−
√
n,
√
n]

(
λ+v1ξ1 + · · ·+vnξn

)
>

LB

N

}
≤ e−M n.

The crucial point of the statement is that LB does not depend on M, so
one can make M arbitrarily small as long as n is large. This statement
(in fact, a little more technical version) is translated into the cardinality
estimates for the net N discussed in the previous slide.
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Cardinality of the net
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The Double Counting theorem: a “dynamical” viewpoint

It is important to get a convenient interpretation of the quantity

sup
λ∈R

∑
(vj )nj=1∈{−1,1}n

1[−
√
n,
√
n]

(
λ+ v1ξ1 + · · ·+ vnξn

)
from the last theorem. Define f0(t) := 1[−

√
n,
√
n](t);

fi (t) :=
1

2
fi−1(t − ξi ) +

1

2
fi−1(t + ξi ), i = 1, 2, . . . , n.

Then

2−n
∑

(vj )nj=1∈{−1,1}n
1[−
√
n,
√
n]

(
λ+ v1ξ1 + · · ·+ vnξn

)
= fn(λ).

Recall that ξ1, . . . , ξn are independent random variables; with (ξ1, . . . , ξn)
uniformly distributed on

A := {−2N, . . . ,−N − 1,N + 1, . . . , 2N}δn × {−N,−N + 1, . . . ,N}n−δn.

The goal is then to bound the ‖ · ‖∞–norm of fn : Z→ R+.
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The Double Counting theorem: a “dynamical” viewpoint

Example of the evolution of fi ’s:
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