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Introduction.
The main results.

Thank you!

Some history.

Plateau's Problem formulation:
Find surface of least area with prescribed boundary.
The terms �surface�, �area� and �boundary� should be explained.

Parametrized surfaces with �xed topology (Douglas, Rad�o, Courant, '37).

Integral currents (Federer-Fleming, '60).

Chains mod 2 (Fleming, '66).

In this problem one has to prove two things:

Exitence.

Regularity.

Today we shall concentrate ourselves only on the existence.
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Introduction.
The main results.

Thank you!

Our setting.

In this talk the ambient space X will be a �nite dimensional normed space
in which we consider the corresponding Hausdor� measure (see the
appendix).

The space of competitors will be the space of recti�able chains Rm(X ,G),
where G is a complete normed Abelian group (see the appendix).

The area is going to be the mass, the one associated to the Hausdor�
measure (see the appendix).

The boundary is considered in the homological sense.

Remark

The most part of our results are proved for m = n − 1 and m = 2.
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Thank you!

Why do we consider G minimizing chains?

Historically, this started as a question of �nding mathematical models for
soap �lms on wire frames.

In R3 minimal currents are oriented and automatically smooth away from
the frontier.

The soap bubbles are not, as the experiments show.

We want to be able to consider competitors as M�oebius band and three
half disks.
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The main results.

Thank you!

Direct method of calculus of variations.

Let us brie�y trace the main steps of the direct method of calculus of
variations, since we shall utilize it.

Choose a topology on the space of competitors (or �surfaces�).

Take a minimizing sequence.

Extract a converging subsequence via a compactness argument.

Show that the limiting object is a solution of the Plateau problem via a
lower semicontinuity theorem.

Remark

Throughout this talk we consider only the �at norm topology (see the
appendix).

Remark

The key point for lower semicontinuity is convexity of the area.
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Example: the Euclidean setting

In the Euclidean spaces the situation is nice: orthogonal projections do not
increase the Hausdor� measure of recti�able sets. From this one can derive the
following fact.

Proposition

(Triangle inequality.) Let P be a polyhedral m-cycle (i.e. ∂P = 0) such that
P =

∑N
j=1 gj [σj ], where σj are non overlapping m-simplexes. Then

|g1|Hm(σ1) 6
N∑
j=2

|gj |Hm(σj).

From here using the strong and the weak approximation theorems one can
derive the lower semicontinuity.

Remark

Alas, for instance in the space X = (R3, ‖ . . . ‖∞) any linear projection
π : X →W onto the hyperplane W = {x ∈ X : x + y + z = 0} has Lipschitz
constant C > 1.
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(n − 1)-Hausdor� area contractions.

Defenition

Let (X , ‖ . . . ‖) be an n-dimensional normed space and let W ∈ G(n − 1,X ).
We say that a linear projection πW : X →W is W -good if

Hn−1
‖...‖(πW (A)) 6 Hn−1

‖...‖(A)

for any set A ⊂ V , where V is some (n − 1)-dimensional linear subspace of X .

Theorem

(H.Busemann) In every �nite dimensional normed space X each
W ∈ G(n − 1,X ) admits at least one W -good projection.
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(n − 1)-Hausdor� area contractions.(cont.)

Defenition

Let (X , ‖ . . . ‖) be a normed space with the unit ball B. The
Busemann�Hausdor� density φBH,m : G(m,X )→ R+ is de�ned for
W ∈ G(m,X ) by

φBH,m(W ) =
αm

Hm(B ∩W )
.

Existence of good projections follows from another theorem, once again of
Busemann.

Theorem

(H.Busemann) Let (X , ‖ . . . ‖) be an n-dimensional normed space with the
unit ball B = {x ∈ X : ‖x‖ 6 1}. Then the function
σB(v) := |v |2 · φBH,n−1(v⊥) is convex.
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(H.Busemann) Let (X , ‖ . . . ‖) be an n-dimensional normed space with the
unit ball B = {x ∈ X : ‖x‖ 6 1}. Then the function
σB(v) := |v |2 · φBH,n−1(v⊥) is convex.
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Codimension one.�Classical� proof of the existence.
Dimension two.

Lower semicontinuity ⇔ Triangle inequality

Theorem 1

(T.De Pauw, I.V.) Let (X , ‖ . . . ‖) be an n-dimensional normed space, let G be
a complete normed Abelian group and let m be an integer such that
1 6 m 6 n − 1. Then the following are equivalent.

1 M is lower semicontinuous with respect to �at convergence on Pm(X ,G).

2 If P =
∑N

j=1 gj [σj ] ∈ Pm(X ,G), where σj are non overlapping, is a cycle
(which means that ∂P = 0) then

|g1|Hm
‖...‖(σ1) 6

N∑
j=2

|gi |Hm
‖...‖(σj).

Corollary

Let (X , ‖ . . . ‖) be an n-dimensional normed space and let G be a complete
normed Abelian group. Then the mass M is lower semicontinuous with respect
to �at convergence on the space Rn−1(X ,G).
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Thank you!

Codimension one.�Classical� proof of the existence.
Dimension two.

The existence theorem.

Theorem 2

(T.De Pauw, I.V.) Let (X , ‖ . . . ‖) be an n-dimensional normed space and let
G be a locally compact complete normed Abelian group. Then the following
Plateau problem admits a solution:{

minimize M(T )

T ∈ Rn−1(X ,G) such that ∂T = B,

where B ∈ Rn−2(X ,G) has a compact support and satis�es ∂B = 0. Moreover,
among the solutions, there is at least one, say T0 such that spt(T0) is compact.

Proof.

We use the direct method. The lower semicontinuity is the corollary from the
previous slide. The compactness requires a more involved argument.

Remark

Our result gives a (partial) answer to a question posed by Ambrosio & Schmidt.
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Codimension one.�Classical� proof of the existence.
Dimension two.

The lack of projections and the Burago�Ivanov theorem.

Remark

For m 6= {1, n − 1} it is possible to construct examples of m-volume densities
which admit convex extension to Λ2X , but fail to admit good projections in
general.

Despite of the lack of area minimizing projections, the 2 dimensional area is
convex.

Theorem

(D.Burago, S.Ivanov) In every �nite-dimensional normed space X , the
two-dimensional Busemann�Hausdor� area density admits a convex extension
to Λ2X .

Conjecture

(H.Busemann) Has the m-dimensional Busemann�Hausdor� area φBH,m a
convex extension to ΛmX for a general codimension m?
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Codimension one.�Classical� proof of the existence.
Dimension two.

Density contractors.

Convexity itself is not su�cient for our goals, so we de�ne another object that
we call density contractors, which will play the role of good projections in
dimension 2.

Defenition

We call a density contractor of W ∈ G(m,X ) any Borel probability measure µ
on Homm(X ,X ) satisfying

µ is supported in Hom(X ,W ),

If V ∈ G(m,X ) and A ⊆ V is Borel, then∫
Homm(X ,X )

Hm
‖...‖(π(A))dµ(π) 6 Hm

‖...‖(A),

with equality when V = W .

Remark

Good projections are particular case of density contractors: µ = δπW .
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Introduction.
The main results.

Thank you!

Codimension one.�Classical� proof of the existence.
Dimension two.

Existence of density contractors.

Using Burago�Ivanov's theorem, we prove that in dimension 2 these
contractors exist.

Theorem 3

(T.De Pauw, I.V.) For each W ∈ G(2,X ) there exists at least one density
contractor.

Remark

In the two dimensional case the contractors that we construct are of the
following form: µ =

∑
λiλjδπi,j .
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Introduction.
The main results.

Thank you!

Codimension one.�Classical� proof of the existence.
Dimension two.

The triangle inequality.

Based on our theorem on the density contractors, we prove the triangle
inequality.

Theorem 4

(T.De Pauw, I.V.) Let (X , ‖ . . . ‖) be an n-dimensional Banach space with the
unit ball B = {x ∈ X : ‖x‖ 6 1}. Let P ∈ P2(X ,G) be a 2-cycle (i.e. ∂P = 0)
such that P =

∑N
j=1 gj [σj ], where σj are non overlapping 2-simplexes. Then

|g1|H2

‖...‖(σ1) 6
N∑
j=2

|gj |H2

‖...‖(σj).

Proof.

Approximation of the norm ‖ . . . ‖ by polyhedral norms + density
contractors.
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The main results.

Thank you!

Codimension one.�Classical� proof of the existence.
Dimension two.

The lower semicontinuity a the existence theorem.

Using our triangle inequality, we prove that the mass is lower semicontinuous.

Corollary

Let (X , ‖ . . . ‖) be an n-dimensional normed space and let G be a complete
normed Abelian group. Then the mass M is lower semicontinuous with respect
to �at convergence on R2(X ,G).

Proposition

Let (X , ‖ . . . ‖) be an n-dimensional normed space and let G be a locally
compact complete Abelian group. Then the following Plateau problem admits
a solution: {

minimize M(T )

T ∈ R2(X ,G) such that ∂T = B,

where B ∈ R1(X ,G) has a compact support and satis�es ∂B = 0.

Remark

The proof here is based on an easier compactness argument than in Theorem 2.
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